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Multiple Comparisons & Statistical Power
(MD4 & 5)
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GLM & ANOVA: an example

G1 G2 G3
2.1 6.3 2.9
1.6 6.4 3.2
2.2 5.5 3.2
2.5 5.6 3.2
1.8 6.2 3.4

means
2.0 6.0 3.2
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GLM & ANOVA: an example

g1 g2 g3

0
2

4
6
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the model comparison approach: restricted model
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the model comparison approach: restricted model
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the model comparison approach: restricted model
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the model comparison approach: full model
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the model comparison approach: full model
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the model comparison approach: full model

●

●

●
●

●

● ●

● ●

●

●
● ● ●

●

0
2

4
6

8

da
ta

g1 g2 g3

X1

X2

X3

H1 : Yij = µj + ϵij Ef =
∑(

Yij − X̄j

)2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

which model has smaller error?
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! estimate 3 parameters
! µ1, µ2, µ3
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which model has smaller error?
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! Is the reduction in error
you get with the full
model worth the extra
parameters you need to
estimate in H1?
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Statistical Power

! power is the ability of a statistical test to detect real
differences when they exist

! β is the probability of failing to reject the null hypothesis
when it is in fact false (Type-II error)

! β is the probability of failing to reject the restricted model
when the full model is a better description of the data,
even with the requirement to estimate more parameters

power = 1 − β

! power is the probability of rejecting the null hypothesis
when it is in fact false
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Type-I vs Type-II error \ hypothesis testing
outcomes

Reality

H0 is true H1 is true

Research H0 is true Accurate (1 − α) Type-II error (β)

H1 is true Type-I error (α) Accurate (1 − β)
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Statistical Power

! how sensitive is a given experimental design?
! how likely is our experiment to correctly identify a

difference betweeen groups when there actually is one?
! what sample size is required to give an experiment

adequate power?
! how many subjects do we need to include in each group

sample?
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Effect Size

! we need some way of assessing the expected size of the
effect we are proposing to detect

! one measure is the standardized measure of effect size, f

f = σm/σϵ

σm =

√∑
(µj − µ)2

a
=

√∑
α2
j

a

µ =

(
∑

j

µj

)
/a

σϵ = within-group standard deviation
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Effect Size

! If you have pilot data you can compute values for f
! If not, Cohen (1977) suggests the following definitions:

! "small" effect: f = 0.10
! "medium" effect: f = 0.25
! "large" effect: f = 0.40

! so for medium effect, standard deviation of population
means across groups is 1/4 of the within-group sd
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Power Charts

! Cohen (1977) provides tables that let you read off the
power for a particular combination of numerator df,
desired Type-I error rate, effect size f , and subjects per
group

! four factors are varying — tables require 66 pages!
! seriously

! It’s 2015, Let’s use R instead
! power.t.test()
! power.anova.test()
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An example

! e.g. you are planning a reaction-time study involving
three groups (a = 3)

! pilot research & data from literature suggest population
means might be 400, 450 and 500 ms with a sample
within-group standard deviation of 100 ms

! suppose you want a power of 0.80 — how many subjects
do you need in each sample group?
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An example

power.anova.test(groups=3, n=NULL,
between.var=var(c(400,450,500)),
within.var=100**2, sig.level=0.05,
power=0.80)

Balanced one-way analysis of variance power calculation

groups = 3
n = 20.30205

between.var = 2500
within.var = 10000
sig.level = 0.05

power = 0.8

NOTE: n is number in each group
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. . . but since we know how to program in R

! simulate! Simulate sampling from two populations
! whose means differ by the expected amount
! whose variances are a particular value
! postulate a particular sample size N

! sample and do your statistical test many times (e.g.
1000) and see what proportion of times you successfully
reject the null (your power)

! If power is not high enough, try a larger sample size N
and repeat. Keep increasing N in simulation until you get
the power you want

! computationally intensive, but allows you to test any
experimental situation that you can simulate

! e.g. see http://goo.gl/COmI0

http://goo.gl/COmI0
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Cautionary note: calculating "observed power"
after rejecting the null

! you run an experiment, do stats, and end up failing to
reject H0

! two possibilities:
1. there is in fact no difference between population means,

and your experiment correctly identifies this
2. there is a difference, but your experiment is not

statistically powerful enough to detect it (for e.g.
because within-group variability is high)

! can we use power calculations to see if we "had enough
power" to detect the difference?

