Probability

Paul Gribble

https://www.gribblelab.org/stats2019/

Winter, 2019

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

MD Chapters 1 & 2

- The idea of pure science
- Philosophical stances on science
- Historical review
- Gets you thinking about the logic of science and experimentation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Assumptions

Lawfulness of nature

- Regularities exist, can be discovered, and are understandable
- Nature is uniform

Causality

events have causes; if we reconstruct the causes, the event should occur again

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

can we ever prove causality?

Reductionism

Can we ever prove anything? What is proof?

Assumptions

Finite Causation

- causes are finite in number and discoverable
- generality of some sort is possible
- We don't have to replicate an infinite # of elements to replicate an effect

Bias toward simplicity (parsimony)

- seek simplicity and distrust it
- start with simplest model: try to refute it; when it fails, add complexity (slowly)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Philosophy of Science

- Logical Positivism
- Karl Popper & deductive reasoning
- progress occurs by falsifying theories

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Logical Fallacy

Fallacy of inductive reasoning (affirming the consequent)

- Predict: If theory T, then data will follow pattern P
- Observe: data indeed follows pattern P
- **Conclude**: therefore theory T is true

example

- A sore throat is one of the symptoms of influenza (the flu)
- I have a sore throat
- ► Therefore, I have the flu

Of course other things besides influenza can cause a sort throat. For example the common cold. Or yelling a lot. Or cancer.

Falsification is better

Falsification

Predict: If theory T is true, then data will follow pattern P

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Observe: data do not follow pattern P
- Conclude: theory T cannot be true

We cannot prove a theory to be true. We can only prove a theory to be false.

Karl Popper

Theories must have concrete predictions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- constructs (measures) must be valid
- empirical methodology must be valid

Basis of Interpreting Data

the Fisher tradition

- statistics is not mathematics
- statistics is not arithmetic or calculation
- statistics is a logical framework for:
 - making decisions about theories
 - based on data
 - defending your arguments
- Fisher (1890-1962) was a central figure in modern approaches to statistics

The F-test is named after him

THE critical ingredient in an inferential statistical test (in the frequentist approach):

determining the probability, assuming the null hypothesis is true, of obtaining the observed data

The Fundamental Idea

Calculation of probability is typically based on probability distributions

- continuous (e.g. z, t, F)
- discrete (e.g. binomial)

We can also compute this probability without having to assume a theoretical distribution

- Use resampling techniques
- e.g. bootstrapping

Basis of Interpreting Data

- design experiments so that inferences drawn are fully justified and logically compelled by the data
- theoretical explanation is different from the statistical conclusion
- Fisher's key insight:
 - randomization
 - assures no uncontrolled factor will bias results of statistical tests

A Discrete Probability Example

- One day in my lab we were making espresso, and I claimed that I could taste the difference between Illy beans (which are expensive) and Lavazza beans (which are less expensive).
- Let's think about how to design a test to determine whether or not I actually have this ability

Many factors might affect his judgment

- temperature of the espresso
- temperature of the milk
- use of sugar
- precise ratio of milk to espresso

Prior to Fisher

- you must experimentally control for everything
- every latte must be identical except for the independent variable of interest

How to design your experiment?

- a single judgment?
- he might get it right just by guessing
- * this is the null hypothesis!
- H_0 is he does not have the claimed ability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► H₀ is that he is guessing

How many cups are required for a sufficient test?

- how about 8 cups (4 Illy, 4 Lavazza)
- present in random order
- tell subject that they have to separate the 8 cups into 2 groups: 4 Illy and 4 Lavazza

- is this a sufficient # of judgments?
- how do we decide how many is sufficient?

