Bayesian Approaches I

Bayesian

- data are treated as fixed observations
- models (parameters) are treated as random variables
- we compute the probability of all models
- we end up with a richer understanding of relative probability of all models

Frequentist

- data (sample) treated as a random variable
- models (population parameters) are treated as fixed quantities
- we compute the probability of one model (H0)
- we make a decision (reject H0 or not)

Bayes Theorem

$$
p(B \mid A)=\frac{p(A \mid B) p(B)}{p(A)}
$$

- probability of B, given A, equals probability of A, given B, times prob of B, divided by probability of A
- $p(B \mid A)$ is the posterior
- $p(A \mid B)$ is the likelihood
- $p(B)$ is the prior
- $p(A)$ is the evidence

Bayes Theorem

$$
p(\text { model } \mid d a t a)=\frac{p\left(\text { data } a \left\lvert\, \begin{array}{c}
\text { likelihood } \\
\text { model }
\end{array}\right.\right) p\binom{\text { prior }}{\text { model }}}{p(\text { data }) \text { evidence }}
$$

- probability of model, given data, equals probability of data, given model, times prob of model, divided by probability of data
- P (model|data) is the posterior
- p (data|model) is the likelihood
- p (model) is the prior
- p (data) is the evidence

Bayes Theorem

$$
p(\text { model } \mid \text { data })=\frac{p(\text { data } \mid \text { model }) p(\text { model })}{p(\text { data })}
$$

- p (data), the marginal probability of data across all models, can be computed as the sum of conditional probabilities of data given each model:

$$
p(d a t a)=\sum_{\text {model }_{i}} p\left(\text { data }^{2} \text { model }_{i}\right) p\left(\text { model }_{i}\right)
$$

Bayes Theorem

$$
p(\text { model } \mid \text { data })=\frac{p(\text { data } \mid \text { model }) p(\text { model })}{p(\text { data })}
$$

- We will first look at a discrete probability example, using single-point probabilities, to show how these calculations work
- We will then look at an example of this approach using continuous probability distributions instead of point probabilities

Discrete Example

- Let's say you take a home pregnancy test and it comes out positive. What is the probability that you are pregnant?
- Let's say we know the test is 90% accurate
- The "data" we have is
- p (test+ | preg) $=0.90$
- and test was +
- We want the prob of the "model": preg
- we want to know p(preg | test+)

Discrete Example

$$
\begin{aligned}
p(B \mid A) & =\frac{p(A \mid B) p(B)}{p(A)} \\
p(\text { preg } \mid \text { test }+) & =\frac{p(\text { test }+\mid \text { preg }) p(\text { preg })}{p(\text { test }+)}
\end{aligned}
$$

- $\mathrm{p}($ test $+\mid$ preg $)=0.90$ (accuracy of test)
- p (test+ \mid not $p r e g)=0.50$ (false pos rate)
- let's say we also estimate $p(p r e g) \sim 0.15$

Discrete Example $p($ preg \mid test +$)=\frac{p(\text { test }+\mid \text { preg }) p(\text { preg })}{p(\text { test }+) ?}$

- $p($ test $+\mid$ preg $)=0.90$
- $p($ preg $)=0.15$
- what is $\mathrm{P}($ test +$) ? \quad p\left(\right.$ data $\left.^{2}\right)=\sum_{\text {model }_{i}} p\left(\right.$ data $^{\prime} \mid$ model $\left._{i}\right) p\left(\right.$ model $\left._{i}\right)$
- $p($ test +$)=p($ test $+\mid$ preg $) p($ preg $)+p($ test $+\mid$ notpreg $) p($ notpreg $)$
- $\mathrm{p}($ test +) $=(.90)(.15)+(.50)(.85)=0.56$

> Discrete Example $p($ preg|test +$)=\frac{p(\text { test }+\mid \text { preg })(\text { (preg })}{p(\text { test }+) .56}$

- $p($ test +$)=(.90)(.15)+(.50)(.85)=.56$
- so $\mathrm{p}($ preg \mid test +$)=(.90)(.15) /(.56)=.241$
- so probability of pregnant given pos test is 24.1\%

$$
\begin{gathered}
\text { Effect of the prior } \\
p(\text { model } \mid \text { data })=\frac{p(\text { datatalibod } \text { model }) \text { p(prior } \text { model })}{p(\text { data })}
\end{gathered}
$$