! no — not appropriate use of power analysis (although
frequently taught)
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Hoenig & Heisey (2001)

! doing a power analysis after an experiment that failed to
reject the null, to see if "there was enough power" to
detect the difference, is inappropriate

! the result of a post-hoc power analysis is completely
redundant with the probability (p-value) obtained in the
original analysis

! one can be obtained directly from the other
! you don’t learn anything new by doing a post-hoc power

analysis
! See Hoenig & Heisey (2001) for the full story
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Challenges of power analyses

! you must have estimates of expected difference between
means

! you must have estimates of within-group variability
! computing power for more complex experimental designs

can be complicated — see Maxwell & Delaney text for
examples
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Testing differences between individual means

! last time we learned about one-way single-factor ANOVA
! F test of null hypothesis

! µ1 = µ2 = ... = µn

! called the "omnibus test"
! omnibus test doesn’t tell us which means are different

from each other
! it does give us permission to start looking for differences

between individual means
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Two kinds of multiple comparisons

planned comparisons
! in advance of looking at your results you know which

groups you want to compare
! you are restricted to performing only certain comparisons
! the comparisons must be orthogonal to each other

post-hoc comparisons
! the results dictate which means you test (you are chasing

the biggest differences)
! you can test as many as you like (usually)
! few (if any) restrictions on the nature of the tests you can

perform
! Type-I error is controlled for by making each test more

conservative
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Model comparison approach

! recall the null hypothesis & restricted model:

H0 : µ1 = µ2 = · · · = µa

Yij = µ+ ϵij

! suppose we wanted to test a new hypothesis that only
groups 1 and 2 are equal and the rest are different

H0 : µ1 = µ2

Yi1 = µ∗ + ϵi1
Yi2 = µ∗ + ϵi2
Yij = µj + ϵij , for j = 3, 4, . . . , a
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Model comparison approach

! just as before we can compare full and restricted models
by computing sums of squared errors for each (see
Maxwell & Delaney for details)

! just as before we end up with an F ratio:

F =
(ER − EF )/(dfR − dfF )

EF/dfF

ER − EF =
n1n2

n1 + n2

(
Ȳ1 − Ȳ2

)2

dfF = N − a

dfR = N − (a − 1) = N − a + 1
dfR − dfF = 1
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Model comparison approach

! after some more tedious algebra:

F =
n1n2

(
Ȳ1 − Ȳ2

)2

(n1 + n2)MSW

! or for equal group sizes n:

F =
n
(
Ȳ1 − Ȳ2

)2

2MSW

! MSW is mean-square "within" term (error term) from
ANOVA output

! df numerator = 1
! df denominator is given in ANOVA output for MSW term
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Model comparison approach

! so what we have now is an F test for a full versus
restricted model

! full model is as before (different mean for each group)
! restricted model has same mean for groups 1 and 2, and

different means for the rest
! restricted model is less restricted than the original

restricted model with a single parameter (the grand mean)
! but still more restricted than full model

F =
n
(
Ȳ1 − Ȳ2

)2

2MSW
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Complex comparisons

! research questions often focus on pairwise comparisons
! sometimes you may have a hypothesis that concerns a

difference involving more than 2 means
! e.g. 4 groups: is group 4 different than the average of the

other three?

H0 :
1
3
(µ1 + µ2 + µ3) = µ4

! we can rewrite this as:

H0 :
1
3
µ1 +

1
3
µ2 +

1
3
µ3 − µ4 = 0
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Complex comparisons

H0 :
1
3
µ1 +

1
3
µ2 +

1
3
µ3 − µ4 = 0

! this is just a linear combination of the 4 means so in
general we can write:

H0 : c1µ1 + c2µ2 + c3µ3 + c4µ4 = 0

! c1 through c4 are coefficients chosen by the experimenter
to test a hypothesis of interest

! simple pairwise comparison of mean 1 vs mean 2 would
be:

c1 = −1
c2 = +1
c3 = 0
c4 = 0
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Complex comparisons

an expression of the form:

H0 : c1µ1 + c2µ2 + c3µ3 + c4µ4

is known as a "contrast" or a "complex comparison"
! linear combination of means in which the coefficients add

up to zero
! in the general case of a groups, we can write:

ψ =
a∑

j=1

cjµj
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Complex comparisons

! our expression for the F test can be simplified (see M&D)
to:

F =
ψ2

MSW

∑a
j=1

(
c2
j /nj

)

where
! df denominator = 1
! df numerator = N − a

H0 : ψ =
a∑

j=1

cjµj = 0
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Complex comparisons

! some texts present contrasts not as F tests but as t-test
! when df numerator = 1, t-test is just a special case of

the F-test

t2 = F

t =
√
F
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Testing more than one contrast

! how many contrasts can we test?
! two issues:

1. orthogonality
2. inflation of Type-I error

! is it permissible to perform multiple tests using an α level
of 0.05?

! better question: does it make sense to perform multiple
tests and still assume that Type-I error rate remains at
0.05?

! does it matter if the contrasts were planned before the
data were examined, or arrived at after looking at the
data?
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How many contrasts?

! if a = 3 there are 3 possible pairwise contrasts
(choose(3,2))

! 1-2, 2-3 and 1-3
! in addition there are an infinite of possible complex

comparisons

! with an infinite \ contrasts, some information will be
redundant

! new question: how many contrasts can be tested without
introducing redundancy?
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Non-redundant contrasts
! are these three contrasts redundant?

ψ1 = µ1 − µ2

ψ2 = µ1 − µ3

ψ3 =
1
2
(µ1 + µ2)− µ3

! yes, because:

ψ3 = ψ2 −
1
2
ψ1

! value of ψ3 is compelely determined if we already know
ψ1 and ψ2
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Non-redundant contrasts
! in general with a groups, there are a − 1 contrasts

without introducing redundancy
! mathematical concept for lack of redundancy is

orthogonality
! two contrasts are orthogonal if:

ψ1 =
∑

c1jµj

ψ2 =
∑

c2jµj
∑

c1jc2j = 0

! or for unequal group sizes:∑
c1jc2j/nj = 0
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Orthogonal contrasts

! e.g. what about 2 contrasts c1 and c2:
! c11 = +1, c12 = −1, c13 = 0
! c21 = +1, c22 = 0, c23 = −1
! orthogonality test:

∑
c1jc2j = 0

! (1)(1) + (-1)(0) + (0)(-1) = 1 + 0 + 0 = 1
! these 2 contrasts are not orthogonal
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Orthogonality

! who cares?
! primary implication: orthogonal contrasts provide

non-overlapping information about how the groups differ
! formally: when two contrasts are orthogonal, then the

two sample estimates ψ1 and ψ2 are statistically
independent of one another

! each provides unique, non-overlapping information about
group differences

! they are asking separate, different, distinct questions
about the data
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Testing multiple comparisons

! suppose you have conducted an ANOVA on 4 groups
! suppose you want to test the following 3 contrasts:

ψ1 = µ1 − µ2

ψ2 =
1
2
(µ1 + µ2)− µ3

ψ3 =
1
3
(µ1 + µ2 + µ3)− µ4

! are these orthogonal?
! ψ1: (+1.0)(-1.0)(+0.0)(+0.0)
! ψ2: (+0.5)(+0.5)(-1.0)(+0.0)
! ψ3: (+0.3)(+0.3)(+0.3)(-1.0)
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Testing multiple comparisons

! if you test each of the three contrasts at α = 0.05, what
is the true Type-I error rate?

! greater than 0.05
! we are testing three contrasts each at the 0.05 level
! at first glance you might think true error rate should be

(3)(0.05) = 0.15
! close, but not quite right
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Testing multiple comparisons

! contrasts are independent events
! probabilities don’t simply sum (see M&D text)
! Pr(at least one Type-I error) = 1 - Pr(no Type-I errors)
! = 1 − (1 − α)C

! C is number of contrasts tested
! e.g. if α = 0.05, C = 3, then p = 0.143
! if C = 10, p = 0.40 (big!)
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Testing multiple comparisons
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Testing multiple comparisons
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at C=13, Pr(Type−I error) = 50%!!!
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Testing multiple comparisons

! is this a problem? Pr(Type-I error) > 0.05 ???
! M&D text discusses some different concepts:
! error rate per contrast αPC

