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• ANOVA and ANCOVA are special cases of the more 
general form of multiple regression

• We model the DV using a linear equation

• instead of modeling the DV using a weighted sum of 
continuous variables (X weighted by betas),

• we are modeling the DV using a series of constants 

• an overall constant mu

• plus different constants alpha_j, one for each group

• the least-squares estimates for constants are the means of each group
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Repeated Measures Designs

• “within-subjects”

• each subject contributes a score for each level of a factor

• each subject contributes multiple scores

• subjects can serve as their own control

• variance between different conditions is no longer due to 
[effect + between-group sampling variance]

• it’s the same group of subjects! there is no “between-
group” sampling variance

• variance only due to the effect



Examples

• effects of placebo, drug A and drug B can be studied in the 
same subjects; each subject can serve as their own control

• behaviour of subjects can be studied over time; a 
measurement can be taken from the same subjects at 
multiple time points



Advantages of Repeated Measures Designs

• more information is obtained from each subject than in a 
between-subjects design

• within-subjects design: each subject contributes a scores (a is the 
number of conditions tested)

• between-subjects design: each subject contributes only one score

• # of subjects needed to reach a given level of statistical power is often 
much lower with within-subjects designs



Advantages of Repeated Measures Designs

• variability in individual differences between subjects is 
totally removed from the error term

• each subject serves as his/her own control

• error term is reduced

• statistical power increases



Analysis of Repeated Measures Designs

• 10 subjects

• each contributes 4 scores on DV

• one for each of 4 conditions

• as an exercise, let’s treat this as 
a between-subjects design

• single-factor ANOVA

Source SS df MS F sig

Factor
Error
Total

38.9
77.0

115.9

3
36
39

12.967
2.139

6.062 0.002



Analysis of Repeated Measures Designs

• what we are missing out on is the 
fact that some of the variance in 
the data is due to differences 
between subjects 

• what if we were to include a 
second factor, namely “subjects”?

• We don’t have enough df for 
both main effects + the 
interaction Subjects x Factor

• So we will limit the model to:

• main effect of Factor

• main effect of Subjects



Analysis of Repeated Measures Designs

• now we have reduced the error term 
by accounting for another portion of 
the variance

• variance due to differences among 
subjects
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Competing Models

• full model includes effect of factor and effect of subjects

• restricted model only includes effect of subjects (effect of 
factor is zero)

• so the difference here compared to regular “between-
subjects” models is simply the inclusion of terms 
accounting for the effects of subjects

• remember: the more variance you can account for, the 
smaller the error term, the higher the F value, and the 
more powerful the statistical test

Yij = µ + αj + πi + ϵijfull model

restricted model Yij = µ + �i + �ij



Analysis of Repeated Measures Designs

• just as always, we can compute an F statistic based on 
Error for the full model and Error for the restricted model

• see Chapter 11 for all the gory details

F =
(ER − EF )/(dfR − dfF )

EF /dfF

dfF = (n − 1)(a − 1)

dfR − dfF = (a − 1)



Assumptions

• random sampling from population

• independence of subjects

• normality

• homogeneity of treatment-difference variances

• variance of difference scores between any two levels of a factor must be 
equal to variance of differences scores between all other pairs of levels 
of the factor

• equivalent to showing that the population covariance matrix has a 
certain form, that is, it displays the property of sphericity

• this is all very mathematical and we don’t need to know the details

• fortunately there is (1) a test to see if we have violated the assumption, 
and (2) a method to correct for violations



Homogeneity of Treatment-Difference Variances

• We will see how to perform a test of sphericity in R

• R will report a number of corrected versions of the F test 
assuming sphericity is violated

• “Greenhouse-Geisser” adjustment adjusts the degrees of 
freedom (reducing them) so that Fcrit is larger (more 
conservative test)

• many people use G-G

• others like Huynh-Feldt because it’s slightly less 
conservative



Comparisons Among Individual Means

• we can use the same formulas we used in between-
subjects designs to test any contrast:

• caveat: tests of comparisons among means are very 
sensitive to violations of the sphericity assumption

• methods exist to circumvent this by using different error 
terms (see Chapter)

SSψ =
n(ψ)2
∑

c2
j

F =

SSψ

MSErr



Experimental Design Considerations

• Order Effects

• e.g. a neuroscientist wants to compare the effects of Drug A and Drug B on 
aggressiveness in pairs of monkeys

• every pair of monkeys will be observed under the influence of both Drug A 
and Drug B

• How should we conduct the study?

