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One-Way ANOVA (MD3)

Paul Gribble

Winter, 2017
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Review from last class

▶ sample vs population
▶ estimating population parameters based on sample
▶ null hypothesis H0

▶ probability of H0

▶ meaning of "significance"
▶ t-test: what precisely are we testing?
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General Linear Model (GLM)

▶ we will develop logic & rationale for ANOVA (and
computational formulas) based on GLM

▶ any phenomenon is affected by multiple factors
▶ observed value on dependent variable (DV) =

▶ sum of effects of known factors +
▶ sum of effects of unknown factors

▶ similar to the idea of "accounting for variance" due to
various factors
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General Linear Model (GLM)

▶ let’s develop a model that expresses DV as a sum of
known and unknown factors

▶ DV = C + F + R
▶ C = constant factors (known)
▶ F = factors systematically varied (known)
▶ R = randomly varying factors (unknown)

▶ notation looks like this:

Yi = β0 + β1X1i + β2X2i + · · ·+ βnXni + ϵi
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Single-Group Example

▶ a little artificial (who ever does experiments using just
one group?)

▶ but it will help us develop the ideas
▶ imagine we collect scores on some DV for a group of

subjects
▶ we want to compare the group mean to some known

population mean
▶ e.g. IQ scores where by definition, µ = 100 and σ = 15
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Single-Group Example
▶ We know that:

H0 : Ȳ = µ

H1 : Ȳ ̸= µ

▶ let’s reformulate in terms of a GLM of the effects on DV:

H0 : Yi = µ+ ϵi where µ = 100
H1 : Yi = µ̂+ ϵi where µ̂ = Ȳ

▶ we call H0 the restricted model — no parameters need to
be estimated

▶ we call H1 the full model — we need to estimate one
parameter (can you see what it is?)
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Computing Model Error
▶ how well do these two models fit our data?
▶ let’s use the sum of squared deviations of our model from

the data, as a measure of goodness of fit

H0 :
∑N

i=1(e
2
i ) =

N∑
i=1

(Yi − 100)2

H1 :
∑N

i=1(e
2
i ) =

N∑
i=1

(Yi − µ̂)2 =
N∑
i=1

(Yi − Ȳ )2

▶ remember: SSE about the sample mean is lower than
SSE about any other number

▶ so the error for H0 will be greater than for H1

▶ so the relevant question then is, how much greater must
H0 error be, for us to reject H0?
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Computing Model Error

▶ consider the proportional increase in error (PIE)
▶ (ER − EF )/EF

▶ PIE gives error increase for H0 compared to H1 as a % of
H1 error

▶ but we want a model that is both
▶ adequate (low error)
▶ simple (few parameters to estimate)

▶ question: why do we want a simpler model?
▶ philosophical reason
▶ statistical reason
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Computing Model Error

▶ how big is increase in error with H0 (restricted model),
per unit of simplicity?

▶ let’s design a test statistic that takes into account
simplicity

▶ simplicity will be related to the number of parameters we
have to estimate

▶ degrees of freedom df :
▶ # independent observations in the dataset minus #

independent parameters that need to be estimated

▶ so higher df = a simpler model
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Computing Model Error

▶ let’s normalize model errors (PIE) by model df

(ER − EF )/(dfR − dfF )

(EF/dfF )

▶ guess what: this is the equation for the F statistic!

F =
(ER − EF )/(dfR − dfF )

(EF/dfF )

▶ so if we can compute Fobs , then we can look up in a table
(or compute in R using pf()) probabilities of obtaining
that Fobs
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Two-Group Example

▶ let’s look at a more realistic situation
▶ 2 groups, 10 subjects in each group

▶ test mean of group 1 vs mean of group 2
▶ do we accept H0 or H1?

▶ we will formulate this question as before in terms of 2
linear models

▶ full vs restricted model
▶ is the error for the restricted model significantly higher

than for the full model?
▶ is the decrease in error for the full model large enough to

justify the need to estimate a greater # parameters?



