® GLM is called “general” because it is a common
framework for analysing (modeling) data

® we have seen so far (full & restricted models) that:

testing hypotheses about differences testing competing linear models of
between mean scores on a = how various factors affect scores
dependent variable on a dependent variable
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ANOVA
ANCOVA

MULT REGR

® ANOVA and ANCOVA are special cases of the more
general form of multiple regression

® VWe model the DV using a linear equation

® instead of modeling the DV using a weighted sum of
continuous variables (X weighted by betas),

® we are modeling the DV using a series of constants
® an overall constant mu
® plus different constants alpha_j, one for each group

® the least-squares estimates for constants are the means of each group
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Repeated Measures Designs

“within-subjects”

each subject contributes a score for each level of a factor
each subject contributes multiple scores
subjects can serve as their own control

variance between different conditions is no longer due to
[effect + between-group sampling variance]

it's the same group of subjects! there is no “between-
group’’ sampling variance

variance only due to the effect



Examples

® effects of placebo, drug A and drug B can be studied in the
same subjects; each subject can serve as their own control

® behaviour of subjects can be studied over time;a
measurement can be taken from the same subjects at
multiple time points



Advantages of Repeated Measures Designs

® more information is obtained from each subject than in a
between-subjects design

® within-subjects design: each subject contributes a scores (a is the
number of conditions tested)

® between-subjects design: each subject contributes only one score

® # of subjects needed to reach a given level of statistical power is often
much lower with within-subjects designs



Advantages of Repeated Measures Designs

variability in individual differences between subjects is
totally removed from the error term

each subject serves as his/her own control
error term is reduced

statistical power increases



Analysis of Repeated Measures Designs

Treatment Condition

® |0 subjects

1 2 3
® cach contributes 4 scores on DV r g || 9
® one for each of 4 conditions g I
37 5| 8 |
® as an exercise, let’s treat this as 4| 9| 6| 5 |
a between-subjects design Subject 5 | 8 | 7| 7
] 5 4 4
® single-factor ANOVA
7 T 6 3
8 8 8 6
9 9 8 4]
Source SS df MS F sig w0 | 7 2|4
Factor 38.9 3| 12967, 6.062] 0.002 l
Error 77.0] 36 2.139
Total 115.9 39|




Analysis of Repeated Measures Designs

Treatment Condition

what we are missing out on is the
fact that some of the variance in
the data is due to differences
between subjects

what if we were to include a
second factor, namely “subjects”?  Subject

We don’t have enough df for
both main effects + the
interaction Subjects x Factor

So we will limit the model to:

12 3
8 | 10 | 7
9 | 9| 8
7 s | 8
9 | 6| s
8 7 1 7
5 | 4| 4
7 | 6| 5
8 8 | 6
9 | 8| 6
71 71| 4

® main effect of Factor

® main effect of Subjects




Analysis of Repeated Measures Designs

® now we have reduced the error term
by accounting for another portion of

the variance Treatment Condition

1 2 3 4

® variance due to differences among SEEIERE
subjects o I L L

3 7 5 8 4

4 9 6 5 7

Subject 5 | 8 701 | 6

Source SS df MS F sig 6| s | 4| 4| 3
Factor 38.9 3 12.967] 12.241] 0.000... A O L R
Subjects 48.4 9 L L L
Total 28.6 27 1.059| g I L L
115.9 39 e I L A




Source SS df MS F sig
Factor 38.9| 3 12.967 6.062 0.002
Error 77.0 36/ 2.139
Total | 15.9 39|

Source SS df MS F sig
Factor 38.9 3 12.967] 12.241| 0.000...
Subjects | 48.4 9
Total 28.6 27 |.059|

115.9 39
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Source SS df MS F sig
Factor 38.9 3| 12967 6.062) 0.002
Error 36 |2.135
Total 39|
Repeated Measures ANOVA

Source SS df MS F sig
Factor 38.9 31 12967 |12.241f 0.000...
Subjects | 9
Total 27

