
Resampling Methods



general problem

• scientific Qs are about populations

• we can’t measure entire populations

• experiments generate samples

• samples -> estimate population parameters

• “parametric” approaches come with 
assumptions



general problem

• what if assumptions are violated?

• data are not normally distributed

• variances unequal

• sample size unequal

• nonlinear model

• etc etc



Resampling
1. Bootstrapping: a way to estimate the precision 

of sample-based population estimates (without 
having access to the entire population)

• doesn’t rely on parametric assumptions (e.g. 
normality)

2. Permutation Tests: hypothesis testing

• non-parametric, by simulating the null

3. Resampling: a way to do power calculations

• not restricted by assumptions



• we saw earlier:

• best estimate of a population mean 
is the sample mean (assuming 
normality)

• estimate of sd of sampling 
distribution of means is standard 
error of mean:

• can use this to generate 95% CIs of 
population mean

sx̄ =
sxp
N

µ̂ = X̄ =

P
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N

X̄ ± t↵(sx̄)

1. Estimating Population Parameters



• bootstrapping can estimate sampling distribution 
of means

• no need to assume any particular theoretical 
distribution

• use resampling with replacement to simulate 
repeatedly sampling from the population

• uses sample as proxy for population

1. Estimating Population Parameters



assume you have a sample X1…Xn and a statistic of interest (e.g. the mean)

repeat M times (where M is large, e.g. 10,000)

generate a new sample of size n by resampling, with replacement, from X1..Xn

compute the statistic based on the new sample

set that statistic aside (e.g. save it in a list)

now you have a list of M versions of the statistic, one for each resampling

that list represents an empirical bootstrap distribution of the statistic of 
interest

now you can compute relevant quantities of that distribution (e.g. 95% CIs)

1. Estimating Population Parameters



• e.g. we have a sample of size 20:

• 66  79  93  86  69  79 101  97  91  95  
72 106 105  75  70  85  92  74  88  93

• estimate of population mean (using sample 
mean) is 85.8

• how precise is that estimate?

1. Estimating Population Parameters



1. Estimating Population Parameters
X = c(66, 79, 93, 86, 69, 79, 101, 97, 91, 95, 72, 106, 105, 75, 70, 85, 92, 74, 88, 93)

# compute a statistic of interest
(Xm = mean(X))

# use resampling to generate an empirical bootstrap distribution of that statistic

# how many simulated experiments?
boot_m = 1000000

# create a list to store our bootstrap values
Xm_boot = array(NA, boot_m)

# do it
for (i in 1:10000) {

Xb = sample(X, length(X), replace=TRUE) # generate new sample
Xm_boot[i] = mean(Xb)            # compute statistic of interest

}

# display results
hist(Xm_boot, xlab="Mean", main="bootstrap")
abline(v=Xm, col="red")
abline(v=mean(Xm_boot), col="red", lty=2)
legend(x="topright", lty=c(1,2), col=c("red","red"), legend=c("sample","bootstrap"))

# compute 95% CI
(CI95 = quantile(Xm_boot, probs=c(.025,.975)))
abline(v=CI95[1], lty=2, col="blue")
abline(v=CI95[2], lty=2, col="blue")
legend(x="topleft", lty=2, col="blue", legend="95% CI")

www.gribblelab.org/stats/code/bootcode.R

http://www.gribblelab.org/stats/code/bootcode.R


1. Estimating Population Parameters
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• here we used a bootstrap to estimate the 
sampling distribution of the mean

• we can do the same procedure to estimate the 
sampling distribution of any statistic we want

• e.g. variance, or median, or skew, …

• or anything we make up

• bootstrapping will estimate sampling distribution

1. Estimating Population Parameters



• example: comparing two populations

• drug vs control

• null hypothesis: drug has no effect

• drug & control sampled from same 
population

• alternate hypothesis: drug has an effect

• drug & control not sampled from same 
population

2. Hypothesis Testing



• choose a test statistic (e.g. the difference between means… 
but could be anything; t, F, sd, whatever your scientific 
question calls for)

• do many many times (e.g. 10,000):

• simulate the null hypothesis  
(that drug & control labels are random)

• how many times did you get a test statistic as large or 
larger as the original one? < 5%? then reject H0

2. Hypothesis Testing



• choose a test statistic (e.g. the difference between means… 
but could be anything; t, F, sd, whatever your scientific 
question calls for)

• do many many times (e.g. 10,000):

• throw both groups into a bucket

• randomly reconstitute the two groups, disregarding their 
original group membership 
(resample without replacement)

• recompute the statistic of interest

• how many times did you get a test statistic as large or 
larger as the original one? < 5%? then reject H0

2. Hypothesis Testing



2. Hypothesis Testing
#########################################################################################
# 2. Hypothesis Testing with Permutation Tests
#########################################################################################

# our control group
g_control <- c(87,90,82,77,71,81,77,79,84,86,78,84,86,69,81,75,70,76,75,93)

# our drug group
g_drug <- c(74,67,81,61,64,75,81,81,81,67,72,78,83,85,56,78,77,80,79,74)

# our statistic of interest here is the difference between means
(stat_obs <- mean(g_control) - mean(g_drug))

# how many simulated experiments?
n_perm = 10000

# create a list to store our permutation test values
stat_perm = array(NA, n_perm)

# now do a permutation test to simulate the null hypothesis,
# namely that the control and drug labels are random
g_control_n = length(g_control)
g_drug_n = length(g_drug)
g_bucket = c(g_control, g_drug)
g_bucket_n = length(g_bucket)
for (i in 1:n_perm) {
  # reconstitute both groups, ignoring original labels
  permuted_bucket <- sample(g_bucket,g_bucket_n,replace=FALSE)
  perm_control <- permuted_bucket[1:g_control_n]
  perm_drug <- permuted_bucket[(g_control_n+1):(g_control_n+g_drug_n)]
  stat_perm[i] <- mean(perm_control) - mean(perm_drug)
}

