
Today

• bivariate correlation	


• bivariate regression	


• multiple regression



Bivariate Correlation

• Pearson product-moment correlation (r)	


• assesses nature and strength of the linear relationship 
between two continuous variables	


!

!

• r^2 represents proportion of variance shared by the two 
variables	


• e.g. r=0.663, r^2=0.439: X and Y share 43.9% of the 
variance in common

r =

∑

(X − X̄)(Y − Ȳ )
√

∑

(X − X̄)2
∑

(Y − Ȳ )2



Bivariate Correlation

r > 0 r < 0 r = 0

r = 0 r > 0 r = 0

remember: r measures linear correlation



Significance Tests

• we can perform significance tests on r	


• H0: (population) r = 0;  
H1: (population) r not equal to 0 (two-tailed)  
H1: (population) r < 0 (or >0) : one-tailed	


• sampling distribution of r	


• IF we were to randomly draw two samples from two 
populations that were not correlated at all, what 
proportion of the time would we get a value of r as as 
extreme as we observe?	


• if p < .05 we reject H0



Significance Tests

• We can perform an F-test:  
df = (1,N-2)	


• or we could also do a t-test:  
df = N-2	


!

• so for example, if we have an observed r = 0.663 based on 
a sample of 10 (X,Y) pairs	


• Fobs = 6.261	


• Fcrit(1,8,0.05) = 5.32 (or compute p = 0.018)	


• therefore reject H0

F =
r2(N − 2)

1 − r2

t =

r
√

1−r2

N−2



Significance Tests

• be careful! statistical significance does not equal scientific 
significance	


• e.g. let’s say we have 112 data points 
we compute r = 0.2134  
we do an F-test: Fobs(1,110) = 5.34, p < .05  
reject H0! we have a “significant” correlation	


• if r=0.2134, r^2 = 0.046  
only 4.6% of the variance is shared  
between X and Y  
95.4% of the variance is NOT shared 

• H0 is that r = 0, not that r is large (not that r is significant)



Bivariate Regression

• X, Y continuous variables	


• Y is considered to be dependent on X	


• we want to predict a value of Y, given a value of X	


• e.g. Y is a person’s weight, X is a person’s height	


!

• estimate of Y,  Yhat_i, is equal to a constant (beta_0) plus 
another constant (beta_1) times the value of X	


• this is the equation for a straight line	


• beta_0 is the Y-intercept, beta_1 is the slope

Ŷi = β0 + β1Xi
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Bivariate Regression

• we want to predict Y given X	


• we are modelling Y using a linear equation

Ŷi = β0 + β1Xi

Height 
(X)

Weight 
(Y)

55 140

61 150

67 152

83 220

65 190

82 195

70 175

58 130

65 155

61 160

β0 = −7.2

β1 = 2.6
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Bivariate Regression

• slope means that every inch in height is 
associated with 2.6 pounds of weight

Ŷi = β0 + β1Xi

Height 
(X)

Weight 
(Y)

55 140

61 150

67 152

83 220

65 190

82 195

70 175

58 130

65 155

61 160

β0 = −7.2

β1 = 2.6



Bivariate Regression

• How do we estimate the coefficients beta_0 and beta_1?	


• for bivariate regression there are formulas:	


!

!

!

• These formulas estimate beta_0 and beta_1 according to a 
least-squares criterion	


• they are the two beta values that minimize the sum of 
squared deviations between the estimated values of Y (the 
line of best fit) and the actual values of Y (the data)

β1 =

∑
(X − X̄)(Y − Ȳ )
∑

(X − X̄)2

β0 = Ȳ − β1X̄



Bivariate Regression

• How good is our line of best fit?	


• common measure is “Standard Error of Estimate”	


!

!

• N is number of (X,Y) pairs of data	


• SE gives a measure of the typical prediction error in units 
of Y	


• e.g. in our height/weight data	


• SE = sqrt(1596 / 8) = 14.1 lbs

SE =

√

∑

(Y − Ŷ )2

N − 2



Bivariate Regression

• we can use SE to generate confidence intervals for our 
estimated values	


!

