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1 Two-way between subjects ANOVA

In factorial between-subjects designs, subjects are assigned to groups that represent a fac-
torial combination of the levels of more than one factor. Let’s assume we have two factors.
The first factor, we will call Biofeedback, has two levels: present, absent, and the second
factor, Drug, also has two levels, present, absent. Twenty subjects are randomly assigned
to one of four groups, and the dependent measure is blood pressure.

> bloodpressure <- c(158,163,173,178,168,188,183,198,178,193,

+ 186,191,196,181,176,185,190,195,200,180)

> biofeedback <- factor(c(rep("present",10),rep("absent",10)))

> drug <- factor(rep(c(rep("present",5),rep("absent",5)),2))

> bpdata <- data.frame(bloodpressure, biofeedback, drug)

> print(bpdata)

bloodpressure biofeedback drug

1 158 present present

2 163 present present

3 173 present present

4 178 present present

5 168 present present

6 188 present absent

7 183 present absent

8 198 present absent

9 178 present absent

10 193 present absent

11 186 absent present

12 191 absent present

13 196 absent present

14 181 absent present

15 176 absent present

16 185 absent absent

17 190 absent absent
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18 195 absent absent

19 200 absent absent

20 180 absent absent

> summary(bpdata)

bloodpressure biofeedback drug

Min. :158.0 absent :10 absent :10

1st Qu.:177.5 present:10 present:10

Median :184.0

Mean :183.0

3rd Qu.:191.5

Max. :200.0

> interaction.plot(biofeedback, drug, bloodpressure)
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The two-way ANOVA tests three omnibus effects: the main effect of each factor, and the
interaction effect between the two factors. The full model is therefore that each observation
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Yijk
1 is made up of a grand mean µ, the main effect of biofeedback (αj), the main effect of

drug (βk) and the interaction effect of blood pressure by drug (αβjk), plus unaccounted for
variance (εijk):

Yijk = µ+ αj + βk + (αβ)jk + εijk (1)

Since there are three omnibus tests, there are three restricted models — one for each
effect. The full model is alway the same:

full : Yijk = µ+ αj + βk + (αβ)jk + εijk (2)

biofeedback : Yijk = µ+ βk + (αβ)jk + εijk (3)

drug : Yijk = µ+ αj + (αβ)jk + εijk (4)

(biofeedback)(drug) : Yijk = µ+ αj + βk + εijk (5)

Note how each effect is tested using a restricted model that omits the parameter associ-
ated with that effect. Another way of saying this: If there is no main effect of biofeedback,
then the α parameter should be zero. If this is true, the restricted model (that doesn’t
contain α), should not fit the data significantly worse than the full model that includes α.

Main effects

Each test of a main effect of a factor is a test of whether there is an effect of that factor on
the dependent variable when the data are averaged over the levels of the other factor. Is
there an effect of biofeedback, when we average over (essentially ignoring) the levels of the
drug factor?

Interaction Effect

The interaction effect is a test of whether the effect of one factor (e.g. biofeedback) on
the dependent variable is different depending on the level of the other factor (e.g. drug).
Another way of saying this, is that if the effects of the two factors (biofeedback and drug)
are simply additive, then there will be no interaction effect. So an interaction effect, if
present, reflects the extent to which there is a non-linear (multiplicative) effect of the two
factors together.

This can be seen in the example data above. The effect of biofeedback alone is to reduce
blood pressure from 190 (when neither biofeedback nor drug are present), to 188. This
reflects a decrease of 2 units of blood pressure. The effect of drug alone is to reduce blood
pressure from 190 to 186 (a reduction of 4 units). If there was no interaction effect, then
when both biofeedback and drug are present their effects should simply sum, and reduce
blood pressure by 6 units (to 194). In fact, when both a present, blood pressure is reduced
to 168, a much larger reduction.

1the ith subject in the jth level of α and the kth level of β
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Workflow

I recommend that the first effect you should examine (even though it usually appears last
in the list of effects in an ANOVA output table), is the interaction effect. If it is significant,
then you should probably ignore the two main effects tests. If the interaction effect is
significant, this means that the effect of one factor on the dependent variable is different
depending on the level of the other factor. Thus why would you average over the levels of
the second factor, knowing that the levels of the second factor make a difference, i.e. that
they in fact modulate the effect of the first factor? There may be a situation where it makes
sense to do so, but it’s a bit difficult to imagine.

