
Maximum Likelihood Estimation (MLE)

Introduction to Statistics Using R (Psychology 9041B)

Paul Gribble

Winter, 2016

1 Coin Flipping

Assume somebody gives you a coin, and they claim that it is fair, i.e. the probabilty of a
heads is the same as the probability of tails, i.e. both are 50%. Your task is to observe the
behaviour of the coin and then determine what the probability of heads θ really is. Is it
50% or is it something else? (which would reflect a biased coin)

1.1 The Data

You flip the coin 20 times and you observe 12 heads and 8 tails.

1.2 The Model

We must now decide on a model. A convenient model for this case is the Binomial Distri-
bution, which models a Bernoulli process (a sequence of binary random responses). The
Binomial model is:

yi ∼ f(θ, yi) =
N !

yi!(N − yi)!
θyi(1− θ)N−yi (1)

The model has a single parameter, θ, and that is exactly what we want to estimate. In
maximum likelihood estimation, we determine what value of the parameter θ would make
the data that we observed most likely?

1.3 The Likelihood Function

For the Binomial model, there actually exists a closed-form analytic solution to the maxi-
mum likelihood estimate of θ, namely the number of heads divided by the number of coin
flips, or in this case, 12/20 = 0.60. Let’s assume however that there isn’t a closed form
solution, or that we don’t know of one. We will use optimization to find the value of θ that
maximizes the likelihood of the data that we observed. To do this we need to compute the
likelihood of our data, given a candidate value (i.e. a guess) for θ.

As we saw in the readings, after some insight into Bayes Theorem, we can compute the
likelihood as:

1

Intro Stats R 1 Coin Flipping

L(θ|y) = p(y|θ) (2)

And we know that for the Binomial distribution,

p(heads|θ) = θ (3)

p(tails|θ) = (1− θ) (4)

The other trick we need to invoke is that the likelihood of the entire dataset is the
product of the likelihoods of each individual data point in the dataset.

And finally, because multiplying a bunch of probabilities makes computers feel icky, we
take the logarithm to convert the products into sums, and so instead of multiplying the
likelihood of each observation in the data set, we add the log-likelihood of each data point.

And finally finally, because optimizers like to minimize things and not maximize things,
we multiply the sum of log-likelihoods by (-1) to get the negative log likelihood of the
dataset:

NLL = −
N∑
i=1

ln p(yi|θ) (5)

So now we can write a function in R to compute the negative log likelihood of a data
vector y given a guess at the parameter θ:

> NLL <- function(theta,y) {

+ NLL <- 0

+ N <- length(y)

+ for (i in 1:N) {

+ if (y[i]==1) {p <- theta} # heads

+ if (y[i]==0) {p <- 1-theta} # tails

+ NLL <- NLL + log(p)

+ }

+ -NLL

+ }

Now we can make use of a built-in optimizer in R to find the parameter value θ that
minimizes the negative log likelihood. Note that one has to give the optimizer a starting
guess at the parameter value, here I give it a starting guess of 0.5.

> flips <- c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0) # 12 heads, 8 tails

> out = optim(par=0.5, fn=NLL, method="Brent", lower=0.00001, upper=0.99999, y=flips)

> (theta <- out$par)

[1] 0.6

And so our best estimate of θ is 0.6, which matches the known closed-form analytic
solution (12/20). Note for one-dimensional optimization problems the optim() function in
R suggests that the “Brent” method is used, which is why I pass that argument in. I also
chose to give the optim() function lower and upper bounds on the parameter estimate, to
keep it constrained to sensible values.

2

Intro Stats R 2 Normal Distribution

2 Normal Distribution

Let’s do another example, this time with a model that involves estimating two parameters.
Imagine you are handed a dataset comprised of a list of 20 numbers x:

> x <- c(85,84,75,93,88,82,85,94,86,76,81,98,95,82,76,91,81,82,72,94)

Assume that you want to model these data as coming from a gaussian random process.
That is, there is some unknown mean µ and variance σ2. Thus our model has two unknown
parameters.

Now set aside for the moment that we all know full well that there is a closed-form
analytic solution to this problem, namely:

µ̂ =
1

N

N∑
i=1

xi (6)

σ̂ =
1

N
=

N∑
i=1

(xi − µ̂)2 (7)

The point of MLE is to show that as long as you have a forward model of the probability
of the data given a guess at the parameter(s), you can use an optimizer to find the parameter
value(s) that maximize the likelihood (minimize the negative log-likelihood) of the data given
the parameter(s).

