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1 One-way between subjects ANOVA

Assume we have collected data from 15 subjects, each of whom were randomly assigned to
one of three groups:

group1 group2 group3

4 7 6
5 4 9
2 6 8
1 3 5
3 5 7

The single factor between subjects analysis of variance (ANOVA) tests the null hypoth-
esis that the means of the populations from which the three samples were drawn, are the
same.

H0: µ1 = µ2 = µ3
H1: µ1 6= µ2 6= µ3

One way of thinking about the ANOVA is that it partitions the total variance in the
dependent variable into two parts: between-groups variance (variance due to differences
between groups) and within-group variance (the variability within a group). The F-test is
then a test of whether the between-groups variance is significantly greater than the within-
groups variance — in other words, are the observed differences larger than what one would
expect given the typical variability within a group?

The other way of thinking about the ANOVA is using a model comparison approach.
Under a restricted model, one seeks to account for the dependent variable using a single
parameter - the grand mean. Under a full model, one introduces additional parameters
allowing one to adjust the value of the dependent variable depending on group membership:

mrestricted : Yij = µ+ εij (1)

mfull : Yij = µ+ αj + εij (2)
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Which model fits the data better? Of course, the full model will fit the data better, as it
has more parameters (and hence more flexibility). The real question is, whether the increase
in model fit (or the decrease in model error, or residual), is worth giving up the degrees of
freedom inherent in having to estimate additional parameters? This is the question that
the F-test in the ANOVA answers.

In the above example, the restricted model postulates that the data can be fit using a
single parameter, the grand mean µ. The full model postulates that the data should be fit
using three parameters, µ1, µ2 and µ3 — i.e. a different mean for each group.

We can represent these two models graphically. The restricted model assumes all the
data are fit by a single parameter, the grand mean µ (The vertical dashed lines indicate the
model prediction errors):

> Y <- c(4,5,2,1,3,7,4,6,3,5,6,9,8,5,7)

> myFac <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)

> plot(Y, pch=myFac, main="restricted model")

> abline(h=mean(Y))

> for (i in 1:length(Y)) {

+ lines(c(i,i), c(Y[i], mean(Y)), lty=2)

+ }
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Under the full model, we estimate a different mean for each group:

> Y <- c(4,5,2,1,3,7,4,6,3,5,6,9,8,5,7)

> myFac <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)

> plot(Y, pch=myFac, main="full model")

> for (j in 1:3) {

+ w <- which(myFac==j)

+ lines(c(min(w),max(w)),c(mean(Y[w]),mean(Y[w])))

+ for (i in 1:length(w)) {

+ lines(c(w[i],w[i]), c(Y[w[i]], mean(Y[w])), lty=2)

+ }

+ }
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Again, the dashed vertical lines indicate model error. Obviously the full model predicts
the data better. The question ANOVA will answer is, whether the increase in model fit
(the decrease in prediction error) is worth giving up the degrees of freedom necessary to
estimate the additional parameters.

In R it’s very simple to perform an ANOVA using the aov function:

> m1 <- aov(Y ~ factor(myFac))

> summary(m1)
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Df Sum Sq Mean Sq F value Pr(>F)

factor(myFac) 2 40 20.0 8 0.0062 **

Residuals 12 30 2.5

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this case the main effect of myFac is significant at p = 0.006196, so we would re-
ject the null hypothesis that the three groups were sampled from the same population (or
populations with the same mean).

Another way of running the anova that highlights the fact that we are fitting three
parameters, is to use the lm() function:

> m2 <- lm(Y ~ factor(myFac))

> summary(m2)

Call:

lm(formula = Y ~ factor(myFac))

Residuals:

Min 1Q Median 3Q Max

-2 -1 0 1 2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000 0.7071 4.243 0.00114 **

factor(myFac)2 2.0000 1.0000 2.000 0.06866 .

factor(myFac)3 4.0000 1.0000 4.000 0.00176 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.581 on 12 degrees of freedom

Multiple R-squared: 0.5714, Adjusted R-squared: 0.5

F-statistic: 8 on 2 and 12 DF, p-value: 0.006196

The parameter estimates are called Coefficients and are listed in the column marked
Estimate. In this case the estimate for the first group (called Intercept in the anova
output) is 3.0000. The estimate for the mean of group two is equal to the Intercept plus
2.0000, which equals 5.0000. Likewise the estimate for group three is 3.0000 + 4.0000 which
equals 7.0000.

We can then perform an F-test by applying the anova() command to the model object
m2:

> anova(m2)

Analysis of Variance Table
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Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

factor(myFac) 2 40 20.0 8 0.006196 **

Residuals 12 30 2.5

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The F-test of the main effect of the factor is called an omnibus test. A significant test
indicates only that the population means are not equal — we would need to perform follow-
up tests to find out specifically which groups differ. This topic will be covered in the next
chapter.

Testing Assumptions

Two testable assumptions of ANOVA are homogeneity of variances (the variances in each
group are the same) and normality (the data within each group are normally distributed).