- the posterior p (model | data) is proportional to the likelihood p (data | model) multiplied by the prior p (model)
- our prior expectation (or previous findings, i.e. data) modulates our prediction of the future
- can be viewed as both a virtue and a shortcoming of the Bayesian approach

Effect of the prior

$$
p(\text { preg } \mid \text { test }+)=\frac{\stackrel{.90}{p^{2}(\text { test }+\mid \text { preg }) p(\text { preg })}}{p(\text { test }+) .56}
$$

prior	posterior
0.1	0.17
0.2	0.31
0.3	0.44
0.4	0.55
0.5	0.64

prior	posterior
0.6	0.73
0.7	0.81
0.8	0.88
0.9	0.94
0.99	0.99

Updating the Model $p($ model \mid data $)=\frac{p(\text { data } a \mid \text { ilelihood } \text { model }) p\left(\begin{array}{c}\text { prior } \\ \text { model })\end{array}\right.}{p(\text { data })}$

- When you collect new data, you can update your model
- the posterior from the previous model becomes the prior for the new model

Updating the Model

$$
p(\text { model } \mid \text { data })=\frac{p(\text { datalalihood } \text { model }) p(\text { morior } \text { model })}{p(\text { data })}
$$

- Let's say you take another preg test
- We know from our previous calculation:
- $\mathrm{P}($ preg \mid test +) $=.241$
- The other quantities are the same
- p(test+ | preg) $=0.90$ (accuracy of test)
- $p($ test $+\mid$ not preg $)=0.50$ (false pos rate)

Updating the Model

- Let's say you take another preg test
- We know from our previous calculation:
- $\mathrm{P}($ preg \mid test +) $=.241$
- this becomes our new prior
$p(p r e g \mid t e s t+)=\frac{p(t e s t+\mid p r e g) p(p r e g)}{p(t e s t+)}$
$p(p r e g \mid t e s t+)=\frac{p(t e s t+\mid p r e g) p(p r e g)}{p(t e s t+\mid p r e g) p(p r e g)+p(t e s t+\mid n o t p r e g) p(n o t p r e g)}$
- $p($ preg \mid test +) $=$
$(.90)(.24 I) /((.90)(.24 I)+(.50)(I-.24 I))$
$=.364$
- so after a second positive test, p (preg | test+) is now 36.4\%

Test \#	Test 3	Test 4	Test 5	Test 6	Test 7	Test 8	Test 9	Test 10
p(pregltest+)	0.51	0.65	0.77	0.86	0.92	0.95	0.97	0.98

Updating the Model

- seems like an appropriate thing to do in science
- when new data are gathered, we can reevaluate a hypothesis
- we do not begin anew (ignorant) each time we ask a question
- previous research provides us information about the merits of the hypothesis

Bayes with Distributions

- in previous example, the likelihood and prior were both single quantities (point probabilities)
- typically Bayesian approaches use full probability distributions
- essentially allows us to evaluate probability of a whole range of possible models, at once

Bayes with Distributions

- don't worry, remember probability distributions are just mathematical functions of a parameter vector

$$
p(k \mid n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

- e.g. binomal prob of k successes in n trials with prob(success) p, is

 mean mu and standard dev sigma, is

Bayes with Distributions

$$
p(\text { model } \mid \text { data })=\frac{p(\text { datalalihood } \text { model }) p(\text { morior } \text { model })}{p(\text { data })_{\text {evidence }}^{\text {pil }}}
$$

- let's look at an example: coin flipping
- is my coin fair?
- "data" are 3 flips of the coin: (H, H,T)
- "model" is a proposed process by which the outcome of our coin flip is determined

Bayes with Distributions

$$
p(\text { model } \mid \text { data })=\frac{p(\text { data } \mid \stackrel{\text { likelihood }}{\text { model }}) p(\stackrel{\text { prior }}{\text { model }})}{p(\text { data }) \text { evidence }}
$$

