Bayesian Approaches |



Bayesian Frequentist

data are treated as ® data (sample) treated as
fixed observations a random variable
models (parameters) ® models (population

are treated as random parameters) are treated
variables as fixed quantities

we compute the ® we compute the
probability of all probability of one model
models (HO)

we end up with a ® we make a decision
richer understanding (reject HO or not)

of relative probability
of all models



Bayes [ heorem

p(A|B)p(B)
p(A)

p(B|A) =

probability of B, given A, equals
probability of A, given B, times prob of B,
divided by probability of A

p(B|A) is the posterior
P(A|[B) is the likelihood
p(B) is the prior

p(A) is the evidence



we - Bayes Theorem

likelihood prior

p(datalmodel)p(model)

del|data) =
p(mO € ‘ @ CL) p(data)evidence

® probability of model, given data, equals
probability of data, given model, times prob of model,
divided by probability of data

® p(model|data) is the posterior
® p(datajmodel) is the likelihood
® p(model) is the prior

® p(data) is the evidence



we - Bayes Theorem

p(datalmodel)p(model)
p(data)

p(model|data) =

® p(data), the marginal probability of data across all
models, can be computed as the sum of conditional
probabilities of data given each model:

p(data) = Z p(datalmodel;)p(model;)

model;



we - Bayes Theorem

p(datalmodel)p(model)

del|data) =
p(model|data) o(data)

® We will first look at a discrete probability example,

using single-point probabilities, to show how these
calculations work

® We will then look at an example of this approach

using continuous probability distributions instead of
point probabilities



Discrete Example

Let’s say you take a home pregnancy test and it
comes out positive.¥What is the probability that
you are pregnant!

Let’s say we know the test is 90% accurate
The “data” we have is

® p(testt+ | preg) = 0.90

® and test was +

We want the prob of the “model”: preg

we want to know p(preg | test+)



Discrete Example

A|B)p(B)
p(A)

p(B|A) = i

p(test + |preg)p(preg)
p(test+)

p(pregltest+) =

® p(testt+ | preg) = 0.90 (accuracy of test)
® p(testt+ | not preg) = 0.50 (false pos rate)

® |et’s say we also estimate p(preg) ~ 0.15



Discrete Example

.90 A5
p(test + |preg)p(preg)

p(test+)!

p(preg|test+) =

p(test+ | preg) = 0.90
p(preg) = 0.15

what is P(test+)7 p(data) Z p(data|model;)p(model;)

model;

p(test+) = p(test + |preg)p(preg) + p(test + |notpreg)p(notpreg)

b(test+) = (.90)(.15) + (.50)(.85) = 0.56



Discrete Example

.90 A5
p(test + |preg)p(preg)

p(test+).56
® p(testt) = (.90)(.15) + (.50)(.85) = .56
® so p(preg | test+) = (.90)(.15) / (.56) = .241

p(preg|test+) =

® so probability of pregnant given pos test is
24.1%



Effect of the prior

likelihood prior

p(datalmodel)p(model)
p(data)

p(model|data) =

the posterior p(model | data) is proportional to
the likelihood p(data | model) multiplied by the
prior p(model)

our prior expectation (or previous findings, i.e.
data) modulates our prediction of the future

can be viewed as both a virtue and a
shortcoming of the Bayesian approach



Effect of the prior

(¢ t°90\ )p( " )
est + |pre re
p(pregltest+) = b AV AV
p(test+).56

prior posterior prior posterior

0.1 0.17 0.6 0.73

0.2 0.31 0.7 0.81

0.3 0.44 0.8 0.88

0.4 0.55 0.9 0.94

0.5 0.64 0.99 0.99




Updating the Model

likelihood prior

p(datalmodel)p(model)
p(data)

p(model|data) =

® When you collect new data, you can update
your model

® the posterior from the previous model
becomes the prior for the new model



Updating the Model

likelihood prior

p(datalmodel)p(model)
p(data)

p(model|data) =

® | et’s say you take another preg test

® We know from our previous calculation:
® p(preg | testt) = .24

® T[he other quantities are the same
® p(testt | preg) = 0.90 (accuracy of test)

® p(testt | not preg) = 0.50 (false pos rate)



Updating the Model

likelihood prior

p(datalmodel)p(model)
p(data)

p(model|data) =

® | et’s say you take another preg test
® We know from our previous calculation:
® p(preg | testt) = .24