• one possibility: administer Drug A to every pair, observe the subsequent 
interactions, and then administer Drug B to every pair

• bad idea: confounds potential drug differences with the possible effects of 
time

• even if a significant difference between the drugs is obtained, it may not have 
occurred because the drugs truly have a different effect

• it may be because monkeys were simply becoming less aggressive over time

• or: a significant drug difference could be missed because of time effects



Counterbalancing

• a solution is to counter-balance the order in which 
treatments are administered

• e.g. Drug A then Drug B to half the monkeys;

• Drug B then Drug A to the other half

• monkeys are randomly assigned to each group

• known as a “crossover design”



Differential Carryover Effects

• a nasty potential problem

• occurs when the carryover effect of treatment condition 1 
onto treatment condition 2 is different than the carryover 
effect of treatment 2 onto treatment condition 1

• counterbalancing will NOT control for this problem

• one solution is a “washout period” after the administration 
of one treatment, to let enough time elapse so that the 
next treatment is no longer affected

• can’t always be done: some carryover effects are permanent 
(e.g. learning, memory, lesions, etc)

• some scientific questions are better suited to between-
subjects designs



Counterbalancing more than two levels

• what if we want to counterbalance an experiment with 
more than two levels? (e.g. 4)

• there are actually 24 different orderings of 4 conditions

• we would need 24 subjects to represent each order only 
once!

• Two alternatives:

• randomize the order for each subject; order effects will be controlled 
for “in the long run”

• Latin Square Designs

• an arrangement of conditions so that each condition appears exactly 
once in each possible order



Latin Square Designs

Order

Ss 1 2 3 4

1 A B C D

2 B C D A

3 C D A B

4 D A B C



Advantages of Repeated Measures Designs

• each subjects contributes a x n data points; fewer subjects 
are required

• increased power to detect true treatment effects due to a 
smaller error term



Disadvantages of Repeated Measures Designs

• risk of differential carryover effects

• within vs between subjects designs may not be addressing 
the same conceptual question even though the 
manipulated variables appear to be the same

• In a within-subjects design every subject experiences each 
treatment in the context of all other treatments

• In a between-subjects design every subject only ever 
experiences a single treatment, in isolation

• simply a different situation



Two Factor Repeated Measures

• each subject contributes a score on the DV for every level 
of both factors

• e.g. Factor A (2); Factor B (3)

Factor A A1 A2

Factor B B1 B2 B3 B1 B2 B3

Subject 1 420 420 480 480 600 780

Subject 2 480 480 540 660 780 780

Subject 3 540 660 540 480 660 720

Subject 4 480 480 600 360 720 840

Subject 5 540 600 540 540 720 780



Two Factor Repeated Measures

• note something that distinguishes 
a repeated measures design from 
a between-subjects design:

• there is no “within cell” variance

• there is only a single # for each condition per subject

• variance within a condition (e.g. A1B1) exists only due to 
the fact that there are scores from different subjects

• this affects the computation of the error term in the 
ANOVA

• error term is no longer simply “within-cell” variance

• error terms are effects “within subjects”

Factor A A1 A2

Factor B B1 B2 B3 B1 B2 B3

Subject 1 420 420 480 480 600 780

Subject 2 480 480 540 660 780 780

Subject 3 540 660 540 480 660 720

Subject 4 480 480 600 360 720 840

Subject 5 540 600 540 540 720 780



Two Factor Repeated Measures

• Issues of analysis are identical to 
a between-subjects design

• we are interested in testing:

• A main effect

• B main effect

• A x B interaction effect

• and any follow-up tests of individual means

• what is different is simply the calculation of the error 
term(s)

• and which error terms are used for testing 
which effect

Factor A A1 A2

Factor B B1 B2 B3 B1 B2 B3

Subject 1 420 420 480 480 600 780

Subject 2 480 480 540 660 780 780

Subject 3 540 660 540 480 660 720

Subject 4 480 480 600 360 720 840

Subject 5 540 600 540 540 720 780



GLM

• lets assume (like last week) that  
“subjects” is included as a factor 
in our model

• now we have A, B, and S

• main effects: A, B, S

• 2-way interactions: AxB, AxS, BxS

• 3-way interaction: AxBxS

Yijk = µ + αj + βk + πi+

(αβ)jk + (απ)ji + (βπ)ki+

(αβπ)jki + ϵijk

Factor A A1 A2

Factor B B1 B2 B3 B1 B2 B3

Subject 1 420 420 480 480 600 780

Subject 2 480 480 540 660 780 780

Subject 3 540 660 540 480 660 720

Subject 4 480 480 600 360 720 840

Subject 5 540 600 540 540 720 780
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BxS 

