Multiple Comparisons \& Statistical Power (MD4 \& 5)

Paul Gribble

Winter, 2017

GLM \& ANOVA: an example

G1	G2	G3
2.1	6.3	2.9
1.6	6.4	3.2
2.2	5.5	3.2
2.5	5.6	3.2
1.8	6.2	3.4
means		
2.0	6.0	3.2

GLM \& ANOVA: an example

the model comparison approach: restricted model

$$
H_{0}: Y_{i j}=\mu+\epsilon_{i j} \quad E_{r}=\sum\left(Y_{i j}-\bar{X}\right)^{2}
$$

the model comparison approach: full model

the model comparison approach: full model

$$
\begin{aligned}
& H_{1}: Y_{i j}=\mu_{j}+\epsilon_{i j} \quad E_{f}=\sum\left(Y_{i j}-\bar{X}_{j}\right)^{2}
\end{aligned}
$$

the model comparison approach: full model

$$
\begin{aligned}
& H_{1}: Y_{i j}=\mu_{j}+\epsilon_{i j} \quad E_{f}=\sum\left(Y_{i j}-\bar{X}_{j}\right)^{2}
\end{aligned}
$$

which model has smaller error?

- estimate 1 parameter
- μ

- estimate 3 parameters
- $\mu_{1}, \mu_{2}, \mu_{3}$

which model has smaller error?

- Is the reduction in error you get with the full model worth the extra parameters you need to estimate in H_{1} ?

Statistical Power

- power is the ability of a statistical test to detect real differences when they exist
- β is the probability of failing to reject the null hypothesis when it is in fact false (Type-II error)
- β is the probability of failing to reject the restricted model when the full model is a better description of the data, even with the requirement to estimate more parameters

$$
\text { power }=1-\beta
$$

- power is the probability of rejecting the null hypothesis when it is in fact false

Type-I vs Type-II error \} hypothesis testing outcomes

Statistical Power

- how sensitive is a given experimental design?
- how likely is our experiment to correctly identify a difference betweeen groups when there actually is one?
- what sample size is required to give an experiment adequate power?
- how many subjects do we need to include in each group sample?

Effect Size

- we need some way of assessing the expected size of the effect we are proposing to detect
- one measure is the standardized measure of effect size, f

$$
\begin{aligned}
f & =\sigma_{m} / \sigma_{\epsilon} \\
\sigma_{m} & =\sqrt{\frac{\sum\left(\mu_{j}-\mu\right)^{2}}{a}}=\sqrt{\frac{\sum \alpha_{j}^{2}}{a}} \\
\mu & =\left(\sum_{j} \mu_{j}\right) / a \\
\sigma_{\epsilon} & =\text { within-group standard deviation }
\end{aligned}
$$

Effect Size

- If you have pilot data you can compute values for f
- If not, Cohen (1977) suggests the following definitions:
- "small" effect: $f=0.10$
- "medium" effect: $f=0.25$
- "large" effect: $f=0.40$
- so for medium effect, standard deviation of population means across groups is $1 / 4$ of the within-group sd

Power Charts

- Cohen (1977) provides tables that let you read off the power for a particular combination of numerator df , desired Type-I error rate, effect size f, and subjects per group
- four factors are varying - tables require 66 pages!
- seriously
- It's 2015, Let's use R instead
- power.t.test()
- power.anova.test()

An example

- e.g. you are planning a reaction-time study involving three groups ($a=3$)
- pilot research \& data from literature suggest population means might be 400, 450 and 500 ms with a sample within-group standard deviation of 100 ms
- suppose you want a power of 0.80 - how many subjects do you need in each sample group?