39




Competing Models

full model Y;;j = U QO _|__|_ €ij
restricted model }/@‘j — W ‘|'_|_ €ij

full model includes|effect of factor|and|effect of subjects

restricted model only includes effect of subjects (effect of
factor is zero)

so the difference here compared to regular “between-
subjects” models is simply the inclusion of terms
accounting for the effects of subjects

remember: the more variance you can account for, the
smaller the error term, the higher the F value, and the
more powerful the statistical test



Analysis of Repeated Measures Designs

® just as always, we can compute an F statistic based on
Error for the full model and Error for the restricted model

(Er — Er)/(dfr — dfF)
Er/dfF
dfp = (n—1)(a — 1)
de — dfF — (CL — )

F =

® see Chapter || for all the gory details



Assumptions

random sampling from population
independence of subjects
normality

homogeneity of treatment-difference variances

® variance of difference scores between any two levels of a factor must be
equal to variance of differences scores between all other pairs of levels
of the factor

® equivalent to showing that the population covariance matrix has a
certain form, that is, it displays the property of sphericity

® this is all very mathematical and we don’t need to know the details

e fortunately there is (1) a test to see if we have violated the assumption,
and (2) a method to correct for violations



Homogeneity of Treatment-Difference Variances

® We will see how to perform a test of sphericity in R

® R will report a number of corrected versions of the F test
assuming sphericity is violated

® “Greenhouse-Geisser” adjustment adjusts the degrees of
freedom (reducing them) so that Fcrit is larger (more
conservative test)

® many people use G-G

® others like Huynh-Feldt because it’s slightly less
conservative



Comparisons Among Individual Means

® we can use the same formulas we used in between-
subjects designs to test any contrast:

® caveat: tests of comparisons among means are very
sensitive to violations of the sphericity assumption

® methods exist to circumvent this by using different error
terms (see Chapter)



Experimental Design Considerations

® QOrder Effects

® e.g.a neuroscientist wants to compare the effects of Drug A and Drug B on
aggressiveness in pairs of monkeys

® every pair of monkeys will be observed under the influence of both Drug A
and Drug B

® How should we conduct the study?

® one possibility: administer Drug A to every pair, observe the subsequent
interactions, and then administer Drug B to every pair

® bad idea: confounds potential drug differences with the possible effects of
time

® even if a significant difference between the drugs is obtained, it may not have
occurred because the drugs truly have a different effect

® it may be because monkeys were simply becoming less aggressive over time

® or:a significant drug difference could be missed because of time effects



Counterbalancing

a solution is to counter-balance the order in which
treatments are administered

e.g. Drug A then Drug B to half the monkeys;
Drug B then Drug A to the other half
monkeys are randomly assigned to each group

known as a “crossover design”



Differential Carryover Effects

a nasty potential problem

occurs when the carryover effect of treatment condition |
onto treatment condition 2 is different than the carryover
effect of treatment 2 onto treatment condition |

counterbalancing will NOT control for this problem

one solution is a “washout period” after the administration
of one treatment, to let enough time elapse so that the
next treatment is no longer affected

can’t always be done: some carryover effects are permanent
(e.g. learning, memory, lesions, etc)

some scientific questions are better suited to between-
subjects designs



Counterbalancing more than two levels

what if we want to counterbalance an experiment with
more than two levels? (e.g. 4)

there are actually 24 different orderings of 4 conditions

we would need 24 subjects to represent each order only
once!

Two alternatives:

® randomize the order for each subject; order effects will be controlled
for “in the long run”

Latin Square Designs

® an arrangement of conditions so that each condition appears exactly
once in each possible order



Latin Square Designs

Order

Ss I 2 3 4




Advantages of Repeated Measures Designs

each subjects contributes a x n data points; fewer subjects
are required

increased power to detect true treatment effects due to a
smaller error term



Disadvantages of Repeated Measures Designs

® risk of differential carryover effects

® within vs between subjects designs may not be addressing
the same conceptual question even though the
manipulated variables appear to be the same

® |n a within-subjects design every subject experiences each
treatment in the context of all other treatments

® |n a between-subjects design every subject only ever
experiences a single treatment, in isolation

® simply a different situation



Two Factor Repeated Measures

® cach subject contributes a score on the DV for every level
of both factors

® e.g. Factor A (2); Factor B (3)

