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1 One-way Repeated-Measures ANOVA

First let’s load in the sample data. It’s “stacked” in the usual way, where each row is a
single observation, and columns code variables — in this case treatment, which has four
levels, and subject, which has 10 levels.

> datafilename <- "http://www.gribblelab.org/stats/data/oneWayRepdata.csv"

> mydata <- read.table(datafilename, sep=",", header=TRUE)

> mydata$treatment <- factor(mydata$treatment)

> mydata$subject <- factor(mydata$subject)

> mydata

dv treatment subject

1 8 1 1

2 10 2 1

3 7 3 1

4 5 4 1

5 9 1 2

6 9 2 2

7 8 3 2

8 6 4 2

9 7 1 3

10 5 2 3

11 8 3 3

12 4 4 3

13 9 1 4

14 6 2 4

15 5 3 4

16 7 4 4

17 8 1 5

18 7 2 5

19 7 3 5

20 6 4 5
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21 5 1 6

22 4 2 6

23 4 3 6

24 3 4 6

25 7 1 7

26 6 2 7

27 5 3 7

28 4 4 7

29 8 1 8

30 8 2 8

31 6 3 8

32 6 4 8

33 9 1 9

34 8 2 9

35 6 3 9

36 5 4 9

37 7 1 10

38 7 2 10

39 4 3 10

40 5 4 10

1.1 demo: ignore subjects

As a demonstration, let’s run this as if it were simply a between-subjects ANOVA, in other
words, ignoring the fact that observations from the four levels of treatment come from the
same subjects:

> am1 <- aov(dv ~ treatment, data=mydata)

> summary(am1)

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 38.9 12.967 6.062 0.00189 **

Residuals 36 77.0 2.139

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this case the F-test of the treatment effect is significant at p = 0.001890.

1.2 demo: include subjects as if it were a two-factor between-subjects
design

Now as another demonstration, let’s run this ANOVA again as if it were a two-factor
design, in which we include subject as a factor. In this case, note that we cannot include
both the main effects and the interaction effect — since there is only one observation from
each subject in each condition, there are not enough degrees of freedom. So we will simply
specify a model that has the two main effects and leaves out the interaction effect:
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> am2 <- aov(dv ~ treatment + subject, data=mydata)

> summary(am2)

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 38.9 12.967 12.241 3.06e-05 ***

subject 9 48.4 5.378 5.077 0.000471 ***

Residuals 27 28.6 1.059

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note how the SS, df, and MS for the treatment effect are identical to the previous case
where the subject factor was not included in the model. What’s changed, is that the error
term (the term denoted Residuals) is now smaller. In other words, in the first model (am1),
the SS was 77.00 — this represents the “leftover” variability in the dependent variable that
is unaccounted for by the treatment factor. In the am2 model, the subject factor has a
SS of 48.4, which is now sliced out of the error term, leaving only 28.6. In other words, the
subject factor has accounted for a chunk of the variance in the dependent variable, leaving
us with a smaller error term in the ANOVA. This is good, because it means that the F-ratio
for the treatment effect is larger (and hence the p-value is smaller) — since it is equal to
the MS for treatment divided by the MS for the error term.

Note that this decrease in MS error is not “free”, in other words there is a cost: we give
up degrees of freedom (was 36 in am1 but is now reduced to 27 in am2). Lower degrees of
freedom in the error term means that (all other things being equal) the MS error term will
be larger, which (all other things being equal) means a smaller F-ratio for our test of the
treatment effect. Now all other things are not equal, because the inclusion of subjects

has lowered the error term SS as well ... so whether the inclusion of additional factors helps
us, in the end, or not, ultimately depends on the usual question: is the reduction in error
gained by the inclusion of the additional term in the model worth it, given that we have to
“pay” a certain number of degrees of freedom?

1.3 Correct method (univariate approach)

Now the correct way of running a repeated-measures ANOVA is not to pretend that this is
a 2-factor between-subjects design, minus the interaction term — (even though in the end,
the computations of the ANOVA table are the same). Here is the correct way of doing it:

> am3 <- aov(dv ~ treatment + Error(subject/treatment), data=mydata)

> summary(am3)

Error: subject

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 9 48.4 5.378

Error: subject:treatment

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 38.9 12.967 12.24 3.06e-05 ***
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Residuals 27 28.6 1.059

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that the specification of the model has a new element we have not seen before,
namely the addition of an error term: +Error(subject/treatment). This notation tells R
to slice out of the model an additional error term corresponding to the variance accounted
for by subjects. The subjects/treatment notation tells R that the treatment factor is
the repeated-measures factor over which subjects applies.