Normality

To test the normality assumption we can use the Shapiro-Wilk normality test. In R the
function is shapiro.test():

> ferrydata=read.table("../data/ferrydata.csv", header=T, sep=",")

> shapiro.test(subset(ferrydata$Passengers, ferrydata$Day=="Fri"))

Shapiro-Wilk normality test

data: subset(ferrydata$Passengers, ferrydata$Day == "Fri")

W = 0.89508, p-value = 0.1933

> shapiro.test(subset(ferrydata$Passengers, ferrydata$Day=="Sat"))

Shapiro-Wilk normality test

data: subset(ferrydata$Passengers, ferrydata$Day == "Sat")

W = 0.94157, p-value = 0.5706

> shapiro.test(subset(ferrydata$Passengers, ferrydata$Day=="Sun"))

Shapiro-Wilk normality test

data: subset(ferrydata$Passengers, ferrydata$Day == "Sun")

W = 0.95184, p-value = 0.6903

ANOVA is generally robust to violations of normality, as long as all groups violate from
normality in the same way, and as long as the number of observations in each group is the
same.
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If there is a violation of the normality assumption and you are concerned about inflated
Type-I error rates, one approach is to apply a transformation to the data to make it normal.
Some common transformations include square-root, logarithm, reciprocal, inverse-sine (see
text). The tradeoff is that although these mathematical transformations may fix non-
normality, you must keep in mind that conclusions based on transformed data only apply
to the transformed data, not necessarily to the original data. This can make interpretation
difficult.

Homogeneity of Variances

To test homogeneity of variances we can use the bartlett test, in R the function is bartlett.test():

> ferrydata=read.table("../data/ferrydata.csv", header=T, sep=",")

> bartlett.test(Passengers ~ Day, data=ferrydata)

Bartlett test of homogeneity of variances

data: Passengers by Day

Bartlett's K-squared = 0.1298, df = 2, p-value = 0.9372

If there is a violation of homogeneity of variance, then one approach is to use the Welch
correction (as described in your text), which adjusts the degrees of freedom to compensate
for the unequal variances. In R you can do this using the oneway.test() function.

ANOVA is generally robust to violations of homogeneity of variances, as long as sample
sizes are equal, and as long as the normality assumption holds.

Graphics

There are many ways to plot your data. Some common plotting functions that are included
in the base distribution of R are:

• plot()

• boxplot()

• barplot()

I suggest you look at the R help files for each function, and the example code at the
bottom of each help file, to see how these work.

There is a more powerful graphics package you can add to R called ggplot2. To down-
load and install it into R issue the following command in R:

install.packages("ggplot2")

Then each time you launch R and you wish to use the package type:

library(ggplot2)

There is lots of documentation about the ggplot2 package online, I suggest doing a
google search. The homepage is: http://had.co.nz/ggplot.
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an Example

Let’s say you have the following data:

> dataURL <- "http://gribblelab.org/stats/data/ferrydata.csv"

> ferrydata <- read.table(dataURL, header=T, sep=",")

> ferrydata

Passengers Day

1 473 Fri

2 541 Fri

3 514 Fri

4 485 Fri

5 486 Fri

6 543 Fri

7 502 Fri

8 627 Fri

9 446 Fri

10 494 Fri

11 425 Sat

12 502 Sat

13 498 Sat

14 485 Sat

15 437 Sat

16 402 Sat

17 511 Sat

18 483 Sat

19 416 Sat

20 554 Sat

21 651 Sun

22 654 Sun

23 643 Sun

24 602 Sun

25 689 Sun

26 583 Sun

27 631 Sun

28 708 Sun

29 596 Sun

30 574 Sun

You can generate a boxplot like this:

> boxplot(Passengers ~ Day, data=ferrydata)
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We can install and use the gplots package 1 to do more traditional looking plots:

> plotmeans(Passengers ~ Day, data=ferrydata)

1you’ll need a one-time install.packages("gplots") to download and install the package, and then
you’ll need to issue the command library(gplots) once each time you start R, to use it

8



Intro Stats R 1 One-way between subjects ANOVA

45
0

50
0

55
0

60
0

65
0

Day

P
as

se
ng

er
s

●

●

●

Fri Sat Sun

n=10 n=10 n=10

This shows means and 95 % confidence intervals. If we want to plot some other quantity
instead of confidence intervals, for example standard errors of the mean, we can do it by
feeding the desired values into the plotCI function. We are also going to use the split()

function to split our data table into groups, and the sapply() function to apply a function
to each part of the array produced by split().

> tmp <- split(ferrydata$Passengers, ferrydata$Day)

> tmp

$Fri

[1] 473 541 514 485 486 543 502 627 446 494

$Sat

[1] 425 502 498 485 437 402 511 483 416 554

$Sun

[1] 651 654 643 602 689 583 631 708 596 574

> means <- sapply(tmp, mean)

> means
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Fri Sat Sun

511.1 471.3 633.1

> n <- sapply(tmp, length)

> n

Fri Sat Sun

10 10 10

> stdev <- sqrt(sapply(tmp, var))

> stdev

Fri Sat Sun

50.25369 48.96268 44.64788

> se <- stdev / sqrt(n)

> se

Fri Sat Sun

15.89161 15.48336 14.11890

> plotCI(x = means, uiw = se, type="b", ylab="Passengers", xlab="Day", xaxt="n")

> axis(side=1, at=1:3, levels(ferrydata$Day))
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