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• data are treated as 
fixed observations	



• models (parameters) 
are treated as random 
variables	



• we compute the 
probability of all 
models	



•  we end up with a 
richer understanding 
of relative probability 
of all models

• data (sample) treated as 
a random variable	



• models (population 
parameters) are treated 
as fixed quantities	



• we compute the 
probability of one model 
(H0)	



• we make a decision 
(reject H0 or not)

Bayesian Frequentist



Bayes Theorem

• probability of B, given A, equals 
probability of A, given B, times prob of B,  
divided by probability of A	



• p(B|A) is the posterior	



• p(A|B) is the likelihood	



• p(B) is the prior	



• p(A) is the evidence

p(B|A) =
p(A|B)p(B)

p(A)



Bayes Theorem

• probability of model, given data, equals 
probability of data, given model, times prob of model,  
divided by probability of data	



• p(model|data) is the posterior	



• p(data|model) is the likelihood	



• p(model) is the prior	



• p(data) is the evidence

p(B|A) =
p(A|B)p(B)

p(A)

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior

evidence



Bayes Theorem

• p(data), the marginal probability of data across all 
models, can be computed as the sum of conditional 
probabilities of data given each model:

p(B|A) =
p(A|B)p(B)

p(A)

p(model|data) = p(data|model)p(model)

p(data)

p(data) =
X

modeli

p(data|model
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Bayes Theorem

• We will first look at a discrete probability example, 
using single-point probabilities, to show how these 
calculations work	



• We will then look at an example of this approach 
using continuous probability distributions instead of 
point probabilities

p(B|A) =
p(A|B)p(B)

p(A)

p(model|data) = p(data|model)p(model)

p(data)



Discrete Example
• Let’s say you take a home pregnancy test and it 

comes out positive. What is the probability that 
you are pregnant?	



• Let’s say we know the test is 90% accurate	



• The “data” we have is	



• p(test+ | preg) = 0.90	



• and test was + 	



• We want the prob of the “model”: preg	



• we want to know p(preg | test+)



Discrete Example

• p(test+ | preg) = 0.90 (accuracy of test)	



• p(test+ | not preg) = 0.50 (false pos rate)	



• let’s say we also estimate p(preg) ~ 0.15

p(B|A) =
p(A|B)p(B)

p(A)

p(preg|test+) =
p(test+ |preg)p(preg)

p(test+)



Discrete Example

• p(test+ | preg) = 0.90	



• p(preg) = 0.15	



• what is p(test+)?	



•  	



• p(test+) = (.90)(.15) + (.50)(.85) = 0.56

p(preg|test+) =
p(test+ |preg)p(preg)

p(test+)

p(data) =
X

modeli

p(data|model

i

)p(model

i

)

p(test+) = p(test+ |preg)p(preg) + p(test+ |notpreg)p(notpreg)

.90 .15

?



Discrete Example

• p(test+) = (.90)(.15) + (.50)(.85) = .56	



• so p(preg | test+) = (.90)(.15) / (.56) = .241	



• so probability of pregnant given pos test is 
24.1%

p(preg|test+) =
p(test+ |preg)p(preg)

p(test+)

.90 .15

.56



Effect of the prior

• the posterior p(model | data) is proportional to 
the likelihood p(data | model) multiplied by the 
prior p(model)	



• our prior expectation (or previous findings, i.e. 
data) modulates our prediction of the future	



• can be viewed as both a virtue and a 
shortcoming of the Bayesian approach

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior



Effect of the prior

p(preg|test+) =
p(test+ |preg)p(preg)

p(test+)
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prior posterior
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Updating the Model

• When you collect new data, you can update 
your model	



• the posterior from the previous model 
becomes the prior for the new model

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior



Updating the Model

• Let’s say you take another preg test	



• We know from our previous calculation:	



• p(preg | test+) = .241	



• The other quantities are the same	



• p(test+ | preg) = 0.90 (accuracy of test)	



• p(test+ | not preg) = 0.50 (false pos rate)

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior



Updating the Model

• Let’s say you take another preg test	



• We know from our previous calculation:	



• p(preg | test+) = .241	



• this becomes our new prior

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior



Updating the Model

• p(preg | test+) =  
(.90)(.241) / ( (.90)(.241) + (.50)(1-.241) )  
= .364	



• so after a second positive test,  
p(preg | test+) is now 36.4%

p(preg|test+) =
p(test+ |preg)p(preg)

p(test+)

