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Statistical Power

▶ power is the ability of a statistical test to detect real
differences when they exist

▶ β is the probability of failing to reject the null hypothesis
when it is in fact false (Type-II error)

▶ β is the probability of failing to reject the restricted model
when the full model is a better description of the data, even
with the requirement to estimate more parameters

power = 1 − β

▶ power is the probability of rejecting the null hypothesis when
it is in fact false
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Type-I vs Type-II error & hypothesis testing outcomes

Reality

H0 is true H1 is true

Research H0 is true Accurate (1 − α) Type-II error (β)

H1 is true Type-I error (α) Accurate (1 − β)
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Statistical Power

▶ how sensitive is a given experimental design?
▶ how likely is our experiment to correctly identify a difference

betweeen groups when there actually is one?
▶ what sample size is required to give an experiment adequate

power?
▶ how many subjects do we need to include in each group

sample?
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Effect Size

▶ we need some way of assessing the expected size of the effect
we are proposing to detect

▶ one measure is the standardized measure of effect size, f

f = σm/σϵ

σm =

√∑
(µj − µ)2

a =

√∑
α2

j
a

µ =

∑
j

µj

 /a

σϵ = within-group standard deviation
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Effect Size

▶ If you have pilot data you can compute values for f
▶ If not, Cohen (1977) suggests the following definitions:

▶ "small" effect: f = 0.10
▶ "medium" effect: f = 0.25
▶ "large" effect: f = 0.40

▶ so for medium effect, standard deviation of population means
across groups is 1/4 of the within-group sd
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Power Charts

▶ Cohen (1977) provides tables that let you read off the power
for a particular combination of numerator df, desired Type-I
error rate, effect size f , and subjects per group

▶ four factors are varying — tables require 66 pages!
▶ seriously

▶ It’s 2019, Let’s use R instead
▶ power.t.test()
▶ power.anova.test()
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An example

▶ e.g. you are planning a reaction-time study involving three
groups (a = 3)

▶ pilot research & data from literature suggest population
means might be 400, 450 and 500 ms with a sample
within-group standard deviation of 100 ms

▶ suppose you want a power of 0.80 — how many subjects do
you need in each sample group?
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An example
power.anova.test(groups=3, n=NULL,

between.var=var(c(400,450,500)),
within.var=100**2, sig.level=0.05,
power=0.80)

Balanced one-way analysis of variance power calculation

groups = 3
n = 20.30205

between.var = 2500
within.var = 10000
sig.level = 0.05

power = 0.8

NOTE: n is number in each group
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. . . but since we know how to program in R

▶ simulate! Simulate sampling from two populations
▶ whose means differ by the expected amount
▶ whose variances are a particular value
▶ postulate a particular sample size N

▶ sample and do your statistical test many times (e.g. 1000)
and see what proportion of times you successfully reject the
null (your power)

▶ If power is not high enough, try a larger sample size N and
repeat. Keep increasing N in simulation until you get the
power you want

▶ computationally intensive, but allows you to test any
experimental situation that you can simulate
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Cautionary note: calculating "observed power" after
rejecting the null

▶ you run an experiment, do stats, and end up failing to reject
H0

▶ two possibilities:
1. there is in fact no difference between population means, and

your experiment correctly identifies this
2. there is a difference, but your experiment is not statistically

powerful enough to detect it (for e.g. because within-group
variability is high)

▶ can we use power calculations to see if we "had enough
power" to detect the difference?

▶ no — not appropriate use of power analysis (although
frequently taught)
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Hoenig & Heisey (2001)

▶ doing a power analysis after an experiment that failed to
reject the null, to see if "there was enough power" to detect
the difference, is inappropriate

▶ the result of a post-hoc power analysis is completely
redundant with the probability (p-value) obtained in the
original analysis

▶ one can be obtained directly from the other
▶ you don’t learn anything new by doing a post-hoc power

analysis
▶ See Hoenig & Heisey (2001) for the full story
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Challenges of power analyses

▶ you must have estimates of expected difference between
means

▶ you must have estimates of within-group variability
▶ computing power for more complex experimental designs can

be complicated — see Maxwell & Delaney text for examples
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