Factor A Al A2

Factor B Bl B2 B3 Bl B2 B3

Subject | 420 | 420 | 480 | 480 | 600 | 780
Subject 2 480 | 480 | 540 | 660 | 780 | 780
Subject 3 540 | 660 | 540 [ 480 | 660 | 720
Subject 4 480 | 480 | 600 | 360 | 720 | 840
Subject 5 540 | 600 | 540 [ 540 | 720 | 780




Two Factor Repeated Measures

Factor A Al A2
Factor B Bl B2 B3 Bl B2 B3

note something that distinguishes |—
Subject | 420 | 420 | 480 | 480 | 600 | 780

a repeated measures design from [ subiect2 | 480 | 480 | 540 | e60 | 780 | 780
Subject 3 540 | 660 | 540 | 480 | 660 | 720

d between-subjects deSignI Subject4 | 480 | 480 | 600 | 360 | 720 | 840
Subject 5 | 540 | 600 | 540 | 540 | 720 | 780

I”

there is no “within cell” variance

there is only a single # for each condition per subject

variance within a condition (e.g. AIBI) exists only due to
the fact that there are scores from different subjects

this affects the computation of the error term in the
ANOVA

I”

error term is no longer simply “within-cell” variance

error terms are effects “within subjects”



Two Factor Repeated Measures

Factor A Al A2

Factor B Bl B2 B3 Bl B2 B3

Issues of analysis are identical to [ subiece | 420 | 420 | 480 [ 480 | 600 | 780

Subject 2 480 | 480 | 540 | 660 | 780 | 780

d between-subjects deSign Subject 3 | 540 | 660 | 540 | 480 | 660 | 720
Subject 4 480 | 480 | 600 | 360 | 720 | 840
we are interested in testing: Subject 5 | 540 | 600 | 540 | 540 [ 720 | 780

® A main effect
® B main effect
® A x B interaction effect

® and any follow-up tests of individual means

what is different is simply the calculation of the error
term(s)

and which error terms are used for testing
which effect



GLM

® |ets assume (like last week) that
“subjects” is included as a factor
in our model

® now we have A, B,and S

Yijk = p+ o + P + mi+

(aB)jk + (am) i + (BT)ki+

(aﬁﬂ)jkz’ T €4k
® main effects:A, B, S

® 2-way interactions: AxB, AxS, BxS

® 3-way interaction: AxBxS

Factor A Al A2

Factor B Bl B2 B3 Bl B2 B3
Subject | 420 | 420 | 480 | 480 | 600 | 780
Subject 2 480 | 480 | 540 | 660 | 780 | 780
Subject 3 540 | 660 | 540 | 480 | 660 | 720
Subject 4 480 | 480 | 600 | 360 | 720 | 840
Subject 5 540 | 600 | 540 | 540 | 720 | 780
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AXxS

BxS

AxB xS

are error terms
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lets assume (like last week) that

“subjects” is included as a factor Factor A Al A2
. Factor B Bl B2 B3 Bl B2 B3
in our model Subject | | 420 | 420 | 480 | 480 | 600 | 780
Subject 2 480 | 480 | 540 | 660 | 780 | 780
Subject 3 540 | 660 | 540 | 480 | 660 | 720
Subject 4 480 | 480 | 600 | 360 | 720 | 840
Subject 5 540 | 600 | 540 | 540 | 720 | 780
Source SS df MS F sig
S
a
different
error
term
for
testing
each

effect




Different Error Terms

different error terms are used for the F-test for each
different effect

thus the total error is split into three error terms

this helps us - we get smaller error terms

therefore larger F values

more powerful statistical test

Source SS df MS F sig
S 4

A

A xS 4




Meaning of Error Terms

Error terms here are interaction terms between an
“effect” (e.g.A or B or A x B) and subijects (S)

remember the meaning of an interaction

e effect in question differs across levels of the other factor

e.g.A x S means that effect of factor A is different across

different subjects

A x S therefore captures variance of the “A” effect across

different subjects - this is the appropriate error term

(denominator of F test
for the “A” effect)

Source

SS

df

MS

F

sig

S

A

AxS

B

BxS

AxB

AxBxS

old|loldla]l—-|




® Table 12.5, Chapter 12 M&D

Source SS df MS F sig

S 33600 4

® 3 different F-tests, 3 different error terms

* when conducting follow-up tests between individual
means, you need to use the appropriate error term



Follow-Up Tests - Which Error Term?