An example

power.anova.test (groups=3, $n=$ NULL, between. var $=\operatorname{var}(c(400,450,500))$, within.var=100**2, sig.level=0.05, power=0.80)

Balanced one-way analysis of variance power calcu

$$
\begin{aligned}
\text { groups } & =3 \\
\mathrm{n} & =20.30205 \\
\text { between.var } & =2500 \\
\text { within.var } & =10000 \\
\text { sig.level } & =0.05 \\
\text { power } & =0.8
\end{aligned}
$$

NOTE: n is number in each group

but since we know how to program in R

- simulate! Simulate sampling from two populations
- whose means differ by the expected amount
- whose variances are a particular value
- postulate a particular sample size N
- sample and do your statistical test many times (e.g. 1000) and see what proportion of times you successfully reject the null (your power)
- If power is not high enough, try a larger sample size N and repeat. Keep increasing N in simulation until you get the power you want
- computationally intensive, but allows you to test any experimental situation that you can simulate
- e.g. see http://goo.gl/COmI0

Cautionary note: calculating "observed power" after rejecting the null

- you run an experiment, do stats, and end up failing to reject H_{0}
- two possibilities:

1. there is in fact no difference between population means, and your experiment correctly identifies this
2. there is a difference, but your experiment is not statistically powerful enough to detect it (for e.g. because within-group variability is high)

- can we use power calculations to see if we "had enough power" to detect the difference?
- no - not appropriate use of power analysis (although frequently taught)

Hoenig \& Heisey (2001)

- doing a power analysis after an experiment that failed to reject the null, to see if "there was enough power" to detect the difference, is inappropriate
- the result of a post-hoc power analysis is completely redundant with the probability (p -value) obtained in the original analysis
- one can be obtained directly from the other
- you don't learn anything new by doing a post-hoc power analysis
- See Hoenig \& Heisey (2001) for the full story

Challenges of power analyses

- you must have estimates of expected difference between means
- you must have estimates of within-group variability
- computing power for more complex experimental designs can be complicated - see Maxwell \& Delaney text for examples

Testing differences between individual means

- last time we learned about one-way single-factor ANOVA
- F test of null hypothesis
- $\mu_{1}=\mu_{2}=\ldots=\mu_{n}$
- called the "omnibus test"
- omnibus test doesn't tell us which means are different from each other
- it does give us permission to start looking for differences between individual means

Two kinds of multiple comparisons

planned comparisons

- in advance of looking at your results you know which groups you want to compare
- you are restricted to performing only certain comparisons
- the comparisons must be orthogonal to each other post-hoc comparisons
- the results dictate which means you test (you are chasing the biggest differences)
- you can test as many as you like (usually)
- few (if any) restrictions on the nature of the tests you can perform
- Type-I error is controlled for by making each test more conservative

Model comparison approach

- recall the null hypothesis \& restricted model:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{a} \\
& Y_{i j}=\mu+\epsilon_{i j}
\end{aligned}
$$

- suppose we wanted to test a new hypothesis that only groups 1 and 2 are equal and the rest are different

$$
\begin{aligned}
H_{0} & : \mu_{1}=\mu_{2} \\
Y_{i 1} & =\mu^{*}+\epsilon_{i 1} \\
Y_{i 2} & =\mu^{*}+\epsilon_{i 2} \\
Y_{i j} & =\mu_{j}+\epsilon_{i j}, \text { for } j=3,4, \ldots, a
\end{aligned}
$$

Model comparison approach

- just as before we can compare full and restricted models by computing sums of squared errors for each (see Maxwell \& Delaney for details)
- just as before we end up with an F ratio:

$$
\begin{aligned}
F & =\frac{\left(E_{R}-E_{F}\right) /\left(d f_{R}-d f_{F}\right)}{E_{F} / d f_{F}} \\
E_{R}-E_{F} & =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)^{2} \\
d f_{F} & =N-a \\
d f_{R} & =N-(a-1)=N-a+1 \\
d f_{R}-d f_{F} & =1
\end{aligned}
$$

Model comparison approach

- after some more tedious algebra:

$$
F=\frac{n_{1} n_{2}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right) M S_{W}}
$$