® this becomes our new prior



Updating the Model

p(test + |preg)p(preg)
p(test+)

p(test + [preg)p(preg)
p(test + [preg)p(preg) + p(test + [notpreg)p(notpreg)

p(preg|test+) =

p(pregltest+) =

® p(preg | test+) =
(.90)(.241) / ( (.90)(.241) + (.50)(1-.241) )
= 364

® so after a second positive test,
p(preg | testt) is now 36.4%

Test # Test 3 | Test 4 | Test 5| Test 6 | Test 7 | Test 8 | Test 9 |[Test 10

p(pregltest+) | 0.51 0.65 Q.77 Q.86 0.92 0.95 0.97 0.98




Updating the Model

seems like an appropriate thing to do in
science

when new data are gathered, we can re-
evaluate a hypothesis

we do not begin anew (ighorant) each time
we ask a question

previous research provides us information
about the merits of the hypothesis



Bayes with Distributions

® in previous example, the likelihood and prior
were both single quantities (point probabilities)

® typically Bayesian approaches use full
probability distributions

® essentially allows us to evaluate probability
of a whole range of possible models, at once



Bayes with Distributions

® don’t worry, remember probability
distributions are just mathematical
functions of a parameter vector .

® e.g.binomal prob of k successes in
n trials with prob(success) p, is R \

® c.g.normal prob of a value x, with "7~ o ||

mean mu and standard dev sigma, is —A




Bayes with Distributions

likelihood prior

p(datalmodel)p(model)

p(model|data) =

p(dCLtCL) evidence

® |et’s look at an example: coin flipping
® is my coin fair?
® “data” are 3 flips of the coin: (H, H, T)

® “model” is a proposed process by which the
outcome of our coin flip is determined



Bayes with Distributions

likelihood prior

p(datalmodel)p(model)

del|data) =
p(mO € ‘ @ CL) p(data)evidence

since outcomes are binary (H,T) a natural choice of model is a
binomial distribution

we know the likelihood function for a binomial model is

n! k —k
1_ mn
Bl — P L P)

p(k|n,p) =

so our “‘data” are: n=3 tries, k=2 successes
(assume Heads=success, Tails=failure)

likelihood function gives us p(k | n,p) but what we want is
the posterior: p(p | n,k) where p is prob(success) (fair is p=0.50)

according to Bayes theorem this equals likelihood*prior/evidence



Bayes with Distributions

likelihood prior

data|model)p(model
p(model|data) = P )p( )
p(data) evidence
® what should our prior be!
® prior is probability of “model” == probability distribution over

possible values of p

® we could decide on an “uninformative prior”, postulating that all
values of p are equally likely:

prior

b(p)

0.0 0.2 0.4 0.6 0.8 1.0



Bayes with Distributions

likeli

p(data

hood prior

model)p(model)

(dCLtCL) evidence

p(model|data) =

we could decide that since every coin we have seen in the past has

been fair, we expect that this coin will be fair as well and so p will
likely be = 0.50

but how unlikely are values other than p!? : /\

very unlikely?

moderately unlikely?

not terribly unlikely but still less likely than .50? * /o




Bayes with Distributions

likelihood prior

p(datalmodel)p(model)

del|data) =
p(mO € ‘ @ CL) p(data)evidence

® it’s totally up to us to decide on the prior, in several aspects:
|. scientific/theoretical Q:in general, what should its shape be?
2. practical Q: how do | characterize the prior?
® “by hand”, e.g. as a table (a list) of parameter values & probabilities
® “‘algebraically”, as a mathematical equation
A. any old function of our choosing, OR

B. a specific equation that will help us later in computing the posterior
(known as a conjugate prior)



Bayes with Distributions

® [wo general approaches to computing the
posterior:

® Analytic: choosing a likelihood model and a
conjugate prior from a (relatively short) list
of known forms, and taking advantage of
clever algebra/calculus that results in a very
simple expression for the posterior



Bayes with Distributions

® Numerical: you're free to specify your
likelihood and your prior as whatever you
want, and use iterative computing methods
and powerful computers to estimate the
posterior distribution

* grid approximation approach

* Markov Chain Monte-Carlo (MCMCQC)



Analytic Approach

recall our data: 3 coin flips, 2 successes (2 HEADS, one
TAILS)

is the coin fair! === what is prob p in our binomial model
we want the posterior: o(M|D) = p(DI;\(fl))z)?(M )

likelihood P(D|M) is given by the binomial distribution

n! —
p(kln.p) = o= k)!pk(l —p)" "

it turns out that a conjugate prior for the binomial, is the
Beta distribution

http://en.wikipedia.org/wiki/Conjugate prior



http://en.wikipedia.org/wiki/Conjugate_prior

Conjugate Priors

® |f the posterior distribution p(0|x) is in the
same family as the prior probability
distribution p(0), the prior and posterior
are then called conjugate distributions, and
the prior is called a conjugate prior for the
likelihood


http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Prior_probability_distribution

The Beta Distribution

11 — )P~
B(a, B)

http://en.wikipedia.org/wiki/Beta_distribution

f('CE?a?/B) —

crystal clear, right! ;) no of course not
don’t fret though ... this is just a mathematical equation

it takes in parameters alpha and beta and spits out nice
looking curves for x values between 0 and |

this is convenient for characterizing prior on p, since in our
coin, p is betwen 0 and |


http://en.wikipedia.org/wiki/Beta_distribution

prob(p)

