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Last week
Frequentist

• normal distribution

• linear models

• point estimates of 
parameter values

Bayesian 

• any distribution

• any (including nonlinear) model

• rich characterization of 
posterior distribution over all 
possible model parameter 
values



Estimating the 
Posterior Distribution

• Analytic 

• use conjugate priors

• posterior is defined using 
hyper-parameters



Estimating the 
Posterior Distribution

• Numerical : Grid approximation by 
discretizing the prior

• Numerical : Markov Chain Monte 
Carlo (MCMC)



This Week

• Numerical 

• an example of a grid approximation 
approach (by discretizing the prior)

• Markov Chain Monte Carlo (MCMC)



Grid Approximation

• numerically approximating the posterior 
distribution by defining the prior 
distribution over a fine grid of parameter 
values

• we don’t need a mathematical equation 
(function) to define the prior

• we can specify any shape we want

• no need for formulas, calculus, etc



Bayes’ Theorem for 
Discrete Values

• Binomial example: let’s say we want to find 
the posterior distribution of the binomial 
parameter   , which corresponds to the 
probability of being correct on a single trial

• posterior is:

• we decide on a fixed set of possible values 
of    to compute the posterior
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Discrete Prior

• instead of specifying a prior as a 
mathematical equation (e.g. a Beta function) 
we can instead just list the discrete values



Computing the 
Posterior

• for each value of    , we compute the posterior

• let’s say our data D is k=20 successes in n=40 trials

• let’s say our Prior on    is defined over a grid of 46 
discrete points and is in  
an R data frame called 
prior with columns 
theta and prob
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our discrete prior
> prior  
   theta  prob
1   0.05 0.000
2   0.07 0.000
3   0.09 0.000
4   0.11 0.000
5   0.13 0.000
6   0.15 0.000
7   0.17 0.000
8   0.19 0.000
9   0.21 0.000
10  0.23 0.001
11  0.25 0.004
12  0.27 0.011
13  0.29 0.022
14  0.31 0.038

15  0.33 0.054
16  0.35 0.068
17  0.37 0.074
18  0.39 0.070
19  0.41 0.059
20  0.43 0.044
21  0.45 0.030
22  0.47 0.020
23  0.49 0.014
24  0.51 0.013
25  0.53 0.014
26  0.55 0.018
27  0.57 0.023
28  0.59 0.029
29  0.61 0.035
30  0.63 0.040

31  0.65 0.044
32  0.67 0.046
33  0.69 0.046
34  0.71 0.043
35  0.73 0.039
36  0.75 0.032
37  0.77 0.025
38  0.79 0.018
39  0.81 0.012
40  0.83 0.007
41  0.85 0.004
42  0.87 0.002
43  0.89 0.001
44  0.91 0.000
45  0.93 0.000
46  0.95 0.000



our discrete prior

> plot(prior$theta, prior$prob, type="p", col="blue", pch=15)
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the likelihood

> plot(prior$theta, dbinom(20, 40, prior$theta), type="p", col="blue", pch=15)
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the posterior

> post_num <- dbinom(20, 40, prior$theta) * prior$prob
> posterior <- post_num / sum(post_num)
> plot(prior$theta, posterior, type="p", col="blue", pch=15)

0.2 0.4 0.6 0.8

0.
00

0.
02

0.
04

0.
06

0.
08

prior$theta

po
st
er
io
r

p(✓i|D) =
p(D|✓i)p(✓i)P
✓ p(D|✓)p(✓)



likelihood

prior

posterior



likelihood
prior

posterior



Grid Approximation

• we can use a discrete prior

• we could (although we didn’t here) also use 
a discrete likelihood

• then just apply Bayes’ Theorem to compute 
the posterior



Grid Approximation

• the finer / coarser the grid, the better / 
worse the approximation

• values in between the grid are not given



Markov Chain 
Monte Carlo (MCMC)

• marginal probability involves an integral

• calculus ninjas can do the algebra to come up with solutions 
for conjugate priors

• for many distributions (esp multivariate) integrals may not 
be easy (or even possible) to compute

f(✓|data) = f(data|✓)f(✓)
f(data)
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Markov Chain 
Monte Carlo (MCMC)

• e.g. if we had a beta prior distribution on the variance of a 
normal distribution likelihood, the posterior distribution for 
the variance would not have a known form (so say the 
calculus ninjas)