- since outcomes are binary (H, T) a natural choice of model is a binomial distribution
- we know the likelihood function for a binomial model is

$$
p(k \mid n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

- so our "data" are: $\mathrm{n}=3$ tries, $\mathrm{k}=2$ successes (assume Heads=success,Tails=failure)
- likelihood function gives us $p(k \mid n, p)$ but what we want is the posterior: $p(p \mid n, k)$ where p is prob(success) (fair is $p=0.50$)
- according to Bayes theorem this equals likelihood*prior/evidence

Bayes with Distributions

$$
p(\text { model } \mid d a t a)=\frac{p\left(\text { data } \left\lvert\, \begin{array}{c}
\text { likelihood }
\end{array} \stackrel{\stackrel{\text { prior }}{\text { model }}) p(\text { model })}{\text { mod }}\right.\right)}{p(\text { data }) \text { evidence }}
$$

- what should our prior be?
- prior is probability of "model" == probability distribution over possible values of p
- we could decide on an "uninformative prior", postulating that all values of p are equally likely:

Bayes with Distributions

$$
p(\text { model } \mid d a t a)=\frac{p(\text { data } \mid \stackrel{\text { likelihood }}{\text { model }}) p(\stackrel{\text { prior }}{\text { model }})}{p(\text { data }) \text { evidence }}
$$

- we could decide that since every coin we have seen in the past has been fair, we expect that this coin will be fair as well and so p will likely be $=0.50$
- but how unlikely are values other than p ?
- very unlikely?
- moderately unlikely?
- not terribly unlikely but stillmess likely than .50 ?

Bayes with Distributions

$$
p(\text { model } \mid \text { data })=\frac{p\left(\text { data } \left\lvert\, \begin{array}{c}
\text { likelihood } \\
\text { model }
\end{array}\right.\right) p\binom{\text { prior }}{\text { model }}}{p(\text { data }) \text { evidence }}
$$

- it's totally up to us to decide on the prior, in several aspects:
I. scientific/theoretical Q : in general, what should its shape be?

2. practical Q : how do I characterize the prior?

- "by hand", e.g. as a table (a list) of parameter values \& probabilities
- "algebraically", as a mathematical equation
A. any old function of our choosing, OR
B. a specific equation that will help us later in computing the posterior (known as a conjugate prior)

Bayes with Distributions

- Two general approaches to computing the posterior:
- Analytic: choosing a likelihood model and a conjugate prior from a (relatively short) list of known forms, and taking advantage of clever algebra/calculus that results in a very simple expression for the posterior

Bayes with Distributions

- Numerical: you're free to specify your likelihood and your prior as whatever you want, and use iterative computing methods and powerful computers to estimate the posterior distribution
- grid approximation approach
- Markov Chain Monte-Carlo (MCMC)

Analytic Approach

- recall our data: 3 coin flips, 2 successes (2 HEADS, one TAILS)
- is the coin fair? === what is prob p in our binomial model
- we want the posterior: ${ }_{p(M \mid D)}=\frac{p(D \mid M) p(M)}{p(D)}$
- likelihood $P(D \mid M)$ is given by the binomial distribution

$$
p(k \mid n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

- it turns out that a conjugate prior for the binomial, is the Beta distribution
- http://en.wikipedia.org/wiki/Conjugate_prior

Conjugate Priors

- If the posterior distribution $p(\theta \mid x)$ is in the same family as the prior probability distribution $p(\theta)$, the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood

The Beta Distribution

$$
f(x, \alpha, \beta)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}
$$

http://en.wikipedia.org/wiki/Beta_distribution

- crystal clear, right? :) no of course not
- don't fret though ... this is just a mathematical equation
- it takes in parameters alpha and beta and spits out nice looking curves for x values between 0 and I
- this is convenient for characterizing prior on p, since in our coin, p is betwen 0 and I

The Beta Distribution

Beta(5,20)

Beta(20,20)

Beta(20,5)

Conjugate Priors

- when you use a prior that is a conjugate for the likelihood, then computing the posterior turns out to be a piece of cake
- clever calculus ninjas have worked out the algebra, and often the posterior can be expressed as a really simple manipulation of the parameters of the likelihood and prior