The Beta Distribution
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Conjugate Priors

® when you use a prior that is a conjugate for the

likelihood, then computing the posterior turns out
to be a piece of cake

® clever calculus ninjas have worked out the algebra,
and often the posterior can be expressed as a

really simple manipulation of the parameters of the
likelihood and prior



Conjugate Priors

for example for the binomial, we have
our likelihood function prob(k|n,p) = binomial(k,n, p)

and if we specify our prior using a Beta
distribution prob(p) = beta(c, 3)

then the posterior turns out to be equal
to another Beta function, with modified
alpha and beta parameters: prob(p|k,n) = beta(k + a, N — k + f3)

thank you calculus ninjas!

we don’t even need to calculate anything



Back to our example

coin flip: n=3 trials, k=2 success
likelihood is binomial(n,k,p)

® n=3, k=2, p is unknown

prior is Beta(alpha,beta)

® |et’s choose a flat prior; alpha=1, beta=1
our calculus ninjas gave us:

posterior is Beta(2+1, 3-2+1)

Binom(n=3,k=2)




Our curvy posterior

Beta(3,2)
MLE = k/n = 2/3

b(p)

e MLE of p is 0.667

® the posterior also gives us the entire curve



Describing the posterior

® Graphically

® Summary statistics
® Analytic

® well known expressions for mean, variance,

mode, MLE, etc...
@

® e.g.mean ofa Betadistis 5

L ap
®
variance Is (Ck —+ ﬂ)Q(Od + B + 1) http://en.wikipedia.org/wiki/Beta_distribution



http://en.wikipedia.org/wiki/Beta_distribution

Describing the posterior

® Numerical

® use a random number generator to draw a
large number of values from the posterior
distribution, then compute summary stats
from those random draws

® in programs like R we have a whole set of random
number generators for lots of probability
distributions

® normal, beta, binomial, exponential, poission, etc
etc etc...



Numerical Example

let’s compute the 95% credible interval
sometimes called Highest Density Region (HDR)

mysamp <- rbeta(10000, 3, 2) Histogram of mysamp
hist(mysamp, breaks=50, col="blue”) |
c195 = quantile(mysamp, c(.025,.975))
c195

2.5% 97.5%

V V V V

300
I

0.1940172 0.9335989

200
I

> abline(v=2/3, col="red", 1lwd=2, lty=2)
> abline(v=c195, col="red", lwd=2)

Frequency

100
I

or: 50% credible interval

> c150 = quantile(mysamp, c(.25,.75))
> abline(v=ci50, col="orange", lwd=5)

o_

I
0.6

mysamp



Numerical Example

or any other quantity you could ever want

after all, you have the ability to sample from the
posterior distribution as much as you want

Histogram of mysamp

i.e. you can sample from
prob(model | data)

300
|

and characterize its entire shape, ,
over the full range of possible ¢
values of the model

200
l

100
l

essentially you can evaluate the
relative prob of all models . . . . |

0.0 0.2 0.4 0.6 0.8 1.0

mysamp



Try a different Prior

® We used a flat prior for the previous example

® | et’s repeat but use a prior that expresses

our evidence to date that coins are in fact fair
B eta (2 O ’ 2 O) Beta(20,20)

o)
ey
o
s /\
| | | | |
0.0 0.2 04 0.6 0.8
p




Try a different Prior

Binom(n=3,k=2)

® |ikelihood

® flat prior didn’t really change

likelihood

BBBBBBBBB

® so posterior essentially equals
likelihood




Try a different Prior

® coin flip: n=3 trials, k=2 success
® likelihood is binomial(n,k,p)

® n=3,k=2,p is unknown
® prior is Beta(alpha,beta)

® |et’s choose an informative prior,
alpha=20, beta=20

® our calculus ninjas gave us:

® posterior is Beta(2+20, 3-2+20)




Effect of Prior

posterior

/ J

\ \ \ \ \ \ \ \ \ \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2



Criticisms of Bayesian
Approach

® the prior:too much “subjectivity”?

® data fixed, models (parameters) random



Advantages

interval estimates (and other such measures of posterior) have a
clearer meaning than Cls in frequentist approaches

frequentist orientation around “repeated sampling” is unrealistic,
we in fact only sample (do our experiment) once

frequentist involves testing only one hypothesis (model) : the null
hypothesis ... Bayesian estimates probability of all models
(parameter values)

in Bayesian approach we get full posterior distribution,a much
richer picture than just a mean +/- Cl or s.e.

Bayesian approach allows for incorporating previous findings in a
principled way



Next Class

® grid approximation approach
(discretizing the prior)

® multidimensional models

® Markov Chain Monte Carlo (MCMC)
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