# visualize the empirical permutation distribution of our statistic of interest
hist(stat_perm, 50, xlab="mean(control) - mean(drug)", main="Permutation Test")
abline(v=stat_obs, col="red", lwd=2)

# how many times in the permutation tests did we observe a stat_perm as big or bigger than our stat_obs?
(p_perm <- length(which(stat_perm >= stat_obs)) / n_perm)
legend(x="topleft", lty=1, col="red", legend=paste("stat_obs: p = ", p_perm))

www.gribblelab.org/stats/code/bootcode.R

http://www.gribblelab.org/stats/code/bootcode.R


2. Hypothesis Testing
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• here we tested the difference between means

• but we can apply this method to any statistic of 
interest that we can calculate

• no need to assume theoretical distribution

• compute probability under H0 empirically by 
simulating the null hypothesis

2. Hypothesis Testing



• we can use random resampling to simulate 
experiments not only under the null hypothesis 
but under any alternate hypothesis of our 
choosing

• we can use simulations to answer questions 
about statistical power

3. Power Calculations



• what’s the probability of detecting a given effect 
with a given number of subjects?

• how many subjects are required to detect a 
given effect 80% of the time? (or any other % of 
your choosing)

• again a bootstrapping/resampling approach 
doesn’t require assumptions about a theoretical 
distribution

3. Power Calculations



• example: 2 groups, drug and control

• control  
87  90  82  87  71  81  77  79  84  86  
78  84  86  69  81  75  70  76  75  93

• drug 
74  73  81  65  64  75  76  81  81  67  
72  78  83  75  66  78  77  80  79  74

• Mann-Whitney U test:  
t = 2.0613  
p = 0.04626

3. Power Calculations

what is our statistical power?



3. Power Calculations

# our two groups
g_control <- c(87,90,82,87,71,81,77,79,84,86,78,84,86,69,81,75,70,76,75,93)
g_drug <- c(74,73,81,65,64,72,76,81,81,67,72,78,83,75,66,78,77,80,79,74)

# do a Mann-Whitney U test (nonparametric version of a t-test)
out <- wilcox.test(g_control, g_drug)
w_obs <- out$statistic
p_obs <- out$p.value

n_boot <- 10000
w_boot = array(NA, n_boot)
p_boot = array(NA, n_boot)
for (i in 1:n_boot) {

b_control <- sample(g_control,length(g_control),replace=TRUE)
b_drug <- sample(g_drug,length(g_drug),replace=TRUE)
out <- wilcox.test(b_control, b_drug)
w_boot[i] <- out$statistic
p_boot[i] <- out$p.value

}

(power <- length(which(p_boot <= .05)) / n_boot)

hist(log(p_boot), 100, main=paste("p_boot, power=", power), xlab="p_boot")
abline(v=log(0.05), col="red", lty=1, lwd=2)
abline(v=log(p_obs), col="red", lty=2, lwd=2)
legend(x="topleft", col="red", lty=c(1,2), lwd=2, legend=c("p < .05", paste("p_obs (",round(p_obs,3),")")), box.lty=0)

∑



3. Power Calculations
p_boot, power= 0.7589
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• here we used bootstrap to simulate re-doing an 
experiment many times

• we used a Mann-Whitney U test as our 
statistical test

• but one could use anything (e.g. a t-test)

• If you are OK with assuming a theoretical 
distribution (e.g. a t distribution) then you can 
perform a parametric bootstrap

3. Power Calculations



3. Power Calculations

n_control <- length(g_control)
m_control <- mean(g_control)
sd_control <- sd(g_control)
n_drug <- length(g_drug)
m_drug <- mean(g_drug)
sd_drug <- sd(g_drug)

for (i in 1:n_boot){
b_control <- rnorm(n_control, mean=m_control, sd=sd_control)
b_drug <- rnorm(n_drug, mean=m_drug, sd=sd_drug)
out <- wilcox.test(b_control, b_drug)
w_boot[i] <- out$statistic
p_boot[i] <- out$p.value

}

(power <- length(which(p_boot <= .05)) / n_boot)

hist(log(p_boot), 50, main=paste("p_boot, power=", power), xlab="log(p_boot)")
abline(v=log(0.05), col="red", lty=1, lwd=2)
abline(v=log(p_obs), col="red", lty=2, lwd=2)
legend(x="topleft", col="red", lty=c(1,2), lwd=2, legend=c("p < .05", paste("p_obs (",round(p_obs,3),")")), box.lty=0)

www.gribblelab.org/stats/exercises/S10code.R



3. Power Calculations
p_boot, power= 0.7872
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• in a parametric bootstrap instead of simulating 
the experiment by resampling from your sample,

• instead you sample from the best estimate of the 
population distribution

• e.g. for the previous example, if we’re ok to 
assume a normal distribution, then

• control: Normal(mean=80.55, sd=6.70)  
drug: Normal(mean=74.8, sd=5.74)

3. Power Calculations



non-parametric 
statistical tests

• unpaired t-test: Mann-Whitney U test

• paired t-test: Wilcoxon test

• one factor ANOVA: Kruskal-Wallis test

• correlation: Spearman rank-order correlation

• etc etc


