## Today

- bivariate correlation
- bivariate regression
- multiple regression


## Bivariate Correlation

- Pearson product-moment correlation (r)
- assesses nature and strength of the linear relationship between two continuous variables

$$
r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \sum(Y-\bar{Y})^{2}}}
$$

- $r^{\wedge} 2$ represents proportion of variance shared by the two variables
- e.g. $r=0.663, r^{\wedge} 2=0.439: X$ and $Y$ share $43.9 \%$ of the variance in common


## Bivariate Correlation


remember: $r$ measures linear correlation

## Significance Tests

- we can perform significance tests on $r$
- HO: (population) r = 0;

HI : (population) $r$ not equal to 0 (two-tailed)
HI: (population) $r<0($ or $>0$ ) : one-tailed

- sampling distribution of $r$
- IF we were to randomly draw two samples from two populations that were not correlated at all, what proportion of the time would we get a value of $r$ as as extreme as we observe?
- if $p<.05$ we reject H0


## Significance Tests

- We can perform an F-test: $d f=(1, N-2)$

$$
F=\frac{r^{2}(N-2)}{1-r^{2}}
$$

- or we could also do a t-test: $\mathrm{df}=\mathrm{N}-2$

$$
t=\frac{r}{\sqrt{\frac{1-r^{2}}{N-2}}}
$$

- so for example, if we have an observed $r=0.663$ based on a sample of $10(X, Y)$ pairs
- Fobs = 6.26I
- $\operatorname{Fcrit}(1,8,0.05)=5.32$ (or compute $p=0.018$ )
- therefore reject HO


## Significance Tests

- be careful! statistical significance does not equal scientific significance
- e.g. let's say we have II2 data points we compute $r=0.2 \mathrm{I} 34$
we do an F-test: Fobs(I,IIO) $=5.34, \mathrm{p}<.05$ reject H0! we have a "significant" correlation
- if $r=0.2134, r^{\wedge} 2=0.046$
only $4.6 \%$ of the variance is shared between $X$ and $Y$
95.4\% of the variance is NOT shared
- HO is that $r=0$, not that $r$ is large (not that $r$ is significant)


## Bivariate Regression

- $\mathrm{X}, \mathrm{Y}$ continuous variables
- $Y$ is considered to be dependent on $X$
- we want to predict a value of Y , given a value of X
- e.g. $Y$ is a person's weight, $X$ is a person's height

$$
\hat{Y}_{i}=\beta_{0}+\beta_{1} X_{i}
$$

- estimate of Y, Yhat_i, is equal to a constant (beta_0) plus another constant (beta_I) times the value of $X$
- this is the equation for a straight line
- beta_0 is the $Y$-intercept, beta_I is the slope


## Bivariate Regression

$$
\hat{Y}_{i}=\beta_{0}+\beta_{1} X_{i}
$$

- we want to predict Y given X
- we are modelling $Y$ using a linear equation


$$
\begin{aligned}
& \beta_{0}=-7.2 \\
& \beta_{1}=2.6
\end{aligned}
$$

Height X

## Bivariate Regression

$$
\hat{Y}_{i}=\beta_{0}+\beta_{1} X_{i}
$$

- slope means that every inch in height is associated with 2.6 pounds of weight


| Height <br> $(X)$ | Weight <br> $(Y)$ |
| :---: | :---: |
| 55 | 140 |
| 61 | 150 |
| 67 | 152 |
| 83 | 220 |
| 65 | 190 |
| 82 | 195 |
| 70 | 175 |
| 58 | 130 |
| 65 | 155 |
| 61 | 160 |

$$
\begin{aligned}
& \beta_{0}=-7.2 \\
& \beta_{1}=2.6
\end{aligned}
$$

## Bivariate Regression

- How do we estimate the coefficients beta_0 and beta_I?
- for bivariate regression there are formulas:

$$
\begin{aligned}
& \beta_{1}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}} \\
& \beta_{0}=\bar{Y}-\beta_{1} \bar{X}
\end{aligned}
$$