• so for example if height = 72 inches, predicted weight is	


• -7.2 + 2.6*72 = 180 pounds, +/- 1.96(14.1)	


• = 180 +/- 27.6 pounds	


• this means that if we take repeated samples from the 
population, and recompute the regression line, that 95% of the 
time we will find a confidence interval that will contain the 
true population mean weight of a 72 inch tall individual, within 
the endpoints of the CI of that sample	


• obviously SE and thus CI depends on size of sample (N)

Ŷ = (β0 + β1X) ± 1.96SE



Bivariate Regression

• another measure of fit: r^2	


• r^2 gives the proportion of variance accounted for	


• e.g. r^2 = 0.58 means that 58% of the variance in Y is 
accounted for by X	


• r^2 is bounded by [0,1]

r
2 =

∑
(Ŷ − Ȳ )2

∑
(Y − Ȳ )2



Linear Regression with Non-Linear Terms

Y = β0 + β1X
2

X

Y

obviously non-linear 
relationship

Y = β0 + β1X

X
Y

better but not great

X

Y

much better fit

Y = β0 + β1X
3



Linear Regression with Non-Linear Terms

!

!

• How do we do this?	


• Just create a new variable X^3	


• then perform linear regression using that instead of X	


• you will get your beta coefficients and r^2	


• you can generate predicted values of Y if you want

X

Y

Y = β0 + β1X
3



X
Y

Always plot your data

• this poor fitting regression line 
gives the following F-test:	


• F(1,99)=266.2, p < .001	


• r^2 = 0.85	


• so we have accounted for 85% 
of the variance in Y using a 
straight line	


• is this good enough? what is H0? (y = B0)	


• if you never plotted the data you would never know that 
you can do a LOT better	


• with Y = B0 + B1(X^3) we get r^2 = 0.99

X

Y

obviously non-linear 
relationship

Y = β0 + β1X



Anscombe's quartet	


• four datasets that have nearly identical simple statistical 
properties, yet appear very different when graphed	


• each dataset consists of eleven (x,y) points	


• constructed in 1973 by the statistician Francis Anscombe 
to demonstrate both the importance of graphing data 
before analyzing it and the effect of outliers on statistical 
properties	


• http://en.wikipedia.org/wiki/Anscombe's_quartet

http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Francis_Anscombe
http://en.wikipedia.org/wiki/Outlier
http://en.wikipedia.org/wiki/Anscombe's_quartet


Anscombe's quartet	




Anscombe's quartet	


in all 4 cases: 

• mean(x) = 9	


• var(x) = 11	


• mean(y) = 7.50	


• var(y) = 4.122 or 4.127	


• cor(x,y) = 0.816	


• regression:  
y = 3.00 + 0.500 (x)



Multiple Regression

• same idea as bivariate regression	


• we want to predict values of a continuous variable Y	


• but instead of basing our prediction on a single variable X,	


• we will use several independent variables X1 .. Xk	


• the linear model is:	


!

• betas are constants, X1, ..., Xk are predictor variables	


• beta weights are found which minimize the total sum of 
squared error between the predicted and actual Y values

Ŷ = β0 + β1X1 + β2X2 + ... + βkXk



An Example

• basketball data 
http://www.gribblelab.org/stats/data/bball.csv	


• data from 105 NBA players	


• # games played last season	


• points scored per minute	


• minutes played per game	


• height	


• field goal percentage	


• age	


• free throw percentage	


• You are the new coach. You want to develop a model that 
will let you predict points scored per minute based on the 
other 6 variables

http://gribblelab.org/stats/data/bball.csv
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> mydata <- read.table(“http://www.gribblelab.org/stats/data/bball.csv“, header=T, sep=”,”)!
> plot(mydata)

http://www.gribblelab.org/stats/data/bball.csv


Questions answered by 
Multiple Regression

• What is the best single predictor?	