We can compute the probability of the data x given parameters µ and σ2 using the
equation for the normal distribution pdf (probability density function):

p(y|µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (8)

After taking the log and some algebraic manipulation (not shown) we get:

L(y|µ, σ2) = −N
2

ln(2π)− N

2
lnσ2 − 1

2σ2

N∑
i=1

(xi − µ)2 (9)

Let’s put this into an R function to compute the negative log-likelihood of the data x
given parameter guesses µ and σ2:

> NLL <- function(theta,data) {

+ mu = theta[1]

+ sigma = theta[2]

+ n = length(data)

+ NLL = -(n/2)*log(2*pi) - (n/2)*log(sigma**2)

+ tmp = 0

+ for (i in 1:n) {

+ tmp = tmp + (data[i]-mu)**2

+ }

3

Intro Stats R 3 A more complex example

+ NLL = NLL + -(1/(2*(sigma**2)))*tmp

+ -NLL

+ }

Now we can use an R optimizer to find the parameter values that minimize this function:

> out = optim(par=c(100,10), fn=NLL, data=x)

> (out$par)

[1] 84.998857 7.183545

Note that I still have to give an initial guess at the parameter values ... here I simply
guessed µ = 100 and σ = 10. The optimizer tells me that the best parameter estimates are
in fact µ = 84.998857 and σ = 7.183545.

So again, the point here is that no matter how complicated our model of the data is, as
long as we can write down the likelihood function (which amounts to a probability model
of how likely different values of data are, given model parameters), then we can use an
optimizer to find the model parameters that maximize the likelihood of the data.

3 A more complex example

Let’s say a colleague hands you a coin and you are told that it is fair, in other words the
probability of heads and tails is the same, p(heads) = p(tails) = 0.5. You are asked to flip
the coin, and each time give it back to your colleague who will put it in his pocket, and
then take it out again and hand it back to you. You do this 100 times and you observe the
following data:

> flips = c(0,1,1,0,1,1,1,0,0,1,0,0,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,1,

+ 0,1,1,0,0,0,0,0,1,0,1,0,1,1,1,0,

+ 1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,0)

You are then told that at some point, your colleague switched the coin from the fair
coin to an unfair coin with p(heads) = 0.9. Your task is to try to estimate when the switch
occurred.

Our first question will be, how are we going to model this process? Clearly like our first
example, a Binomial model is appropriate... but we also have to model the switching of a
coin (when?).

A natural Binomial model might look like this. For trials 1 to s, p(heads) = 0.5 and for
trials s + 1 to 100, p(heads) = 0.9. Now we have a model of the process that involves the
unknown parameter s, the switch trial. Let’s write a function in R to compute the negative
log-likelihood given the observed data and a guess at the s parameter:

> NLL <- function(s, data) {

+ n = length(data)

+ NLL = 0

+ for (i in 1:n) {

4

Intro Stats R 4 Estimating Psychometric Functions

+ if (i<=s) { # still the unbiased coin

+ p = 0.5

+ }

+ else { # coin has switched to biased coin

+ p = 0.9

+ }

+ if (data[i]==1) {NLL = NLL + log(p)}

+ if (data[i]==0) {NLL = NLL + log(1-p)}

+ }

+ -NLL

+ }

Now we can optimize:

> optim(par=50, fn=NLL, data=flips, method="Brent", lower=1, upper=99)

$par

[1] 40.27792

$value

[1] 51.62531

$counts

function gradient

NA NA

$convergence

[1] 0

$message

NULL

We can see that the best estimate is that s = 40.28, let’s call it trial 40, is when the
coin switch occurred. In fact this is a very good estimate, since I generated the data using
the following, in which the flip happened at trial 41:

> flips = c(rbinom(n=40,size=1,prob=0.5), rbinom(n=60,size=1,prob=0.9))

You can imagine extending this example for the case in which you have to estimate both
the time of the coin switch, and the new p(heads).

4 Estimating Psychometric Functions

Another example to look at in which MLE is used to estimate a model of data, is the case
of estimating a psychometric function.

5

Intro Stats R 4 Estimating Psychometric Functions

A psychometric function relates a parameter of a physical stimulus to an experimental
participant’s subjective response. In a typical experiment, some parameter of a stimulus
is varied across some range on each of several trials, and an experimental participant is
asked on each to report their subjective response. For example in an experiment on visual
perception, the experimenter might vary the relative brightness of two sine-wave gratings,
and ask the participant which is brighter, the one on the left or the one on the right. In an
experiment on auditory perception, the experimenter might vary the first formant frequency
of a synthetic vowel sound along a continuous range, and ask the participant, do you hear an
/i/ or an /a/? These are examples of a two-alternative-forced-choice (2-AFC) task. What
we’re interested in is how the probability of responding with one of the two choices varies
with the stimulus.

Here we will consider the situation where the physical stimulus being varied is the
direction of movement of a participant’s (passive) arm, which is moved by a robotic device
to the left or right of the participant’s midline (to varying extents), and the participant’s
response is binary (left or right). This paradigm has been described in several of our recent
papers [1, 2, 3, 4].