Conjugate Priors

- for example for the binomial, we have our likelihood function $\operatorname{prob}(k \mid n, p)=\operatorname{binomial}(k, n, p)$
- and if we specify our prior using a Beta distribution $\operatorname{prob}(p)=\operatorname{beta}(\alpha, \beta)$
- then the posterior turns out to be equal to another Beta function, with modified alpha and beta parameters: $\operatorname{prob}(p \mid k, n)=\operatorname{beta}(k+\alpha, N-k+\beta)$
- thank you calculus ninjas!
- we don't even need to calculate anything

Back to our example

- coin flip: $\mathrm{n}=3$ trials, $\mathrm{k}=2$ success
- likelihood is binomial(n,k,p)
- $\mathrm{n}=3, \mathrm{k}=2, \mathrm{p}$ is unknown
- prior is Beta(alpha,beta)
- let's choose a flat prior, alpha=I, beta=I
- our calculus ninjas gave us:
- posterior is $\operatorname{Beta}(2+\mathrm{I}, 3-2+\mathrm{I})$

Our curvy posterior

- MLE of p is 0.667
- the posterior also gives us the entire curve

Describing the posterior

Beta(3,2)

- Graphically

- Summary statistics
- Analytic
- well known expressions for mean, variance, mode, MLE, etc...
- e.g. mean of a Beta dist is $\frac{\alpha}{\alpha+\beta}$
- variance is $\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$

Describing the posterior

- Numerical
- use a random number generator to draw a large number of values from the posterior distribution, then compute summary stats from those random draws
- in programs like R we have a whole set of random number generators for lots of probability distributions
- normal, beta, binomial, exponential, poission, etc etc etc...

Numerical Example

- let's compute the 95% credible interval sometimes called Highest Density Region (HDR)

```
> mysamp <- rbeta(10000, 3, 2)
> hist(mysamp, breaks=50, col="blue")
> ci95 = quantile(mysamp, c(.025,.975))
> ci95
    2.5% 97.5%
0.1940172 0.9335989
> abline(v=2/3, col="red", lwd=2, lty=2)
> abline(v=ci95, col="red", lwd=2)
```

- or: 50\% credible interval
> ci50 = quantile(mysamp, c(.25, .75))
> abline(v=ci50, col="orange", lwd=5)

Histogram of mysamp

Numerical Example

- or any other quantity you could ever want
- after all, you have the ability to sample from the posterior distribution as much as you want

Histogram of mysamp

- i.e. you can sample from prob(model | data)
and characterize its entire shape, over the full range of possible values of the model
- essentially you can evaluate the relative prob of all models

Try a different Prior

- We used a flat prior for the previous example

- Let's repeat but use a prior that expresses our evidence to date that coins are in fact fair Beta $(20,20)$

Beta $(20,20)$

Try a different Prior

- likelihood
- flat prior didn't really change likelihood
- so posterior essentially equals likelihood

Try a different Prior

- coin flip: $\mathrm{n}=3$ trials, $\mathrm{k}=2$ success
- likelihood is binomial(n,k,p)
- $\mathrm{n}=3, \mathrm{k}=2, \mathrm{p}$ is unknown
- prior is Beta(alpha,beta)
- let's choose an informative prior, alpha=20, beta=20
- our calculus ninjas gave us:
- posterior is $\operatorname{Beta}(2+20,3-2+20)$

Effect of Prior

Criticisms of Bayesian Approach

- the prior: too much "subjectivity"?
- data fixed, models (parameters) random

Advantages

- interval estimates (and other such measures of posterior) have a clearer meaning than Cls in frequentist approaches
- frequentist orientation around "repeated sampling" is unrealistic, we in fact only sample (do our experiment) once
- frequentist involves testing only one hypothesis (model) : the null hypothesis ... Bayesian estimates probability of all models (parameter values)
- in Bayesian approach we get full posterior distribution, a much richer picture than just a mean $+/-\mathrm{Cl}$ or s.e.
- Bayesian approach allows for incorporating previous findings in a principled way

Next Class

- grid approximation approach (discretizing the prior)
- multidimensional models
- Markov Chain Monte Carlo (MCMC)

gentle books

Scott M. Lynch
Introduction
to Applied Bayesian
Statistics and Estimation for Social and
foriences
for Social Scientists
Springer

Scott M. Lynch

Introduction
 to Applied Bayesian
 Statistics and Estimation for Social Scientists

Q Springer

John K. Kruschke

A Tutorial with R and BUGS

the full monty

Cocotintitel Maderion