- These formulas estimate beta_0 and beta_I according to a least-squares criterion
- they are the two beta values that minimize the sum of squared deviations between the estimated values of Y (the line of best fit) and the actual values of $Y$ (the data)


## Bivariate Regression

- How good is our line of best fit?
- common measure is "Standard Error of Estimate"

$$
S E=\sqrt{\frac{\sum(Y-\hat{Y})^{2}}{N-2}}
$$

- $N$ is number of $(X, Y)$ pairs of data
- SE gives a measure of the typical prediction error in units ofY
- e.g. in our height/weight data
- $\mathrm{SE}=\operatorname{sqrt}(\mathrm{I} 596 / 8)=14.1 \mathrm{lbs}$


## Bivariate Regression

- we can use SE to generate confidence intervals for our estimated values

$$
\hat{Y}=\left(\beta_{0}+\beta_{1} X\right) \pm 1.96 S E
$$

- so for example if height $=72$ inches, predicted weight is
- $-7.2+2.6 * 72=180$ pounds, $+/-1.96(14.1)$
- $=180+/-27.6$ pounds
- this means that if we take repeated samples from the population, and recompute the regression line, that $95 \%$ of the time we will find a confidence interval that will contain the true population mean weight of a 72 inch tall individual, within the endpoints of the Cl of that sample
- obviously SE and thus Cl depends on size of sample (N)


## Bivariate Regression

- another measure of fit: $r^{\wedge} 2$
- $r^{\wedge} 2$ gives the proportion of variance accounted for
- e.g. $\mathrm{r}^{\wedge} 2=0.58$ means that $58 \%$ of the variance in Y is accounted for by $X$
- $r^{\wedge} 2$ is bounded by $[0, I]$

$$
r^{2}=\frac{\sum(\hat{Y}-\bar{Y})^{2}}{\sum(Y-\bar{Y})^{2}}
$$

## Linear Regression with Non-Linear Terms

$$
Y=\beta_{0}+\beta_{1} X
$$

obviously non-linear relationship
$Y=\beta_{0}+\beta_{1} X^{2}$
better but not great

$$
Y=\beta_{0}+\beta_{1} X^{3}
$$

## Linear Regression with Non-Linear Terms

- How do we do this?

- Just create a new variable $\mathrm{X}^{\wedge} 3$
- then perform linear regression using that instead of $X$
- you will get your beta coefficients and $r^{\wedge} 2$
- you can generate predicted values of $Y$ if you want


## Always plot your data

- this poor fitting regression line gives the following F-test:
- $F(I, 99)=266.2, \mathrm{p}<.00 \mathrm{I}$
- $r^{\wedge} 2=0.85$
- so we have accounted for $85 \%$ of the variance in Y using a

$$
Y=\beta_{0}+\beta_{1} X
$$

 straight line

- is this good enough? what is H 0 ? $(\mathrm{y}=\mathrm{BO})$
- if you never plotted the data you would never know that you can do a LOT better
- with $Y=B 0+B I\left(X^{\wedge} 3\right)$ we get $r^{\wedge} 2=0.99$



## Anscombe's quartet

- four datasets that have nearly identical simple statistical properties, yet appear very different when graphed
- each dataset consists of eleven ( $\mathrm{x}, \mathrm{y}$ ) points
- constructed in 1973 by the statistician Francis Anscombe to demonstrate both the importance of graphing data before analyzing it and the effect of outliers on statistical properties
- http://en.wikipedia.org/wiki/Anscombe's_quartet

Anscombe's quartet





## Anscombe's quartet

in all 4 cases:

- $\operatorname{mean}(x)=9$
- $\operatorname{var}(x)=\mid I$
- $\operatorname{mean}(y)=7.50$


- $\operatorname{var}(y)=4.122$ or 4.127
- $\operatorname{cor}(x, y)=0.816$
- regression:


$y=3.00+0.500(x)$


## Multiple Regression

- same idea as bivariate regression
- we want to predict values of a continuous variable $Y$
- but instead of basing our prediction on a single variable $X$,
- we will use several independent variables XI .. Xk
- the linear model is:

$$
\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}
$$

- betas are constants, $\mathrm{XI}, \ldots, \mathrm{Xk}$ are predictor variables
- beta weights are found which minimize the total sum of squared error between the predicted and actual $Y$ values


## An Example

- basketball data http://www.gribblelab.org/stats/data/bball.csv
- data from 105 NBA players
- \# games played last season
- points scored per minute
- minutes played per game
- height
- field goal percentage
- age
- free throw percentage
- You are the new coach. You want to develop a model that will let you predict points scored per minute based on the other 6 variables
> mydata <- read.table("http://www.gribblelab.org/stats/data/bball.csv", header=T, sep=",") > plot(mydata)



## Questions answered by Multiple Regression

- What is the best single predictor?
- What is the best equation (model)?
- Does a certain variable add significantly to the predictive power?



## What is the best single predictor?

- simply obtain the bivariate correlations between the dependent variable ( Y ) and each of the individual predictor variables (XI-X6)
- which predictors have a significant correlation?
- predictor with the maximum (absolute) correlation coefficient is the best single predictor
- (note largest r can be negative)

| points per minute PPM vs: |  |  |
| :---: | :---: | :---: |
| predictor | r | p |
| age | -0.0442 | 0.654 |
| field goal \% | 0.4063 | $0.00 \ldots$ |
| free throw \% | 0.1655 | 0.092 |
| games/season | -0.0598 | 0.544 |
| height | 0.2134 | 0.029 |
| minutes/game | 0.3562 | $0.00 \ldots$ |

## What is the best model?

- 3 ways to do this:
- forward regression
- backward regression
- stepwise regression


## Forward Regression

I. start with no IVs in the equation
2. check to see if any IVs significantly predict DV
3. if no, stop
if yes, add the best IV and go to step 4
4. check to see if any remaining IVs predict a significant unique amount of variance
5. if no, stop
if yes, add the best and go to step 4

- unique contributions of variance above and beyond other variables
- problem: we can still end up with variables in the equation that don't account for a significant unique proportion of variance



## Backward Regression

I. start with all IVs in the equation
2. check to see if any IVs are not significantly adding to the equation
3. if no, stop
if yes, remove the worst IV (smallest $r^{\wedge} 2$ ) and go back to step 2

- backward regression avoids the problem of ending up with variables in the equation that don't account for significant unique portions of variance

significant unique
proportion
of variance

$$
\begin{gathered}
Y=\beta_{0}+ \\
\beta_{2} X_{2}+ \\
\beta_{3} X_{3}
\end{gathered}
$$

## Stepwise Regression

I. start with no IVs in the equation
2. check to see if any IVs significantly predict the DV
3. if no, stop
if yes, add best IV (largest $\mathrm{r}^{\wedge} 2$ ) and go to step 4
4. check to see if any IVs add significantly to the equation
5. if no, stop
if yes, add best IV (largest $r^{\wedge} 2$ ), go to step 6
6. check each IV currently in the equation to make sure they contribute unique portions of variance
7. remove any that don't
8. go to step 4


## Building Models

- stepwise regression is almost exclusively used these days
- backward and forward regression not very common any more
- how to decide if a variable when added or removed is significant?
- F-tests, using p-value cutoff (e.g. 5\%) - this is how SPSS does it
- Akaike Information Criterion (AIC) - another measure of the tradeoff between model simplicity and model goodness-of-fit (this is how R does it)
- http://en.wikipedia.org/wiki/Akaike_Information_Criterion


## Benchmarking

- when we ask the question "does variable $X 3$ contribute unique variance" we are comparing one model against another
- this is known as benchmarking
- news-flash: we have been doing this all along!
- we are comparing a full model and a restricted model
- restricted: $\quad Y=\beta_{0}+\beta_{1} X_{1}$
- full:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}
$$

- F-test tests whether X 2 adds unique variance over and above that already accounted for by the restricted model