Test # Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

p(preg|test+) 0.51 0.65 0.77 0.86 0.92 0.95 0.97 0.98

p(preg|test+) =
p(test+ |preg)p(preg)

p(test+ |preg)p(preg) + p(test+ |notpreg)p(notpreg)



Updating the Model

• seems like an appropriate thing to do in 
science	



• when new data are gathered, we can re-
evaluate a hypothesis	



• we do not begin anew (ignorant) each time 
we ask a question	



• previous research provides us information 
about the merits of the hypothesis



Bayes with Distributions

• in previous example, the likelihood and prior 
were both single quantities (point probabilities)	



• typically Bayesian approaches use full 
probability distributions	



• essentially allows us to evaluate probability 
of a whole range of possible models, at once



Bayes with Distributions

• don’t worry, remember probability 
distributions are just mathematical 
functions of a parameter vector	



• e.g. binomal prob of k successes in 
n trials with prob(success) p, is  

• e.g. normal prob of a value x, with 
mean mu and standard dev sigma, is 

p(k|n, p) = n!

k!(n� k)!
pk(1� p)n�k
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Bayes with Distributions

• let’s look at an example: coin flipping	



• is my coin fair?	



• “data” are 3 flips of the coin: (H, H, T)	



• “model” is a proposed process by which the 
outcome of our coin flip is determined

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior

evidence



Bayes with Distributions

• since outcomes are binary (H,T) a natural choice of model is a 
binomial distribution	



• we know the likelihood function for a binomial model is  

• so our “data” are: n=3 tries, k=2 successes 
(assume Heads=success, Tails=failure)	



• likelihood function gives us p(k | n,p) but what we want is  
the posterior: p(p | n,k) where p is prob(success) (fair is p=0.50)	



• according to Bayes theorem this equals likelihood*prior/evidence

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior

evidence

p(k|n, p) = n!

k!(n� k)!
pk(1� p)n�k



Bayes with Distributions

• what should our prior be?	



• prior is probability of “model” == probability distribution over 
possible values of p	



• we could decide on an “uninformative prior”, postulating that all 
values of p are equally likely:

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior

evidence
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Bayes with Distributions

• we could decide that since every coin we have seen in the past has 
been fair, we expect that this coin will be fair as well and so p will 
likely be = 0.50	



• but how unlikely are values other than p?	



• very unlikely?	



• moderately unlikely?	



• not terribly unlikely but still less likely than .50?

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior

evidence
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Bayes with Distributions

• it’s totally up to us to decide on the prior, in several aspects:	



1. scientific/theoretical Q: in general, what should its shape be?	



2. practical Q: how do I characterize the prior?	



• “by hand”, e.g. as a table (a list) of parameter values & probabilities	



• “algebraically”, as a mathematical equation	



A. any old function of our choosing, OR	



B. a specific equation that will help us later in computing the posterior  
(known as a conjugate prior)

p(model|data) = p(data|model)p(model)

p(data)

likelihood prior

evidence



Bayes with Distributions

• Two general approaches to computing the 
posterior:	



• Analytic: choosing a likelihood model and a 
conjugate prior from a (relatively short) list 
of known forms, and taking advantage of 
clever algebra/calculus that results in a very 
simple expression for the posterior



Bayes with Distributions

• Numerical: you’re free to specify your 
likelihood and your prior as whatever you 
want, and use iterative computing methods 
and powerful computers to estimate the 
posterior distribution	



• grid approximation approach	



• Markov Chain Monte-Carlo (MCMC)



Analytic Approach
• recall our data: 3 coin flips, 2 successes (2 HEADS, one 

TAILS)	



• is the coin fair? === what is prob p in our binomial model	



• we want the posterior:	



• likelihood P(D|M) is given by the binomial distribution	



!

• it turns out that a conjugate prior for the binomial, is the 
Beta distribution	



• http://en.wikipedia.org/wiki/Conjugate_prior

p(M |D) =
p(D|M)p(M)

p(D)

p(k|n, p) = n!

k!(n� k)!
pk(1� p)n�k

http://en.wikipedia.org/wiki/Conjugate_prior


Conjugate Priors

•  If the posterior distribution p(θ|x) is in the 
same family as the prior probability 
distribution p(θ), the prior and posterior 
are then called conjugate distributions, and 
the prior is called a conjugate prior for the 
likelihood 

http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Prior_probability_distribution


The Beta Distribution
f(x,↵,�) =

x

↵�1(1� x)��1

B(↵,�)

• crystal clear, right? :) no of course not	



• don’t fret though ... this is just a mathematical equation	



• it takes in parameters alpha and beta and spits out nice 
looking curves for x values between 0 and 1	



