One-Way ANOVA (MD3)

Paul Gribble

Winter, 2017

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Review from last class

- sample vs population
- estimating population parameters based on sample

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- null hypothesis H₀
- probability of H_0
- meaning of "significance"
- t-test: what precisely are we testing?

General Linear Model (GLM)

- we will develop logic & rationale for ANOVA (and computational formulas) based on GLM
- any phenomenon is affected by multiple factors
- observed value on dependent variable (DV) =
 - sum of effects of known factors +
 - sum of effects of unknown factors
- similar to the idea of "accounting for variance" due to various factors

うして ふゆう ふほう ふほう うらつ

General Linear Model (GLM)

- let's develop a model that expresses DV as a sum of known and unknown factors
- $\blacktriangleright DV = C + F + R$
 - C = constant factors (known)
 - F = factors systematically varied (known)
 - R = randomly varying factors (unknown)
- notation looks like this:

$$Y_i = \beta_0 + \beta_1 X_{1_i} + \beta_2 X_{2_i} + \dots + \beta_n X_{n_i} + \epsilon_n$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Single-Group Example

- a little artificial (who ever does experiments using just one group?)
- but it will help us develop the ideas
- imagine we collect scores on some DV for a group of subjects
- we want to compare the group mean to some known population mean
- \blacktriangleright e.g. IQ scores where by definition, $\mu=100$ and $\sigma=15$

ション ふゆ アメリア メリア しょうくの

Single-Group Example

We know that:

$$\begin{array}{rcl} H_0 & : \ \bar{Y} & = \mu \\ H_1 & : \ \bar{Y} & \neq \mu \end{array}$$

let's reformulate in terms of a GLM of the effects on DV:

$$\begin{array}{ll} H_0 & : \ Y_i & = \mu + \epsilon_i \ \text{where} \ \mu = 100 \\ H_1 & : \ Y_i & = \hat{\mu} + \epsilon_i \ \text{where} \ \hat{\mu} = \bar{Y} \end{array}$$

- ▶ we call H₀ the restricted model no parameters need to be estimated
- ► we call H₁ the full model we need to estimate one parameter (can you see what it is?)

- how well do these two models fit our data?
- let's use the sum of squared deviations of our model from the data, as a measure of goodness of fit

$$H_0 : \sum_{i=1}^{N} (e_i^2) = \sum_{i=1}^{N} (Y_i - 100)^2$$

$$H_1 : \sum_{i=1}^{N} (e_i^2) = \sum_{i=1}^{N} (Y_i - \hat{\mu})^2 = \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

- remember: SSE about the sample mean is lower than SSE about any other number
- so the error for H_0 will be greater than for H_1
- ► so the relevant question then is, how much greater must H₀ error be, for us to reject H₀?

consider the proportional increase in error (PIE)

•
$$(E_R - E_F)/E_F$$

 PIE gives error increase for H₀ compared to H₁ as a % of H₁ error

うして ふゆう ふほう ふほう うらつ

- but we want a model that is both
 - adequate (low error)
 - simple (few parameters to estimate)
- question: why do we want a simpler model?
 - philosophical reason
 - statistical reason

- how big is increase in error with H₀ (restricted model), per unit of simplicity?
- let's design a test statistic that takes into account simplicity
- simplicity will be related to the number of parameters we have to estimate
- degrees of freedom df:
 - # independent observations in the dataset minus # independent parameters that need to be estimated

▶ so higher *df* = a simpler model

let's normalize model errors (PIE) by model df

$$\frac{(E_R-E_F)/(df_R-df_F)}{(E_F/df_F)}$$

guess what: this is the equation for the F statistic!

$$F = \frac{(E_R - E_F)/(df_R - df_F)}{(E_F/df_F)}$$

 so if we can compute F_{obs}, then we can look up in a table (or compute in R using pf()) probabilities of obtaining that F_{obs}

Two-Group Example

- let's look at a more realistic situation
- 2 groups, 10 subjects in each group
 - test mean of group 1 vs mean of group 2
 - do we accept H_0 or H_1 ?
- we will formulate this question as before in terms of 2 linear models
 - full vs restricted model
 - is the error for the restricted model significantly higher than for the full model?
 - is the decrease in error for the full model large enough to justify the need to estimate a greater # parameters?

