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McCall Chapter 3

▶ measures of central tendency
▶ mean

▶ deviations about the mean
▶ minimum variability of scores about the mean

▶ median
▶ mode
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McCall Chapter 3

▶ measures of variability
▶ range
▶ variance
▶ standard deviation
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Population vs Sample

▶ why do we sample the population?
▶ in cases when we cannot feasibly measure the entire

population
▶ the idea is that we can use characteristics of our sample

to estimate characteristics of the population
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McCall Chapter 3

▶ populations vs samples
▶ estimators of population parameters
▶ based on a sample
▶ e.g. for estimating parameters of normal distribution

▶ mean, variance



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

McCall Chapter 7

▶ sampling
▶ sampling distribution
▶ sampling error
▶ probability & hypothesis testing
▶ estimation



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Methods of Sampling

▶ simple random sampling
▶ all elements of the population have an equal probability

of being selected for the sample
▶ representative samples of all aspects of population (for

large samples)
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Methods of Sampling

▶ proportional stratified random sample
▶ mainly used for small samples
▶ random sampling within groups but not between
▶ e.g. political polls

▶ random sampling within each province
▶ but not between provinces
▶ total # samples for each province pre-determined by

overall population
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Random Sampling

▶ each subject is selected independently of other subjects
▶ selection of one element of the population does not alter

likelihood of selecting any other element of the population
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Sampling in Practice

▶ elements of the population available to be sampled is
often biased

▶ willingness of subjects to participate
▶ certain subjects sign up for certain kinds of experiments
▶ Psych 1000 subject pool — is it representative of the

general population?
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Sampling Distributions

▶ sampling is an imprecise process
▶ estimate will never be exactly the same as population

parameter
▶ a set of multiple estimates based on multiple samples is

called an empirical sampling distribution
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Sampling Distribution

Definition (sampling distribution)
the distribution of a statistic (e.g. the mean) determined on
separate independent samples of size N drawn from a given
population
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Empirical Sampling Distribution
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Sampling Distributions

▶ mean, standard deviation and variance in raw score
distributions vs sampling distributions:
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Population Estimates

▶ by using the mean of a sample of raw scores we can
estimate both:

▶ mean of sampling distribution of means
▶ mean of population raw scores

▶ we can estimate the standard deviation of the sampling
distribution of the means using: sx̄ =

sx√
N

▶ standard deviation of raw scores in sample divided by the
square root of the size of the sample
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Standard error of the mean

▶ all that’s required to estimate it is
▶ standard deviation of raw scores
▶ N (# scores in sample)

▶ it represents an estimate of the amount of variability (or
sampling error) in means from all possible samples of size
N of the population of raw scores
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Standard error of the mean

▶ this is great news, it means that it’s not necessary to
select several samples in order to estimate the population
sampling error of the mean

▶ we only need 1 sample, and based on its standard
deviation, we can compute an estimate of how our
estimate of the mean would vary if we were to repeatedly
sample

▶ we can then use our estimate sx̄ as a measure of the
precision of our estimate of the population mean
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Standard error of the mean

sx̄ =
sx√
N

▶ we are dividing by
√
N

▶ thus sx̄ (standard error of the mean) is always smaller
than sx (standard deviation of raw scores in a sample)

▶ said differently: the variability of means from sample to
sample will always be smaller than the variability of raw
scores within a sample
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Standard error of the mean

▶ as N increases, sx̄ decreases
▶ for large samples (large N), the mean will be less variable

from sample to sample
▶ and so will be a more accurate estimate of the true mean

of the population
▶ larger samples produce more accurate and more precise

estimates
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Normal Distribution

▶ given random sampling, the sampling distribution of the
mean:

▶ is a normal distribution if the population distribution of
the raw scores is normal

▶ approaches a normal distribution as the size of the
sample increases even if the population distribution of
raw scores is not normal

▶ Central Limit Theorem
▶ the sum of a large number of independent observations

from the same distribution has, under certain general
conditions, an approximate normal distribution

▶ the approximation steadily improves as the number of
observations increases
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Normal Distribution

▶ why do we care about whether populations or samples are
normally distributed?