- or for equal group sizes n :

$$
F=\frac{n\left(\bar{Y}_{1}-\bar{Y}_{2}\right)^{2}}{2 M S_{W}}
$$

- $M S_{W}$ is mean-square "within" term (error term) from ANOVA output
- df numerator $=1$
- $d f$ denominator is given in ANOVA output for $M S_{W}$ term

Model comparison approach

- so what we have now is an F test for a full versus restricted model
- full model is as before (different mean for each group)
- restricted model has same mean for groups 1 and 2, and different means for the rest
- restricted model is less restricted than the original restricted model with a single parameter (the grand mean)
- but still more restricted than full model

$$
F=\frac{n\left(\bar{Y}_{1}-\bar{Y}_{2}\right)^{2}}{2 M S_{W}}
$$

Complex comparisons

- research questions often focus on pairwise comparisons
- sometimes you may have a hypothesis that concerns a difference involving more than 2 means
- e.g. 4 groups: is group 4 different than the average of the other three?

$$
H_{0}: \frac{1}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right)=\mu_{4}
$$

- we can rewrite this as:

$$
H_{0}: \frac{1}{3} \mu_{1}+\frac{1}{3} \mu_{2}+\frac{1}{3} \mu_{3}-\mu_{4}=0
$$

Complex comparisons

$$
H_{0}: \frac{1}{3} \mu_{1}+\frac{1}{3} \mu_{2}+\frac{1}{3} \mu_{3}-\mu_{4}=0
$$

- this is just a linear combination of the 4 means so in general we can write:

$$
H_{0}: c_{1} \mu_{1}+c_{2} \mu_{2}+c_{3} \mu_{3}+c_{4} \mu_{4}=0
$$

- c_{1} through c_{4} are coefficients chosen by the experimenter to test a hypothesis of interest
- simple pairwise comparison of mean 1 vs mean 2 would be:

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=+1 \\
& c_{3}=0 \\
& c_{4}=0
\end{aligned}
$$

Complex comparisons

an expression of the form:

$$
H_{0}: c_{1} \mu_{1}+c_{2} \mu_{2}+c_{3} \mu_{3}+c_{4} \mu_{4}
$$

is known as a "contrast" or a "complex comparison"

- linear combination of means in which the coefficients add up to zero
- in the general case of a groups, we can write:

$$
\psi=\sum_{j=1}^{a} c_{j} \mu_{j}
$$

Complex comparisons

- our expression for the F test can be simplified (see M\&D) to:

$$
F=\frac{\psi^{2}}{M S_{W} \sum_{j=1}^{a}\left(c_{j}^{2} / n_{j}\right)}
$$

where

- df denominator $=1$
- df numerator $=N-a$

$$
H_{0}: \psi=\sum_{j=1}^{a} c_{j} \mu_{j}=0
$$

Complex comparisons

- some texts present contrasts not as F tests but as t-test
- when $d f$ numerator $=1$, t-test is just a special case of the F-test

$$
\begin{aligned}
t^{2} & =F \\
t & =\sqrt{F}
\end{aligned}
$$

Testing more than one contrast

- how many contrasts can we test?
- two issues:

1. orthogonality
2. inflation of Type-I error

- is it permissible to perform multiple tests using an α level of 0.05 ?
- better question: does it make sense to perform multiple tests and still assume that Type-I error rate remains at 0.05 ?
- does it matter if the contrasts were planned before the data were examined, or arrived at after looking at the data?

How many contrasts?

- if $a=3$ there are 3 possible pairwise contrasts (choose $(3,2)$)
- 1-2, 2-3 and 1-3
- in addition there are an infinite of possible complex comparisons
- with an infinite \backslash contrasts, some information will be redundant
- new question: how many contrasts can be tested without introducing redundancy?