• What is the best equation (model)?	


• Does a certain variable add significantly to the predictive 
power?
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What is the best single predictor?

• simply obtain the bivariate correlations between the 
dependent variable (Y) and each of the individual predictor 
variables (X1-X6)	


• which predictors have  
a significant correlation?	


• predictor with the  
maximum (absolute)  
correlation coefficient 
is the best single  
predictor	


• (note largest r can 
be negative)

points per minute PPM vs:

predictor r p

age -0.0442 0.654

field goal % 0.4063 0.00...

free throw % 0.1655 0.092

games/season -0.0598 0.544

height 0.2134 0.029

minutes/game 0.3562 0.00...



What is the best model?

• 3 ways to do this:  

• forward regression	


• backward regression	


• stepwise regression



Forward Regression

1. start with no IVs in the equation	


2. check to see if any IVs significantly predict DV	


3. if no, stop  
if yes, add the best IV and go to step 4	


4. check to see if any remaining IVs predict a significant unique amount 
of variance	


5. if no, stop  
if yes, add the best and go to step 4	


• unique contributions of variance above and beyond other 
variables	


• problem: we can still end up with variables in the equation 
that don’t account for a significant unique proportion of 
variance



add X1

add X2

add X3

significant proportion 
of variance

significant proportion 
of variance

significant proportion 
of variance

PROBLEM!	

no longer significant	


unique portion of variance

Y = β0 + β1X1

Y = β0 + β1X1+

β2X2

β2X2+

Y = β0 + β1X1+

β3X3



Backward Regression

1. start with all IVs in the equation	


2. check to see if any IVs are not significantly adding to the equation	


3. if no, stop  
if yes, remove the worst IV (smallest r^2) and go back to step 2	


!

• backward regression avoids the problem of ending up with 
variables in the equation that don’t account for significant 
unique portions of variance



remove X1

stop

significant unique 
proportion 
of variance

not sig portion 
of unique variance

significant unique 
proportion 
of variance

β2X2+

Y = β0 + β1X1+

β3X3

Y = β0+

β3X3

β2X2+



Stepwise Regression

1. start with no IVs in the equation	


2. check to see if any IVs significantly predict the DV	


3. if no, stop  
if yes, add best IV (largest r^2) and go to step 4	


4. check to see if any IVs add significantly to the equation	


5. if no, stop  
if yes, add best IV (largest r^2), go to step 6	


6. check each IV currently in the equation to make sure they 
contribute unique portions of variance	


7. remove any that don’t	


8. go to step 4



add X1

add X2

add X3

significant proportion 
of variance

significant proportion 
of variance

significant proportion 
of variance

PROBLEM!	

no longer significant	


unique portion of variance

Y = β0 + β1X1

Y = β0 + β1X1+

β2X2

β2X2+

Y = β0 + β1X1+

β3X3

remove X1

significant proportion 
of variance

significant proportion 
of variance



Building Models

• stepwise regression is almost exclusively used these days	


• backward and forward regression not very common any 
more	


• how to decide if a variable when added or removed is 
significant?	


• F-tests, using p-value cutoff (e.g. 5%) - this is how SPSS does it	


• Akaike Information Criterion (AIC) - another measure of the tradeoff 
between model simplicity and model goodness-of-fit (this is how R 
does it)	


• http://en.wikipedia.org/wiki/Akaike_Information_Criterion  

http://en.wikipedia.org/wiki/Akaike_Information_Criterion


Benchmarking

• when we ask the question “does variable X3 contribute 
unique variance” we are comparing one model against 
another	


• this is known as benchmarking	


• news-flash: we have been doing this all along!	


• we are comparing a full model and a restricted model	


• restricted: 	


• full:	


• F-test tests whether X2 adds unique variance over and 
above that already accounted for by the restricted model

Y = β0 + β1X1

Y = β0 + β1X1 + β2X2