AxB xS 
are error terms



lets assume (like last week) that  
“subjects” is included as a factor 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a
different
error
term
for

testing
each
effect

lets assume (like last week) that  
“subjects” is included as a factor 
in our model
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Different Error Terms

• different error terms are used for the F-test for each 
different effect

• thus the total error is split into three error terms

• this helps us - we get smaller error terms

• therefore larger F values

• more powerful statistical test
Source SS df MS F sig

S 4

A 1

A x S 4

B 2

B x S 8

A x B 2

A x B x S 8



Meaning of Error Terms

• Error terms here are interaction terms between an 
“effect” (e.g. A or B or A x B) and subjects (S)

• remember the meaning of an interaction

• effect in question differs across levels of the other factor

• e.g. A x S means that effect of factor A is different across 
different subjects

• A x S therefore captures variance of the “A” effect across 
different subjects - this is the appropriate error term 
(denominator of F test 
for the “A” effect)

Source SS df MS F sig

S 4

A 1

A x S 4

B 2

B x S 8

A x B 2

A x B x S 8



• Table 12.5, Chapter 12 M&D

• 3 different F-tests, 3 different error terms

★ when conducting follow-up tests between individual 
means, you need to use the appropriate error term

Source SS df MS F sig

S 33600 4

A 147000 1 147000 17.5 0.014

A x S 33600 4 8400

B 138480 2 69240 14.16 0.002

B x S 39120 8 4890

A x B 67920 2 33960 11.67 0.004

A x B x S 23280 8 2910



Follow-Up Tests - Which Error Term?

F =

SSψ

MSErr

SSψ =
ñ(ψ)2
∑

c2

ñ = # Ss in each mean
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ñ = # Ss in each mean

Source SS df MS F sig

S 33600 4

A 147000 1 147000 17.5 0.014

A x S 33600 4 8400

B 138480 2 69240 14.16 0.002

B x S 39120 8 4890

A x B 67920 2 33960 11.67 0.004

A x B x S 23280 8 2910



Follow-Up Tests - Which Error Term?

450

575

700

A1 A2 A3

A

450

575

700

B1 B2

B

400

500

600

700

800

A1 A2 A3

B1
B2

A x B

A x S B x S

A x B x S

F =

SSψ

MSErr

SSψ =
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Separate vs Pooled (the same) Error Terms

• when homogeneity of variance assumption is violated, a 
separate error term can be computed for each different 
contrast

• otherwise the appropriate error term from the ANOVA 
table can be used

• these are called “pooled error terms”

• See Chapter 12 for details of separate error term 
calculation



Mixed (Split-Plot) Designs

• one between-subjects factor, and 
one within-subjects factor

• naturally suited to studying different groups of subjects 
over time

• group is between-subject factor

• time is within-subject factor

• sometimes called a “split-plot” design

• a historical holdover from its uses in agricultural research

B1 B2 A

Sub1 2.3 3.4 1

Sub2 3.3 5.2 1

Sub3 5.6 4.1 1

Sub4 4.3 6.4 2

Sub5 6.6 7.7 2

Sub6 7.8 8.2 2



GLM

• Factor A is between-subjects

• Factor B is within-subjects

• subjects (pi) appears in only two terms now

• main effect of subjects

• interaction with B (repeated measures effect)

• no interaction with A - subjects are not crossed with A

• each subjects only provides a score in one (not all) levels of A

Yijk = µ + αj + βk + πi(j)+

(αβ)jk + (βπ)ki(j) + ϵijk
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Source explanation
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S/A Subjects error term S: or “S/A” = variance due to subjects within each level of A

B main effect of Factor B
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B x S/A error term is B x S: or “B x S/A” :interaction of B with variance of subjects within each level of A

Yijk = µ + αj + βk + πi(j)+

(αβ)jk + (βπ)ki(j) + ϵijk
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Split Plot

• everything else is the same as before

• just like before, we can perform followup tests of 
individual means using an F test of a contrast

• just like before, we compute a numerator based on the SS 
for our contrast

• just like before, we choose the appropriate error term as 
the denominator

• just like before, we compare compute p based on Fobs

• just like before, there are assumptions of homogeneity of 
variance & sphericity, and corrections if they are violated 
(e.g. G-G)