▶ all sorts of parametric statistical tests are based on the
assumption of a particular theoretical sampling
distribution

▶ t-test (normal)
▶ F-test (normal)
▶ others. . .

▶ assuming an underlying theoretical distribution allows us
to quickly compute population estimates, and compute
probabilities of particular outcomes quickly and easily

▶ non-parametric methods can be used in other cases but
they are more work
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Normal Distribution

▶ given two parameters (mean, variance):
▶ we can look up in a table (or compute in R) the

proportion of population scores that fall above (or below)
a given value (allowing us to compute probabilities of
particular outcomes)

▶ we can assume the shape of the entire distribution based
only on the mean and variance of our sample
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Violations of Normality

▶ what if the assumption of normality is violated?
▶ we can perform non-parametric statistical tests
▶ we could determine how serious the violation is (what

impact it will have on our statistical tests and the
resulting conclusions)

▶ pre-existing rules of thumb about how sensitive a given
statistical test is to particular kinds of violations of
normality

▶ monte-carlo simulations



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A single case
▶ suppose it is known:

▶ for a population asked to remember 15 nouns, the mean
number of nouns recalled after 1 hour is 7.0, and
standard deviation is 2.0 (µ = 7.0; σ = 2.0)

▶ in R use dnorm() to compute probability density
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A single case

▶ does taking a new drug improve memory?
▶ test a single person after taking the drug
▶ they score 11 nouns recalled
▶ what can we conclude?
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A single case
▶ 11 nouns recalled after taking drug
▶ what are the chances that someone randomly sampled

from the population (without taking the drug) would
have scored 11 or higher?

▶ this probability equals the area under the curve:
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A single case

▶ to determine probability:
▶ convert score to a z-score and lookup in a table

▶ z = (11.0 − 7.0)/2.0 = 2.0
▶ or compute directly in R the probability

pnorm(11, mean=7, sd=2, lower.tail=FALSE)

0.0227501319481792
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A single case
▶ p = 0.0228 but what is our α level?
▶ let’s say 5%
▶ if we didn’t in advance have a hypothesis about whether

drug should raise or lower memory score, then we need to
split our 5% into an upper and lower half:
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A single case

▶ p = 0.0228 and α = 0.0250 (two-tailed)
▶ thus p < α and so we can reject H0

▶ remember H0 is that:
▶ the drug has no effect
▶ any difference in our observed sample (in this case 1

score) from the population mean, is not due to the drug,
but is due to random sampling error

▶ i.e. we just happened to randomly sample a person from
the population who has good memory

▶ after all the population scores are distributed (normally),
some are high, some are low, most are in the middle
around 7.0
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A single group

▶ in this example, mean µ and standard deviation σ of
population were known

▶ typically we do not know these quantities, and we have to
estimate them from our sample data
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Tests based on estimates: mean

▶ it turns out that the best estimate of the population
mean µ is the sample mean X̄

▶ easy
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Tests based on estimates: standard deviation

▶ we can use the standard error of the sampling distribution
of the mean to estimate σ, the standard deviation of the
population

▶ accuracy of this estimate depends on the sample size N

▶ for large samples (N > 50, N > 100) it’s fairly accurate
▶ for smaller samples it is not
▶ another theoretical sampling distribution exists that is

more appropriate for smaller (realistic) sample sizes: the t
distribution
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The t distribution
▶ similar to normal (z) distribution
▶ however: there is a different shape for each sample size N
▶ t distribution characterized by degrees of freedom

df = N − 1
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The t Distribution

▶ let’s sample N = 20 subjects at random and give them
our memory drug

▶ assume population parameter µ = 7.0 and σ is unknown
▶ assume scores in population are normally distributed
▶ let’s test the hypothesis H0 that the drug has no effect
▶ i.e. that the sample is drawn from the population
▶ i.e. that any difference between sample and population is

due not to the drug, but due to random sampling error
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The t Distribution
▶ let’s say our sample mean is X̄ = 8.4 and s = 2.3
▶ compute the t statistic:

tobs = (8.4 − 7.0)/(2.3/
√

20) = 2.72

▶ compute the probability of obtaining a tobs this large or
larger under the null hypothesis

pt(2.72, 19, lower.tail=FALSE)