• what to do?

f(✓|data) = f(data|✓)f(✓)
f(data)

f(data) =

Z
f(data|✓)f(✓)d✓



Markov Chain 
Monte Carlo (MCMC)

• Sampling methods (like MCMC)

• generate (simulate) a sample of size n from the posterior 
distribution

• check Lynch CH4 for inversion sampling, rejection sampling

f(✓|data) = f(data|✓)f(✓)
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Markov Chain 
Monte Carlo (MCMC)

• MCMC facilitates sampling from complex, multivariate 
distributions for which there may not be a closed form 
solution to the calculus/algebra

• MCMC simulates sampling from multivariate densities by 
breaking them down into more manageable univariate 
densities
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MCMC

• Markov Chain 

• the process of sampling a new value from 
the posterior distribution, given the 
previous value

• Monte Carlo 

• refers to the random simulation process

• like a random walk



MCMC

• Two kinds of random walks in MCMC

• Gibbs sampling

• Metropolis-Hastings sampling



Gibbs Sampling
• let’s say we’re trying to estimate a multivariate posterior density 

for the parameter vector

1. assign starting values S to 

2.  

3. sample 

4. sample 

5. ...

6. sample 

7. return to step 2
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Gibbs Sampling

• Gibbs sampling involves ordering the 
parameters and sampling from the 
conditional distribution for each parameter, 
given the current value of all the other 
parameters, and then repeatedly cycling 
through this update process

• Each loop through the parameter vector is 
an “iteration” of the Gibbs sampler



Gibbs Sampling

• e.g. let’s say 

1. choose starting values 

2.  

3. Sample 

4. Sample 

5. return to step 2

⇥ = (✓1, ✓2) = (µ,�)

⇥j=0 = (1.0, 1.0)

j = j + 1

(µj |�j�1, data)

(�j |µj , data)



Gibbs Sampling

• the trick then is to take a multivariate 
density, for which there may be no closed 
form solution to the integral (and for which 
random sampling from it is not feasible), 
and break it down into univariate 
densities, for which we can do either or 
both



4.4 Introduction to MCMC sampling 101
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Fig. 4.10. Results of Gibbs sampler for standard bivariate normal distribution:
Upper left and right graphs show marginal distributions for x and y (last 1,500
iterations); lower left graph shows contour plot of true density; and lower right
graph shows contour plot of true density with Gibbs samples superimposed.

not about sampling data conditional on knowing the parameters. As I have
repeatedly said, however, from the Bayesian perspective, both data and pa-
rameters are considered random quantities, and so sampling the parameters
conditional on data is not a fundamentally different process than sampling
data conditional on parameters. The main difference is simply in the mathe-
matics we need to apply to the density to express it as a conditional density
for the parameters rather than for the data. We first saw this process in the
previous chapter when deriving the conditional posterior distribution for the
mean parameter from a univariate normal distribution.

Let’s first consider a univariate normal distribution example. In the pre-
vious chapter, we derived two results for the posterior distributions for the
mean and variance parameters (assuming a reference prior of 1/σ2). In one, we
showed that the posterior density could be factored to produce (1) a marginal
posterior density for σ2 that was an inverse gamma distribution, and (2) a
conditional posterior density for µ that was a normal distribution:

See Lynch Ch 4 for much more detail



Gibbs Sampling

• Gibbs sampling although simple has 
limitations

• conditional distributions may not be so 
easily derived or simulated

• Gibbs sampling can be slow / inefficient



MH Sampling

• Metropolis-Hastings (MH) sampling turns 
out to be more generally useful

• also a “random walk” but steps taken are 
more cleverly decided upon

• see Lynch Ch 5, Kruschke Ch 7, for details



Software for MCMC

• JAGS 

• + “rjags” package in R

• http://mcmc-jags.sourceforge.net/

• BUGS (& OpenBUGS)

• http://www.mrc-bsu.cam.ac.uk/bugs/

• “BRugs” package in R

• “mcmc” package in R

• http://www.stat.umn.edu/geyer/mcmc/library/mcmc/doc/demo.pdf

http://mcmc-jags.sourceforge.net/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.stat.umn.edu/geyer/mcmc/library/mcmc/doc/demo.pdf