As you can see the output is essentially the same, just reorganized a bit. The variance
accounted for by subjects has not only been removed from the model’s overall error term,
but has even been physically separated in the output. So now, the effect of treatment is
significant at p = 3.06e− 05.

This is the correct method of running a single factor repeated-measures ANOVA, using
what is called a univariate approach. That is to say, there is a single dependent variable
(called dv in our data frame mydata). We have been doing univariate procedures all along
in the course so far.

1.4 Multivariate approach

There is another general method of performing ANOVA when there are one or more
repeated-measures factors, called the multivariate approach. Maxwell & Delaney devote
a lot of material to going over the rationale. In short, although it is slightly more complex
conceptually, one benefit of using a multivariate approach is that it provides ways of test-
ing the sphericity assumption — the assumption of homogeneity of variance of differences
between groups — as well as providing corrected versions of the F-test assuming the as-
sumption has been violated. As you know from your reading, repeated-measures ANOVA
is actually quite sensitive to the sphericity assumption, and what’s more, the sphericity
assumption is very often violated.

Here is how to perform a repeated-measures ANOVA in R using a multivariate approach.
First, we must reorganize the data into a format in which each row represents a single
subject, and columns represent levels of the treatment factor. This may be familiar to
those of you who have used SPSS — this is the way repeated-measures factors are organized
in SPSS data tables as well.

> response <- with(mydata,cbind(dv[treatment==1], dv[treatment==2],

+ dv[treatment==3], dv[treatment==4]))

Our data are now essentially in a matrix format:

> response

[,1] [,2] [,3] [,4]

[1,] 8 10 7 5

[2,] 9 9 8 6

[3,] 7 5 8 4
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[4,] 9 6 5 7

[5,] 8 7 7 6

[6,] 5 4 4 3

[7,] 7 6 5 4

[8,] 8 8 6 6

[9,] 9 8 6 5

[10,] 7 7 4 5

We now form the multivariate model using the lm() function in R:

> mlm1 <- lm(response ~ 1)

> mlm1

Call:

lm(formula = response ~ 1)

Coefficients:

[,1] [,2] [,3] [,4]

(Intercept) 7.7 7.0 6.0 5.1

The 1 notation simply tells R that there are no between-subjects factors here ... in
other words, only fit the model using intercepts. If you type mlm1 to look at the model
object you will see that four intercepts were fit — one representing the mean of each of the
four levels of the dependent variable:

Now we must set up a variable that defines the design of our study, which is simple in
this case, it’s a single factor with four levels:

> rfactor <- factor(c("r1", "r2", "r3", "r4"))

Now we must load the car library into R (we only have to do this once in a given
session), because we are going to make use of the Anova() function (note the capital A, this
is different than the anova() function). The Anova() function calculates ANOVA tables
for a number of different kinds of model objects including multivariate model objects.

> library(car)

We now define a new anova model object mlm1.aov by a function call to Anova():

> mlm1.aov <- Anova(mlm1, idata=data.frame(rfactor), idesign = ~rfactor, type="III")

The first argument, mlm1, is our multivariate model defined above. The second argu-
ment, idata=data.frame(rfactor) passes information about the within-subjects variable,
in other words how many levels there are. The third argument, idesign= rfactor, passes
information about the within-subjects design, in other words that the variable that rfactor
describes is the repeated-measures variable. The fourth argument, type="III", instructs
Anova() to calculate the “Type-III” sums of squares when forming the ANOVA table. This
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only matters for so-called “unbalanced designs” in which there are different numbers of ob-
servations in different groups. Maxwell and Delaney do a good job of explaining how this
is related to different ways of computing sums of squares. In the summary() command we
specify multivariate=FALSE because we want to suppress the portion of the output of the
Anova() function that is related to multivariate statistical tests — these are really only
relevant when the experimental design truly is a multivariate design (in other words when
there are multiple dependent variables).