SS,
()
> C?

n=%# Ss in each mean

I —

SS, =

Source SS df MS F sig
S 33600 4
A 147000 147000 17.5 0.014
AxS 33600 8400




Follow-Up Tests - Which Error Term?

SS
F— ¥ A
SErr 700
~ 2
n(1)
SSy = S 2 575
n=%# Ss in each mean 450
Al A2 A3
Source SS df MS F sig
S 33600 4
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Follow-Up Tests - Which Error Term?

SS
F = ¢ A B
SErr 700 700
~ND
n(y
SSy = W) 575 575
D> c?
n —=# Ss in each mea AXS
p— in m n
450 450
Al A2 A3 B B2
Source SS df MS F sig
S 33600 4
A 147000 | 147000 17.5 0014
AxS 33600 4 8400




Follow-Up Tests - Which Error Term?

SS
F = L A B
SErr 700 700
~ 2
n(y
SSy = 2(322 575 575
) | AXxS BxS
n—=%# Ss in each mean
450 450
Al A2 A3 Bl B2
Source SS df MS F sig
S 33600 4
A 147000 I 147000 17.5 0.014
AxS 33600 4 8400




n=%# Ss in each mean

800

700

600

500

400

Follow-Up Tests - Which Error Term?

L
-

()’

S5y = <3

A xB

O Bl
O B2

B
700
575
AxS BxS
450
A2 A3 Bl B2
Source SS df MS F sig

S 33600 4

A 147000 Il 147000 17.5 0.014

AxS 33600 4 8400




Follow-Up Tests - Which Error Term?

S Sy A B

~ 2
SSy = ) 575 575

2
2.¢ AxS BxS

n=#%# Ss in each mean 450 450
Al A2 A3 Bl B2

I —

A xB

O Bl
O B2

800

700

Source SS df MS F sig

S 33600 4
A 147000

600

147000 17.5 0.014

AxS 33600 4 8400

500 :
AxBxS

Al A2 A3

400




Separate vs Pooled (the same) Error Terms

when homogeneity of variance assumption is violated, a
separate error term can be computed for each different
contrast

otherwise the appropriate error term from the ANOVA
table can be used

these are called “pooled error terms”

See Chapter 12 for details of separate error term
calculation



Mixed (Split-Plot) Designs

® one between-subjects factor, and
one within-subjects factor

® naturally suited to studying different groups of subjects
over time

® group is between-subject factor

® time is within-subject factor

® sometimes called a “split-plot” design

® 3 historical holdover from its uses in agricultural research

Bl B2 A
Subl 2.3 3.4 I
Sub2 3.3 52 I
Sub3 5.6 4.1 I
Sub4 4.3 6.4 2
Sub5 6.6 7.7 2
Subé 7.8 8.2 2




Bl B2 A

G LM Subl 2.3 3.4 I

Sub2 3.3 5.2 I

Sub3 5.6 4.1 I

Sub4 4.3 6.4 2

Factor A is between-subjects Subs 66 77 2
Subé 7.8 8.2 2

Factor B is within-subjects

Yij = p+ aj + B +H(mig+
(aB)je +(Bm) ki) + €ijk

subjects (pi) appears in only two terms now

® main effect of subjects

® interaction with B (repeated measures effect)

no interaction with A - subjects are not crossed with A

® each subjects only provides a score in one (not all) levels of A




Choice of

Error Term

Bl B2 A
2.3 3.4 I
3.3 5.2 I
5.6 4.1 I
43 6.4 2
6.6 7.7 2
7.8 8.2 2

Yije = 1+ aj -
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Choice of

Error Term

Yijr = p+ o + OB+t

Bl B2 A
Subl 2.3 3.4 I
Sub2 3.3 5.2 I
Sub3 5.6 4.1 I
Sub4 4.3 6.4 2
Sub5 6.6 7.7 2
Subé 7.8 8.2 2