R/JAGS

1.install JAGS for your computer

• http://mcmc-jags.sourceforge.net/

2.install the “rjags” package in R

• install.packages(“rjags”)

• library(rjags)

http://mcmc-jags.sourceforge.net/


R/JAGS

• uses a special meta-language (BUGS) to 
specify your model, in terms of

• stochastic elements

• deterministic elements

• your data

http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-the-bugs-book/bugs-book-examples/

http://www.mrc-bsu.cam.ac.uk/bugs/thebugsbook/examples/


R/JAGS

• JAGS model declaration in a file (.bug)

• in R, prepare data, pass data and model 
syntax to JAGS via the jags.model 
command

• JAGS exploits conjugacy when it can, and 
will use sampling (Gibbs, MH, etc) when a 
conditional distribution is not recognizable 
in closed form etc



An Example

• from:  
http://www.johnmyleswhite.com/notebook/
2010/08/20/using-jags-in-r-with-the-rjags-
package/

http://www.johnmyleswhite.com/notebook/2010/08/20/using-jags-in-r-with-the-rjags-package/


An Example

• let’s create some fictitious data using a 
normal distribution

> N <- 100
> x <- rnorm(N, 0, 5)



An Example

• specify our model of the data in JAGS syntax

• put this into a plain text file and save as 
example1.bug

model {
for (i in 1:N) {

x[i] ~ dnorm(mu, tau)
}
mu ~ dnorm(0, .0001)
tau <- pow(sigma, -2)
sigma ~ dunif(0, 100)

}



An Example

model {
for (i in 1:N) {

x[i] ~ dnorm(mu, tau)
}
mu ~ dnorm(0, .0001)
tau <- pow(sigma, -2)
sigma ~ dunif(0, 100)

}

i indexes your data points

we’re saying x is 
normally 
distributed with 
mean mu and 
precision tau (tau 
= 1/variance)we define flat priors on mu and tau

mu is normally 
distributed with mean 
0 and precision .0001

tau is 1/sigma^2
where sigma is 
uniformly distributed 
between 0 and 100



An Example

> library(rjags)
> jags <- jags.model('example1.bug',
                   data = list('x' = x,
                               'N' = N),
                   n.chains = 1,
                   n.adapt = 100)
  
> posterior <- coda.samples(jags,

             c('mu', 'tau'),
             1000)

> plot(posterior)
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An Example

> sigma = sqrt(1/posterior[[1]][,2])
> plot(sigma)

200 400 600 800

4.
0

4.
5

5.
0

5.
5

6.
0

Iterations

Trace of var1

3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N = 1000   Bandwidth = 0.09343

Density of var1



models

• here we had a simple model with 2 parameters 
(mu, tau)

• we can specify any model we want

• nonlinear, multi-level, mixture, whatever

• MCMC will attempt to sample the posterior

model {
for (i in 1:N) {

x[i] ~ dnorm(mu, tau)
}
mu ~ dnorm(0, .0001)
tau <- pow(sigma, -2)
sigma ~ dunif(0, 100)

}



e.g. Illy vs Lavazza

model {
      for (i in 1:N) {

      y[i] ~ dbern(theta)
      } 
      # prior
      theta ~ dbeta(priorA, priorB)
      priorA <- 1
      priorB <- 1
}

> N <- 10
> y <- c(1,1,1,0,1,1,0,0,1,1)
> jags <- jags.model('coffee.bug', 
data=list('y'=y, 'N'=N),  
n.chains=1, n.adapt=100)
> post <- coda.samples(jags, c('theta'), 
1000)
> plot(post)
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e.g. Illy vs Lavazza

model {
      for (i in 1:N) {

      y[i] ~ dbern(theta)
      } 
      # prior
      theta ~ dunif(0,1)
}

> N <- 10
> y <- c(1,1,1,0,1,1,0,0,1,1)
> jags <- jags.model('coffee2.bug', 
data=list('y'=y, 'N'=N),  
n.chains=1, n.adapt=100)
> post <- coda.samples(jags, c('theta'), 
1000)
> plot(post)

coffee2.bug
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MCMC

• you can specify any crazy model you want

• multi-level models

• hierarchical models

• nonlinear models

• MCMC will attempt to sample the 
posterior



MCMC

• diagnostics

• burn-in period

• stability

• chains

• lots of details, check the texts if you are 
interested in pursuing this approach