! probability that a particular contrast will be falsely
declared significant

! experiment-wise error rate αEW

! probability that one or more contrasts will be falsely
declared significant in an experiment

! family-wise error rate αFW

! has to do with multiple factor experiments (more later in
the course)
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Testing multiple comparisons

! In our example, αPC = 0.05
! experiment-wise error rate αEW = 0.143
! so which error rate should be controlled at the 0.05 level?
! this is an issue "about which reasonable people differ"

! i.e. intelligent and informed people have different
approaches

! M&D suggest controlling αEW at the 0.05 level
! see chapter for an interesting discussion of the pros and

cons of different approaches
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Methods of controlling αEW at 0.05

! planned vs post-hoc comparisons
! 3 methods

! Bonferroni, Tukey, Scheffe

! M&D have a flowchart (decision tree) to help you decide
which procedure to use
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Planned vs Post-hoc contrasts

1. Planned Contrast
! a contrast that an experimenter decided to test prior to

any examination of the data
! (i.e. the data do not influence your choice of which

contrast(s) to test)

2. Post-Hoc Contrast
! a contrast that an experimenter decided to test only after

having looked at the data
! i.e. a contrast "suggested by the data"
! e.g. following large differences you observe in your

dataset
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Planned vs Post-hoc contrasts

! why is this distinction important?
! If the contrast(s) to be tested are suggested by the data,

e.g. the largest differences are tested
! the sampling distribution of "differences between any 2

means" has a very different distribution than the "largest
difference between means"

! Type-I error rate ends up being inflated if you only test
the largest differences in your dataset

! M&D have a nice discussion of this in the chapter
! we will show it in R using monte-carlo simulations
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Multiple Planned Comparisons

! The Bonferroni adjustment is remarkable simple
! compute the F statistic and p-value for each contrast, as

usual
! then instead of comparing each p-value to α (e.g. 0.05),

instead compare it to α
C , where C is the total number of

contrasts you will be testing
! α gets lowered in proportion to the number of contrasts
! each contrast is therefore more conservative
! OK for small values of C but overly conservative for large

values of C
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Multiple Planned Comparisons

! Holm-Bonferroni method : https:
//en.wikipedia.org/wiki/HolmBonferroni_method

! less conservative than straight Bonferroni
! graded adjustment with larger corrections for less

significant p-values
! check online for examples
! can use the p.adjust() function in R
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Multiple Planned Comparisons

! Keppel (and others) suggest a different approach
! you’re allowed to test up to a − 1 orthogonal planned

contrasts without any adjustment of α
! he argues that Bonferroni correction unfairly penalizes

planned orthogonal contrasts
! if contrasts are planned, orthogonal and number a − 1 or

fewer, then because the set of contrasts is not
data-driven, and do not overlap, then there should be no
need to adjust α level

! overall α level should be no different than that for the
omnibus F test
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Post Hoc Pairwise Comparisons

! Tukey’s procedure allows you to perform tests of all
possible pairwise comparisons in an experiment and still
maintain αEW = 0.05

! the TukeyHSD() function in R will do this for you
! Tukey procedure makes each pairwise test more

conservative
! designed to take into account the idea that data-driven

tests will involve higher Type-I error rates
! there are various modifications of Tukey’s procedure when

sample variances are unequal or when samples sizes are
unequal (see M&D)
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Post Hoc Pairwise Comparions

! Scheffe method maintains αEW at 0.05 when at least
some of the contrasts to be tested are complex, and
suggested by the data (post-hoc)

! see M&D text for a detailed description of the method
! Scheffe method is quite conservative
! see tables 5.4 & 5.5 for comparison between methods
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Other Procedures

! Dunnett’s procedure
! useful when one of the groups is considered a control and

is involved in all contrasts

! Fisher’s LSD (least significant difference)
! Newman-Keuls
! see M&D text for details about these other methods
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What should I do?

! decide which approach you think is most reasonable,
given your data and your experimental design

! be ready to defend your approach to reviewers
! be ready to use a different approach if necessary
! what’s the "culture" in your lab / field / journal?
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R Code

! ANOVA using the aov() function in R
! computing Fcomp manually
! using TukeyHSD()
! monte-carlo simulations of multiple comparison Type-I

error rates
! planned vs pos-hoc comparisons