Non-redundant contrasts

- are these three contrasts redundant?

$$
\begin{aligned}
\psi_{1} & =\mu_{1}-\mu_{2} \\
\psi_{2} & =\mu_{1}-\mu_{3} \\
\psi_{3} & =\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)-\mu_{3}
\end{aligned}
$$

- yes, because:

$$
\psi_{3}=\psi_{2}-\frac{1}{2} \psi_{1}
$$

- value of ψ_{3} is compelely determined if we already know ψ_{1} and ψ_{2}

Non-redundant contrasts

- in general with a groups, there are $a-1$ contrasts without introducing redundancy
- mathematical concept for lack of redundancy is orthogonality
- two contrasts are orthogonal if:

$$
\begin{aligned}
\psi_{1} & =\sum c_{1 j} \mu_{j} \\
\psi_{2} & =\sum c_{2 j} \mu_{j} \\
\sum c_{1 j} c_{2 j} & =0
\end{aligned}
$$

- or for unequal group sizes:

$$
\sum c_{1 j} c_{2 j} / n_{j}=0
$$

Orthogonal contrasts

- e.g. what about 2 contrasts c_{1} and c_{2} :
- $c_{11}=+1, c_{12}=-1, c_{13}=0$
- $c_{21}=+1, c_{22}=0, c_{23}=-1$
- orthogonality test: $\sum c_{1 j} c_{2 j}=0$
- $(1)(1)+(-1)(0)+(0)(-1)=1+0+0=1$
- these 2 contrasts are not orthogonal

Orthogonality

- who cares?
- primary implication: orthogonal contrasts provide non-overlapping information about how the groups differ
- formally: when two contrasts are orthogonal, then the two sample estimates ψ_{1} and ψ_{2} are statistically independent of one another
- each provides unique, non-overlapping information about group differences
- they are asking separate, different, distinct questions about the data

Testing multiple comparisons

- suppose you have conducted an ANOVA on 4 groups
- suppose you want to test the following 3 contrasts:

$$
\begin{aligned}
\psi_{1} & =\mu_{1}-\mu_{2} \\
\psi_{2} & =\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)-\mu_{3} \\
\psi_{3} & =\frac{1}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right)-\mu_{4}
\end{aligned}
$$

- are these orthogonal?

$$
\begin{aligned}
& -\psi_{1}:(+1.0)(-1.0)(+0.0)(+0.0) \\
& -\psi_{2}:(+0.5)(+0.5)(-1.0)(+0.0) \\
& -\psi_{3}:(+0.3)(+0.3)(+0.3)(-1.0)
\end{aligned}
$$

Testing multiple comparisons

- if you test each of the three contrasts at $\alpha=0.05$, what is the true Type-I error rate?
- greater than 0.05
- we are testing three contrasts each at the 0.05 level
- at first glance you might think true error rate should be $(3)(0.05)=0.15$
- close, but not quite right

Testing multiple comparisons

- contrasts are independent events
- probabilities don't simply sum (see M\&D text)
- $\operatorname{Pr}($ at least one Type-I error $)=1-\operatorname{Pr}($ no Type-I errors $)$
- $=1-(1-\alpha)^{C}$
- C is number of contrasts tested
- e.g. if $\alpha=0.05, C=3$, then $p=0.143$
- if $C=10, p=0.40$ (big!)

Testing multiple comparisons

Testing multiple comparisons

Testing multiple comparisons

- is this a problem? $\operatorname{Pr}($ Type-I error $)>0.05 ? ? ?$
- M\&D text discusses some different concepts:
- error rate per contrast $\alpha_{P C}$
- probability that a particular contrast will be falsely declared significant
- experiment-wise error rate $\alpha_{E W}$
- probability that one or more contrasts will be falsely declared significant in an experiment
- family-wise error rate $\alpha_{F W}$
- has to do with multiple factor experiments (more later in the course)