0.00679475335292515

▶ since p < α (if we set α = 0.05) we can reject the null
hypothesis

▶ we would conclude that we have good evidence that the
drug had an effect
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Confidence Interval for the mean

▶ our sample mean is not equal to the population mean
▶ it is an estimate
▶ using standard error of the mean, and our observed t

statisic, we can compute a confidence interval for the true
population mean

X̄ ± tα(sX̄ )

▶ in our case:
▶ let’s compute the 95% CI (2-tailed)
▶ so tα=.025,df=19 = 2.093 (use the qt() function in R)
▶ 8.4 ± (2.093)(2.3/

√
20) = (7.33, 9.47)
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Confidence Interval for the mean

▶ what does 95% refer to exactly?
▶ common misconception: it does not mean that there is a

95% chance that the given confidence interval contains
the true population mean

▶ too bad, this would be a useful thing to know
▶ what it does mean, is something quite strange:

▶ if we repeatedly sample from the population, each time
with sample size N, and for each sample compute its own
95% confidence interval, then 95% of those confidence
intervals will contain the true population mean

▶ less useful but it’s the truth
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t-tests for the difference between means

▶ assume we have two random samples
▶ we want to test whether these two samples have been

drawn from:
▶ H0: the same population (with the same mean)
▶ H1: two populations with different means

▶ compute the t statistic according to:

t =
(X̄1 − X̄2)− (µ1 − µ2)

sX̄1−X̄2
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t-tests for the difference between means

▶ under H0, µ1 = µ2

t =
(X̄1 − X̄2)− (µ1 − µ2)

sX̄1−X̄2

=
(X̄1 − X̄2)− 0

sX̄1−X̄2

=
(X̄1 − X̄2)

sX̄1−X̄2

▶ the numerator terms can be easily computed based on our
samples

▶ the denominator term can be estimated from our sample
data

▶ it turns out this denominator, the standard error of the
difference between means, is estimated differently
depending on whether scores in the two samples are
correlated or independent
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Independent groups t-test

t =
X̄1 − X̄2√[

(N1−1)s21+(N2−1)s22
N1+N2−2

] [
1
N1

+ 1
N2

]
df = N1 + N2 − 2
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Correlated groups t-test

▶ compute Di as the difference between pairs of scores in
each group, then

t =

∑
Di√

N
∑

D2
i −(

∑
Di )2

N−1

df = N − 1
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t-tests in R

▶ in R use the t.test() function with the paired=TRUE or
paired=FALSE parameter to indicate correlated or
independent groups
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Interpretation of Statistical Significance

▶ statistical "significance" and scientific significant are not
the same thing

▶ if N is large you might find a statistically significant
difference between groups, that is in fact tiny and is
meaningless scientifically

▶ if N is small, you might falsely conclude based on
statistical tests that show no significant difference
between groups that the observed difference between
groups is not significant even though it may be in fact
very large, and very important scientifically
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Interpretation of Statistical Significance

▶ we should all agree to stop saying statistically significant
and instead say statistically reliable

▶ difference between groups is reliable not (necessarily)
significant
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Interpretation of Statistical Significance

▶ imagine an IQ experiment where N = 10, 000, 000 and
p < 0.000001

▶ less than 1 in 1 million chance of observing such a
difference between groups, due to sampling error alone

▶ but what if X̄1 − X̄2 is just 1.0?
▶ population IQ by definition is µ = 100 and σ = 15

▶ this is in fact a tiny difference in IQ (just 1 point)
▶ it appears to be so highly statistically significant because

N is so large.
▶ What we should in fact say is that the difference between

groups is extremely reliable
▶ We should not say that it is "extremely significant"