Hypotheses & Models

 $H_0: \mu_1 = \mu_2 = \mu$

- restricted model: $Y_{ij} = \mu + \epsilon_{ij}$
- $H_1: \mu_1 \neq \mu_2$

• full model: $Y_{ij} = \mu_j + \epsilon_{ij}$

symbols

the subscript j represents group (group 1 or group 2)

► ; represents individuals within each group (1 to 10) restricted model

► each score Y_{ij} is the result of a single population mean plus random error e_{ij}

full model

• each score Y_{ij} is the result of a different group mean plus random error ϵ_{ij}

Deciding between full and restricted model

how do we decide between these two competing accounts of the data?

key question

- will a restricted model with fewer parameters be a significantly less adequate representation of the data than a full model with a parameter for each group?
- we have a trade-off between simplicity (fewer parameters) and adequacy (ability to accurately represent the data)

うして ふゆう ふほう ふほう うらつ

Error for the restricted model

 let's determine how to compute errors for each model, and how to esimate parameters

error for restricted model

 sum of squared deviations of each observation from the estimate of the population mean (given by the grand mean of all of the data)

$$E_{R} = \sum_{j} \sum_{i} (Y_{ij} - \hat{\mu})^{2}$$
$$\hat{\mu} = \left(\frac{1}{N}\right) \sum_{j} \sum_{i} (Y_{ij})$$

うして ふゆう ふほう ふほう うらつ

Error for the full model

error for the full model

 now we have 2 parameters to be estimated (a mean for each group)

$$E_F = \sum_{j=1}^{2} \sum_{i} (Y_{ij} - \hat{\mu}_j)^2$$
$$E_F = \sum_{i} (Y_{i1} - \hat{\mu}_1)^2 + \sum_{i} (Y_{i2} - \hat{\mu}_2)^2$$
$$\hat{\mu}_j = \left(\frac{1}{n_j}\right) \sum_{i} (Y_{ij}), \quad j \in \{1, 2\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deciding between full and restricted model

 now we formulate our measure of proportional increase in error (PIE) as before:

$$F = \frac{\left(E_R - E_F\right) / \left(df_R - df_F\right)}{E_F / df_F}$$

- this is the F statistic!
- ► df-normalized proportional increase in error for restricted model (H₀) relative to the full model (H₁)

ション ふゆ アメリア メリア しょうくの

Model Comparison approach vs traditional approach to ANOVA

- how does our approach compare to the traditional terminology for ANOVA? (e.g. in the Keppel book and others)
- traditional formulation of ANOVA asks the same question in a different way
 - is the variability between groups greater than expected on the basis of the within-group variability observed, and random sampling of group members?
- ► MD Ch 3: proof that computational formulae are same
- see MD Chapter 3 for description of the general case of one-way designs with more than 2 groups (N groups)

Assumptions of the F test

- 1. the scores on the dependent variable Y are normally distributed in the population (and normally distributed within each group)
- 2. the population variances of scores on Y are equal for all groups

ション ふゆ アメリア メリア しょうくの

3. scores are independent of one another

Violations of Assumptions

- how close is close enough to normally distributed?
 - ANOVA is generally robust to violations of the normality assumption
 - \blacktriangleright even when data are non-normal, the actual Type-I error rate is close to the nominal value α
- what about violations of the homogeneity of variance assumption?
 - ANOVA is generally robust to moderate violations of homogeneity of variance as long as sample sizes for each group are equal and not too small (>5)
- independence?
 - ANOVA is not robust to violations of the independence assumption

Testing assumptions in R

In R you can test for:

- normality
- homogeneity of variance

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Some example data

Group 1	Group 2	Group 3
4	7	6
5	4	9
2	6	8
1	3	5
3	5	7
mean=3	mean=5	mean=7

<□> <圖> < E> < E> E のQ@

Some example data: Restricted model

1 Parameter to Estimate

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Some example data: Full model

3 Parameters to Estimate

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Next Class

testing differences between specific pairs of means

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- controlling Type-I error rate
- statistical power calculations

R code

 one-way single factor ANOVA using R, using the aov() function

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- tests for homogeneity of variance
 - var.test() (2 groups)
 - bartlett.test() (> 2 groups)
- test for normality using shapiro.test()