An example in R

We use the aov() command to analyse the data, and the summary() command to output
the results in a familiar looking ANOVA table format.

Note that we issue a strange command options() with some strange looking arguments.
This is important as it instructs R to compute effects assuming that contrast weights sum
to zero. If we don’t tell R to do this, it will do something else, and we will not get results
that we expect. See http://goo.gl/3GHTB for some more details about this and how it
relates to the different ways of computing sums-of-squares as discussed in the Maxwell &
Delaney text, chapter 7.

> options(contrasts = c("contr.sum", "contr.poly"))

> myanova <- aov(bloodpressure ~ biofeedback*drug)

> summary(myanova)

Df Sum Sq Mean Sq F value Pr(>F)

biofeedback 1 500 500.0 8.00 0.01211 *

drug 1 720 720.0 11.52 0.00371 **

biofeedback:drug 1 320 320.0 5.12 0.03792 *

Residuals 16 1000 62.5

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We see that all three omnibus tests are significant, there is a main effect of biofeedback,
there is a main effect of drug, and there is an interaction between biofeedback and drug.
Since there is a significant interaction effect, the next step is to conduct followup tests to
investigate where the differences lie. There are many possibilities for how to proceed. You
could perform so-called simple effects analyses, or you could proceed directly to pairwise
tests. I typically go straight to the pairwise tests. There are also many ways to control for
Type-I error. I typically use Tukey tests. Fortunately there is a simple command in R to
do this:

> TukeyHSD(myanova,which="biofeedback:drug")

Tukey multiple comparisons of means

95% family-wise confidence level
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Fit: aov(formula = bloodpressure ~ biofeedback * drug)

$`biofeedback:drug`
diff lwr upr p adj

present:absent-absent:absent -2 -16.3051 12.305099 0.9775889

absent:present-absent:absent -4 -18.3051 10.305099 0.8534038

present:present-absent:absent -22 -36.3051 -7.694901 0.0022719

absent:present-present:absent -2 -16.3051 12.305099 0.9775889

present:present-present:absent -20 -34.3051 -5.694901 0.0051230

present:present-absent:present -18 -32.3051 -3.694901 0.0115535

The second parameter to the TukeyHSD() function instructs it which omnibus test we
are interested in examining for the pairwise tests.

Statistical Power

The power.anova.test() function we saw earlier in the course only applies to balanced,
single-factor designs. There is a package called pwr that contains functions we can use to do
power analysis for multi-factor designs. To install it, do the following: install.packages("pwr")
once, to download the package to your computer. Then in a given R session, to load in the
library, type library(pwr).

To do power calculations we will use the pwr.f2.test() function, which enables us to
compute the power for any F test. Let’s say we have a two-factor design, with factors A
(three levels) and B (two levels). Let’s say that we expect the effect size for the main effect
of A to be medium (0.25 according to Cohen, 1988). Let’s say we have 5 subjects in each
group — the df for our mean-squared term in our ANOVA will be 3×2× (5−1) = 24. Here
is how we would use pwr.f2.test() to compute the power of the test for a main effect of
factor A, for an α level of 0.05:

> library(pwr)

> pwr.f2.test(u=2, v=24, f2=(0.25*0.25), sig.level=0.05, power=NULL)

Multiple regression power calculation

u = 2

v = 24

f2 = 0.0625

sig.level = 0.05

power = 0.1775164

The u and v parameters in the pwr.f2.test() function correspond to the df-numerator
and df-denominator terms in the ANOVA. The f2 parameter is the effect size squared
(Cohen, 1988).