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hypotheses & Models
H0 : µ1 = µ2 = µ

▶ restricted model: Yij = µ+ ϵij

H1 : µ1 ̸= µ2

▶ full model: Yij = µj + ϵij

symbols
▶ the subscript j represents group (group 1 or group 2)
▶ i represents individuals within each group (1 to 10)

restricted model
▶ each score Yij is the result of a single population mean

plus random error ϵij
full model

▶ each score Yij is the result of a different group mean plus
random error ϵij
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Deciding between full and restricted model

▶ how do we decide between these two competing accounts
of the data?

key question
▶ will a restricted model with fewer parameters be a

significantly less adequate representation of the data than
a full model with a parameter for each group?

▶ we have a trade-off between simplicity (fewer parameters)
and adequacy (ability to accurately represent the data)
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Error for the restricted model

▶ let’s determine how to compute errors for each model,
and how to esimate parameters

error for restricted model
▶ sum of squared deviations of each observation from the

estimate of the population mean (given by the grand
mean of all of the data)

ER =
∑

j

∑
i(Yij − µ̂)2

µ̂ =
(

1
N

)∑
j

∑
i (Yij)
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Error for the full model

error for the full model
▶ now we have 2 parameters to be estimated (a mean for

each group)

EF =
2∑

j=1

∑
i

(Yij − µ̂j)
2

EF =
∑
i

(Yi1 − µ̂1)
2 +

∑
i

(Yi2 − µ̂2)
2

µ̂j =

(
1
nj

)∑
i

(Yij) , j ∈ {1, 2}
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Deciding between full and restricted model

▶ now we formulate our measure of proportional increase in
error (PIE) as before:

F =
(ER − EF ) / (dfR − dfF )

EF/dfF

▶ this is the F statistic!
▶ df-normalized proportional increase in error for restricted

model (H0) relative to the full model (H1)
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Model Comparison approach vs traditional
approach to ANOVA

▶ how does our approach compare to the traditional
terminology for ANOVA? (e.g. in the Keppel book and
others)

▶ traditional formulation of ANOVA asks the same question
in a different way

▶ is the variability between groups greater than expected
on the basis of the within-group variability observed, and
random sampling of group members?

▶ MD Ch 3: proof that computational formulae are same
▶ see MD Chapter 3 for description of the general case of

one-way designs with more than 2 groups (N groups)
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Assumptions of the F test

1. the scores on the dependent variable Y are normally
distributed in the population (and normally distributed
within each group)

2. the population variances of scores on Y are equal for all
groups

3. scores are independent of one another
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Violations of Assumptions

▶ how close is close enough to normally distributed?
▶ ANOVA is generally robust to violations of the normality

assumption
▶ even when data are non-normal, the actual Type-I error

rate is close to the nominal value α

▶ what about violations of the homogeneity of variance
assumption?

▶ ANOVA is generally robust to moderate violations of
homogeneity of variance as long as sample sizes for each
group are equal and not too small (>5)

▶ independence?
▶ ANOVA is not robust to violations of the independence

assumption
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Testing assumptions in R

In R you can test for:
▶ normality
▶ homogeneity of variance
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Some example data

Group 1 Group 2 Group 3
4 7 6
5 4 9
2 6 8
1 3 5
3 5 7

mean=3 mean=5 mean=7
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Some example data: Restricted model

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2
4

6
8

1 Parameter to Estimate

Y

restricted model
mean= 5
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Some example data: Full model

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2
4

6
8

3 Parameters to Estimate

Y

mean_1 = 3

mean_2 = 5

mean_3 = 7
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Next Class

▶ testing differences between specific pairs of means
▶ controlling Type-I error rate
▶ statistical power calculations
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R code

▶ one-way single factor ANOVA using R, using the aov()
function

▶ tests for homogeneity of variance
▶ var.test() (2 groups)
▶ bartlett.test() (> 2 groups)

▶ test for normality using shapiro.test()