• this is convenient for characterizing prior on p, since in our 
coin, p is betwen 0 and 1

http://en.wikipedia.org/wiki/Beta_distribution

http://en.wikipedia.org/wiki/Beta_distribution


The Beta Distribution
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Conjugate Priors
• when you use a prior that is a conjugate for the 

likelihood, then computing the posterior turns out 
to be a piece of cake	



• clever calculus ninjas have worked out the algebra, 
and often the posterior can be expressed as a 
really simple manipulation of the parameters of the 
likelihood and prior



Conjugate Priors
• for example for the binomial, we have 

our likelihood function	



• and if we specify our prior using a Beta 
distribution	



• then the posterior turns out to be equal 
to another Beta function, with modified 
alpha and beta parameters:	



• thank you calculus ninjas!	



• we don’t even need to calculate anything

prob(p) = beta(↵,�)

prob(p|k, n) = beta(k + ↵, N � k + �)

prob(k|n, p) = binomial(k, n, p)



Back to our example
• coin flip: n=3 trials, k=2 success	



• likelihood is binomial(n,k,p)	



• n=3, k=2, p is unknown	



• prior is Beta(alpha,beta)	



• let’s choose a flat prior, alpha=1, beta=1	



• our calculus ninjas gave us:	



• posterior is Beta(2+1, 3-2+1)
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Our curvy posterior

• MLE of p is 0.667	



• the posterior also gives us the entire curve
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MLE = k/n = 2/3



Describing the posterior

• Graphically 

!

• Summary statistics 

• Analytic	



• well known expressions for mean, variance, 
mode, MLE, etc...	



• e.g. mean of a Beta dist is 	



• variance is
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Describing the posterior
• Numerical	



• use a random number generator to draw a 
large number of values from the posterior 
distribution, then compute summary stats 
from those random draws	



• in programs like R we have a whole set of random 
number generators for lots of probability 
distributions	



• normal, beta, binomial, exponential, poission, etc 
etc etc...



Numerical Example
• let’s compute the 95% credible interval  

sometimes called Highest Density Region (HDR)	


> mysamp <- rbeta(10000, 3, 2)  
> hist(mysamp, breaks=50, col=”blue”)  
> ci95 = quantile(mysamp, c(.025,.975))  
> ci95  
     2.5%     97.5% 	

0.1940172 0.9335989  
 
> abline(v=2/3, col="red", lwd=2, lty=2)  
> abline(v=ci95, col="red", lwd=2)	

• or: 50% credible interval 
> ci50 = quantile(mysamp, c(.25,.75))  
> abline(v=ci50, col="orange", lwd=5)  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Numerical Example
• or any other quantity you could ever want	



• after all, you have the ability to sample from the 
posterior distribution as much as you want	



• i.e. you can sample from  
prob(model | data)  
 
and characterize its entire shape,  
over the full range of possible  
values of the model	



• essentially you can evaluate the 
relative prob of all models
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• We used a flat prior for the previous example	



!

!

• Let’s repeat but use a prior that expresses 
our evidence to date that coins are in fact fair 
Beta(20,20)
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Try a different Prior



• likelihood	



!

• flat prior didn’t really change 
likelihood	



!

• so posterior essentially equals 
likelihood

Try a different Prior
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Try a different Prior
• coin flip: n=3 trials, k=2 success	



• likelihood is binomial(n,k,p)	



• n=3, k=2, p is unknown	



• prior is Beta(alpha,beta)	



• let’s choose an informative prior,  
alpha=20, beta=20	



• our calculus ninjas gave us:	



• posterior is Beta(2+20, 3-2+20)	
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Criticisms of Bayesian 
Approach

• the prior: too much “subjectivity”?	



• data fixed, models (parameters) random



Advantages
• interval estimates (and other such measures of posterior) have a 

clearer meaning than CIs in frequentist approaches	



• frequentist orientation around “repeated sampling” is unrealistic, 
we in fact only sample (do our experiment) once	



• frequentist involves testing only one hypothesis (model) : the null 
hypothesis ... Bayesian estimates probability of all models 
(parameter values)	



• in Bayesian approach we get full posterior distribution, a much 
richer picture than just a mean +/- CI or s.e.	



• Bayesian approach allows for incorporating previous findings in a 
principled way



Next Class

• grid approximation approach 
(discretizing the prior)	



• multidimensional models	



• Markov Chain Monte Carlo (MCMC)



gentle books



the full monty