Key Idea

- consider the possible results of the experiment, and the probability of each, given the null hypothesis that he is guessing
- there are many ways of dividing a set of 8 cups into Illy and Lavazza
- Pr(correct by chance) =

 (# exactly correct divisions) / (total # possible divisions)

- only one division exactly matches the correct discrimination
- therefore numerator = 1
- what about the denominator?
- how many ways are there to classify 8 cups into 2 groups of 4?
- equals # ways of choosing 4 Illy cups out of 8 (since the other 4 Lavazza are then determined)

- 8 possible choices for first of 4 Illy cups
- for each of these 8 there are 7 remaining cups from which to choose the second Illy cup
- for each of these 7 there are 6 remaining cups from which to choose the third Illy cup
- for each of these 6 there are 5 remaining cups from which to choose the fourth and final Illy cup

• total # choices = 8 x 7 x 6 x 5 = 1680

- total # choices = 1680
- does order of choices matter? (no)
- any set of 4 things can be ordered 24 different ways (4 × 3 × 2 ×1)
- each set of 4 Illy cups would thus appear 24 times in a listing of the 1680 orderings

so total # of distinct sets (where order doesn't matter)
 = (1680 / 24) = 70 unique sets of 4 Illy cups

- we can calculate this more directly using the formula for "# of combinations of n things taken k at a time"
- " 8 choose 4"

```
nCk = (n!) / (k! (n-k)!)
```

- = 8! / (4! (8-4)!)
- = (8x7x6x5x4x3x2x1) / (4x3x2x1)x(4x3x2x1)

- = (8x7x6x5) / (4x3x2x1)
- = 70

- we have now formulated a statistical test for our null hypothesis
- the probability of me choosing the correct 4 Illy cups by guessing is (1 / 70) = 0.014 = 1.4 %
- so if I do pick the correct 4 Illy cups, then it is much more likely (98.6 %) that I was not guessing

- you cannot prove I wasn't guessing
- you can only say that the probability of the observed outcome, if I was guessing, is low (1.4 %)

the probability of me choosing the correct 4 Illy cups by guessing is (1 / 70) = 0.014 = 1.4 %

- What is the meaning of this probability?
- Pr(correct choice | null hypothesis) = 0.014
- Pr(data | hypothesis) = 0.014
- important: this is not Pr(hypothesis | data)
- i.e. not Pr(null hypothesis | experimental outcome)
- a Bayesian approach will get you Pr(hypothesis | data)

from the Chapter

- Pr(perfect or 3/4 correct) = (1+16)/70 = 24 %
- nearly 1/4 of the time, just by guessing!
- so observed performance of 3/4 correct may not be sufficient to convince us of my claim

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Logic of Statistical Tests

review

- to design a scientific test of Mr. EspressoHead's claim, we designed an experiment where the chances of him guessing correctly 4/4 were low
- so if he did get 4/4 correct then what can we conclude?
- we could choose to reject the null hypothesis that he was guessing, because we calculated that the chances of this happening, are low

How low should you go?

how low is low enough to reject the null hypothesis?

- ▶ 5 % (1 in 20) p<.05
- ▶ 2 % (1 in 50) p<.02
- 1 % (1 in 100) p<.01</p>
- 0.0001 % (1 in 1,000,000) p<.000001</p>

answer:

it is arbitrary, YOU must decide

but consider convention in:

your lab / journal / field

How low should you go?

what is the relative cost of making a wrong conclusion?

- concluding YES he has the ability when in fact he doesn't (type-I error)
- concluding NO he doesn't have the ability when in fact he does (type-II error)

costs may be different depending on the situation

- drug trial for a new, but very expensive (but potentially beneficial) cancer drug
- your thesis experiment, which appears to contradict a major accepted theory in neuroscience
- your thesis experiment, which appears to contradict your own previous study

Tests based on Distributional Assumptions

Instead of counting or calculating possible outcomes we typically rely on statistical tables

- give probabilities based on theoretical distributions of test statistics
- typically based on the assumption that the dependent variables are normally distributed
- allows generalization to population, not just a particular sample

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

e.g. the t-test (next week)

We can however proceed without assuming particular theoretical distributions

- non-parametric statistical tests
- resampling techniques

catch up on readings

- MD 1 & 2 (today's class)
- Start in on readings for next week's topic: Hypothesis Testing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