To ask how many subjects we would require to have a significant main effect of A, at a
power of 0.90 we would issue this command:
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> pwr.f2.test(u=2, v=NULL, f2=(0.25*0.25), sig.level=0.05, power=0.90)

Multiple regression power calculation

u = 2

v = 202.4912

f2 = 0.0625

sig.level = 0.05

power = 0.9

We see that v = 202.4912 which means that we would need 203 degrees of freedom in
the denominator of our F test. This means we would need 1 + [203/(3 × 2)] = 35 subjects
per group in our 3 x 2 design. Remember,

dfresiduals = a× b× (n− 1) (6)

where a is the number of levels of factor A, b is the number of levels of factor B, and n
is the number of subjects in each group.

Complications

When your experiment has equal number of subjects in each group, it is known as a balanced
design. An unbalanced design has unequal numbers of subjects in each group. This turns
out to be a big nuisance when it comes to the computations underlying the ANOVA. You
should read the chapter in Maxwell & Delaney for the details, but essentially the problem
is that when you have unequal numbers of subjects in each group, the main effects and
interaction effects are no longer orthogonal to each other. This means that effects of one
can erroneously show up as effects of another (if you don’t do something to correct for the
situation).

The issue of unbalanced designs, and the resulting effects on calculations of the ANOVA,
require that you understand something about different ways of computing so-called sums of
squares. Remember that we encountered the idea of sums of squares in our earlier discussions
of ways of computing the error associated with full versus restricted models. Part of the
traditional ANOVA calculations involve computing the sums of squares for each omnibus
test in an experimental design (the SS usually appears in the first column of numbers in a
traditional ANOVA output table).

There are three common ways that sums of squares are computed, and they are known
as Type-I, Type-II and Type-III sums of squares. You should read Maxwell and Delaney
for a detailed discussion of the ways that these differ ... but there are three things you need
to know, as a bottom line. First, the recommended sums of squares are the Type-III sums
of squares. Second, the way that R computes sums of squares by default, is Type-I sums of
squares. Third, Type-I and Type-III sums of squares for omnibus effects (main effects and
interactions) will only differ when you have an unbalanced design. We won’t go into the
details of this here, please read the text.

When your design is balanced (same number of subjects in each cell of your experimental
design), then you don’t have to worry, just proceed as usual. When however you have an
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unbalanced design, you have to do something special in R to force it to compute the ANOVA
using Type-III sums of squares. There are two ways of doing this.

The first way is to use the drop1() command following the usual aov() function:

> myanova <- aov(bloodpressure ~ biofeedback*drug)

> drop1(myanova, . ~ ., test="F")

Single term deletions

Model:

bloodpressure ~ biofeedback * drug

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 1000 86.240

biofeedback 1 500 1500 92.350 8.00 0.012109 *

drug 1 720 1720 95.087 11.52 0.003706 **

biofeedback:drug 1 320 1320 89.793 5.12 0.037917 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results are the same as before because this design is balanced ... this is just a demo
of how to do it IF the design was unbalanced. The drop1() command performs F-tests
of the full model versus restricted models, where the restricted models are constructed by
removing each term in the full model, one at a time. By default, R doesn’t compute the
ANOVA this way, but computes the Type-I sums of squares, which involves incrementally
adding terms to the restricted model. When the design is balanced, they are both valid
and produce the same results. When the design is unbalanced, the Type-I method produces
something strange and not useful (see Maxwell & Delaney for an explanation of why Type-I
sums of squares are strange and not useful).

Important: R will not warn you that you have an unbalanced design — it will go ahead
and compute the Type-I sums of squares and report the results to you. It’s your respon-
sibility to know what procedure you’re applying to your data, and to ensure that it’s the
correct one.

The second method is to use the Anova() function in the car package. First install the
package on your computer — in R, type: install.packages("car"). Then:

> library(car)

> Anova(myanova, type="III")

Anova Table (Type III tests)

Response: bloodpressure

Sum Sq Df F value Pr(>F)

(Intercept) 669780 1 10716.48 < 2.2e-16 ***

biofeedback 500 1 8.00 0.012109 *

drug 720 1 11.52 0.003706 **

biofeedback:drug 320 1 5.12 0.037917 *
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Residuals 1000 16

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We will be using the Anova() function later in the course for repeated-measures designs,
so you may as well install it now.

Again, please read the chapter in Maxwell & Delaney for the full details about the
difference between Type-I, Type-II and Type-III sums of squares and how they relate to
unbalanced designs.
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