Here is the output we get:

> summary(mlm1.aov, multivariate=FALSE)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

SS num Df Error SS den Df F Pr(>F)

(Intercept) 1664.1 1 48.4 9 309.440 2.808e-08 ***

rfactor 38.9 3 28.6 27 12.241 3.060e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Mauchly Tests for Sphericity

Test statistic p-value

rfactor 0.34613 0.14884

Greenhouse-Geisser and Huynh-Feldt Corrections

for Departure from Sphericity

GG eps Pr(>F[GG])

rfactor 0.7426 0.0002388 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

HF eps Pr(>F[HF])

rfactor 0.9981017 3.106252e-05

First we see that the test of the repeated measures factor (called rfactor here) is
significant at p = 3.06e−05. Then we see that a test of sphericity was performed (Mauchly’s
test), which is not significant (p = 0.14884). Nevertheless, we get two corrected versions of
the F-test: one called Greenhouse-Geisser, and another, slightly less conservative correction,
called Huynh-Feldt. In this case, both are also significant (the p-values for GG and HF are
marked Pr(>F[GG]) and Pr(>F[HF]), respectively). See your Maxwell and Delaney readings
for details about how these corrections are computed.
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1.5 Comparisons between individual means

There are two legitimate ways of testing differences between individual means. The first is
to use the same F-ratio that we have seen from the between-subjects ANOVA, for testing
contrasts ψ:

Fcomp =
ψ2/

∑a
j=1(c

2
j/nj)

MSerror
(1)

where ψ is the contrast of interest:

ψ =
a∑

j=1

(cj Ȳj) (2)

So for example if we want to test the mean of group 1 minus the mean of group 2, the
weights on the contrast would be c1 = (+1) and c2 = (−1). We would simply compute the
MSerror term based on the ANOVA output. Remember, MSerror = SSerror/dferror:

> df2 <- 27 # df for error term

> sserr <- 28.6 # ss error term

> mserr <- sserr/df2 # compute mserr

> n <- 10 # num subjects per group

> a <- 4 # num groups

> mresp1 <- mean(response[,1]) # mean of resp1

> mresp2 <- mean(response[,2]) # mean of resp2

> sscomp <- (mresp1-mresp2)^2 # ss comparison

> dfcomp <- 1 # df comparison

> Fcomp <- (n*sscomp/2)/(mserr) # Fobs for comparison

> Fcomp

[1] 2.312937

We can then compute a probability using the pf() function:

> pcomp <- 1-pf(Fcomp, dfcomp, df2) # pobs for comparison

> pcomp

[1] 0.1399272

In this case, the mean of group 1 is not significantly different than the mean of group
2, p = 0.1399. Note that this is a pairwise comparison that is uncorrected for Type-I error.
We can, for example, perform this as a Tukey test, by transforming Fcomp into a value of
q (studentized range statistic), and then computing a probability (see Maxwell & Delaney,
pg. 550, equation 41)

> qobs <- sqrt(2*Fcomp) # compute q value

> pt <- 1 - ptukey(qobs, 4, (4-1)*(n-1)) # df for q are (a,(a-1)(n-1))

> pt

[1] 0.4394847

Again, mean 1 is not significantly different than mean 2, p = 0.5605.
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1.5.1 If you’re concerned about sphericity

If you’re concerned about violating the sphericity assumption (heterogeneity of variances of
differences between groups), then you might notice that the method above is based on using
the MSerror term from the ANOVA for the denominator of the F-test. Essentially this is a
sort of pooled estimate of variance based on all groups. If sphericity is violated, then it may
be a better approach to perform a pairwise test in a way that only uses variances of the
groups of interest to perform the test. One way to do this is by forming a contrast, based
on a set of weights (as above), but that is applied not to the means of each group, but to
individual subject scores, to create composite scores ψi:

ψi =
a∑

j=1

cjYij (3)

Then the values of the composite scores ψi are evaluated using a t-test. The extent to
which they are non-zero reflects the extent to which the contrast is significant. In other
words the t-test tests the hypothesis that the composite scores were drawn from a zero-mean
population. Here is an example, again comparing group 1 vs group 2:

> # fancy matrix multiplication way of computing composite scores:

> mycontrast <- c(+1, -1, 0, 0)

> dscores <- response %*% mycontrast

> # or you can simply do this:

> dscores <- response[,1]-response[,2]

> t.test(dscores)

One Sample t-test

data: dscores

t = 1.655, df = 9, p-value = 0.1323

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.2567852 1.6567852

sample estimates:

mean of x

0.7

So the difference between groups 1 and 2 is not significant (p = 0.1323). Note that this
test is uncorrected for Type-I error. You could always transform a value of the t statistic
into an F (when dfnum = 1, F = t2), then into a q statistic (as above) to perform it as a
Tukey test.
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