() jk -

(BT ki) + €ijk




Choice of
Error Term

Yijh = p+ oy -

() jk -

(BT ki) + €ijk

B| B2 A

Sub| 23 3.4 |

Sub2 33 52 |

Sub3 56 4 |

Sub4 43 64 2

Subb 6.6 77 2
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Vi = i+ 05 + B+t
(Oéﬁ)jk “@ﬁﬂ-)kz’(jD_I_ €ijk

Bl B2 A
Subl 2.3 3.4 I
Sub2 3.3 5.2 I
Sub3 5.6 4.1 I
Sub4 4.3 6.4 2

6.6 7.7 2

7.8 8.2 2

Source

explanation

A

main effect of Factor A

S/A
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Choice Of Subl| 2.3 3.4 |

Sub2 33 5.2 |

Error Term Sub3 56 Y |

Sub4 43 6.4 2

Subs 6.6 77 2
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S/A Subjects error term S: or “S/A” = variance due to
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Choice Of Subl| 2.3 3.4 |

Sub2 33 5.2 |

Error Term Sub3 56 Y |

Sub4 43 6.4 2

Subs 6.6 77 2

l/:&]k — M =+ Qj T 6/{ _I__I_ Subé 7.8 8.2 2

Source explanation
A main effect of Factor A
S/A Subjects error term S: or “S/A” = variance due to




Bl B2 A

Choice Of Subl| 2.3 3.4 |

Sub2 33 5.2 |

Error Term Sub3 56 Y |

Sub4 43 6.4 2

Subs 6.6 77 2

l/:&]k — M =+ Qj T 6/{ _I__I_ Subé 7.8 8.2 2

Source explanation
A main effect of Factor A
S/A Subjects error term S: or “S/A” = variance due to

B main effect of Factor B
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Choice Of Subl| 2.3 3.4 |
Sub2 3.3 5.2 |

Error Term Sub3 56 Y |
Sub4 43 6.4 2

2

2

Subs 6.6 77
l/:&]k — U + Qg T 6/{ _I__I_ Subb 78 8.2

Source explanation
A main effect of Factor A
S/A Subjects error term S: or “S/A” = variance due to
B main effect of Factor B
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Sub2 3.3 5.2 |

Error Term Sub3 56 Y |
Sub4 43 6.4 2

2

2

Subs 6.6 7.7
l/:&]k — M =+ Qj T 6/{ _I__I_ Subé 7.8 8.2

Source explanation
A main effect of Factor A
S/A Subjects error term S: or “S/A” = variance due to
B main effect of Factor B

AxB interaction effect A x B




BI B2 A

Choice Of Subl| 2.3 3.4 |
Sub2 3.3 5.2 |

Error Term Sub3 56 Y |
Sub4 43 6.4 2

2

2

Subs 6.6 77
l/:&]k — U + Qg T 6/{ _I__I_ Subb 78 8.2

Source explanation
A main effect of Factor A
S/A Subjects error term S: or “S/A” = variance due to
B main effect of Factor B
AxB interaction effect A x B
B x S/A




BI B2 A

Choice Of Subl 2.3 3.4 |

Sub2 33 52 !

Error Term Sub3 56 Y |

Sub4 43 6.4 2

Subs5 6.6 77 2

l/:&]k — M =+ Qj T 6/{ + W@(J)"‘ Subé 7.8 8.2 2

Source explanation
A main effect of Factor A
S/A Subjects error term S: or “S/A” = variance due to
B main effect of Factor B
AxB interaction effect A x B
BxS/A |error termis B x S: or “B x S/A” :interaction of B |
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Split Plot

everything else is the same as before

just like before, we can perform followup tests of
individual means using an F test of a contrast

just like before, we compute a numerator based on the SS
for our contrast

just like before, we choose the appropriate error term as
the denominator

just like before, we compare compute p based on Fobs

just like before, there are assumptions of homogeneity of
variance & sphericity, and corrections if they are violated

(e.g. G-G)