Testing multiple comparisons

- In our example, $\alpha_{P C}=0.05$
- experiment-wise error rate $\alpha_{E W}=0.143$
- so which error rate should be controlled at the 0.05 level?
- this is an issue "about which reasonable people differ"
- i.e. intelligent and informed people have different approaches
- M\&D suggest controlling $\alpha_{E W}$ at the 0.05 level
- see chapter for an interesting discussion of the pros and cons of different approaches

Methods of controlling $\alpha_{E W}$ at 0.05

- planned vs post-hoc comparisons
- 3 methods
- Bonferroni, Tukey, Scheffe
- M\&D have a flowchart (decision tree) to help you decide which procedure to use

Planned vs Post-hoc contrasts

1. Planned Contrast

- a contrast that an experimenter decided to test prior to any examination of the data
- (i.e. the data do not influence your choice of which contrast(s) to test)

2. Post-Hoc Contrast

- a contrast that an experimenter decided to test only after having looked at the data
- i.e. a contrast "suggested by the data"
- e.g. following large differences you observe in your dataset

Planned vs Post-hoc contrasts

- why is this distinction important?
- If the contrast(s) to be tested are suggested by the data, e.g. the largest differences are tested
- the sampling distribution of "differences between any 2 means" has a very different distribution than the "largest difference between means"
- Type-I error rate ends up being inflated if you only test the largest differences in your dataset
- M\&D have a nice discussion of this in the chapter
- we will show it in R using monte-carlo simulations

Multiple Planned Comparisons

- The Bonferroni adjustment is remarkable simple
- compute the F statistic and p-value for each contrast, as usual
- then instead of comparing each p-value to α (e.g. 0.05), instead compare it to $\frac{\alpha}{C}$, where C is the total number of contrasts you will be testing
- α gets lowered in proportion to the number of contrasts
- each contrast is therefore more conservative
- OK for small values of C but overly conservative for large values of C

Multiple Planned Comparisons

- Holm-Bonferroni method: https:
//en.wikipedia.org/wiki/HolmBonferroni_method
- less conservative than straight Bonferroni
- graded adjustment with larger corrections for less significant p -values
- check online for examples
- can use the p.adjust() function in R

Multiple Planned Comparisons

- Keppel (and others) suggest a different approach
- you're allowed to test up to $a-1$ orthogonal planned contrasts without any adjustment of α
- he argues that Bonferroni correction unfairly penalizes planned orthogonal contrasts
- if contrasts are planned, orthogonal and number $a-1$ or fewer, then because the set of contrasts is not data-driven, and do not overlap, then there should be no need to adjust α level
- overall α level should be no different than that for the omnibus F test

Post Hoc Pairwise Comparisons

- Tukey's procedure allows you to perform tests of all possible pairwise comparisons in an experiment and still maintain $\alpha_{E W}=0.05$
- the TukeyHSD() function in R will do this for you
- Tukey procedure makes each pairwise test more conservative
- designed to take into account the idea that data-driven tests will involve higher Type-I error rates
- there are various modifications of Tukey's procedure when sample variances are unequal or when samples sizes are unequal (see M\&D)

Post Hoc Pairwise Comparions

- Scheffe method maintains $\alpha_{E W}$ at 0.05 when at least some of the contrasts to be tested are complex, and suggested by the data (post-hoc)
- see M\&D text for a detailed description of the method
- Scheffe method is quite conservative
- see tables $5.4 \& 5.5$ for comparison between methods

Other Procedures

- Dunnett's procedure
- useful when one of the groups is considered a control and is involved in all contrasts
- Fisher's LSD (least significant difference)
- Newman-Keuls
- see M\&D text for details about these other methods

What should I do?

- decide which approach you think is most reasonable, given your data and your experimental design
- be ready to defend your approach to reviewers
- be ready to use a different approach if necessary
- what's the "culture" in your lab / field / journal?

R Code

- ANOVA using the aov() function in R
- computing Fcomp manually
- using TukeyHSD()
- monte-carlo simulations of multiple comparison Type-I error rates
- planned vs pos-hoc comparisons