4.1 The Logistic Function

We assume the shape of the psychometric function is logistic (Figure 1). The function
relates lateral hand position (relative to a participant’s midline) to the probability of the
participant responding that their hand is to the right of midline. The vertical dashed line
indicates the hand position at which the probability of responding right is 50%, known as
the perceptual threshold (in this case at the actual midline, 0 mm).

Equation 10 gives the logistic function:

p = 1/
(
1 + e−y

)
(10)

where p = Pr(right|x).
Here the value of y is a linear function of the lateral hand position x, given by Equa-

tion 11:

y = β0 + β1x (11)

The shape (steepness) and position (in terms of the threshold) of the logistic function
can be directly related to the parameters β0 and β1. Another quantity that we sometimes
compute is the distance between the 75th and 25th percentile (in other words the middle
50 %), as a measure of acuity.

threshold = −β0/β1 (12)

slope = β1/4 (13)

acuity = ilog(β, .75)− ilog(β, .25) (14)

where ilog(β, p) is the inverse logistic function:

x = [log (−p/(p− 1))− β0] /β1 (15)

6

Intro Stats R 4 Estimating Psychometric Functions

-30 -20 -10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position (mm)

P
r(
re
sp
on
se
=r
ig
ht
)

Figure 1: Logistic Function

and as before, p = Pr(response = right|x).

4.2 Maximum Likelihood Estimation

Assume we have empirical data consisting of binary responses R (r1 through rn) (each left or
right) for some number of hand positions X (x1 through xn). To estimate a psychophysical
function we need to find the values of β0 and β1 (Equation 11) that best fit the data.

How do we define a metric for determining “best fit”? Unfortunately we cannot use a
criterion such as least-squares combined with standard linear regression approaches. Using
least-squares and a standard linear model is inappropriate because it violates a number of
the assumptions of linear regression using least-squares. First, the error term would be
heteroskedastic which means that the variance of the dependent variable is not constant
across the range of the independent variable. Second, the error term is not normally dis-
tributed, because it is binary and thus takes on only two possible values. Third, there is no
straightforward way of guaranteeing that predicted probabilities will not be greater than 1
or less than 0, which of course is not meaningful.

Instead, we will define a new cost function. We will find the values of β0 and β1 that
maximize the likelihood of the data.

Unlike estimation problems like linear regression, in which there is a closed-form expres-
sion for the parameters that minimize a cost function (e.g. least-squares), in this case using
maximum likelihood estimation (MLE) there is no closed-form solution, and so we must
use numerical optimization to find the parameter values β0 and β1 that result in the best

7

Intro Stats R 4 Estimating Psychometric Functions

fit, i.e. that maximize the likelihood of the data (the set of positions and binary responses)
given the model (β0 and β1).

The probability of an individual binary response r, given a hand position x is given by:

Pr(r = right|x) = p (16)

Pr(r = left|x) = 1− p (17)

where p depends on β0, β1 and position x according to Equations 10 and 11.
The likelihood of the data (all n responses taken together) is proportional to the product

of the probabilities of each response ri|xi:

L(data|model) =
n∏

i=1

Pr(respi|xi) (18)

The product of many probabilities (which range from 0 to 1) becomes very small very
quickly, and for large datasets, the likelihood is a very small number — so small that
computers will have difficulties representing it accurately. To fix this, we take the logarithm,
which has the dual effect of changing small fractions into larger numbers, and also changing
products into sums. So instead of degenerating into a smaller and smaller fraction, this
quantity accumulates into a manageable-sized number. This is thus the log-likelihood of
the data:

log [L(data|model)] =
n∑

i=1

log [L(respi|xi)] (19)

Finally, since numerical optimizers are set up to find the minimum, not maximum, of a
cost function, we multiply the log-likelihood by (−1). This gives us a cost function in terms
of the negative log-likelihood of the data, given the model.

− log [L] = −
n∑

i=1

log [Pr(respi|xi)] (20)

Equation 20 is our cost function. Now with Equations 10, 11, 16, 17 and 20, given
our dataset (the set of hand positions xi and binary responses ri) and a candidate “model”
(β0, β1), we can compute the cost, and use numerical optimization techniques to find the
model (β0, β1) that minimizes the cost (the negative log-likelihood of the data).

Table 1 shows an example of the kind of data we are interested in fitting:

x (mm) response

1.1150 left
10.2260 right
-9.2050 left
5.2180 right

.

Table 1: Example data

8

Intro Stats R 4 Estimating Psychometric Functions

Typically we represent the response in a numerical format, where 0=left and 1=right.
Also typically we have many more data points than shown, e.g. in a typical experiment we
may test 7 positions each sampled 8 times for a total of 56 observations.

Assume we have an array of hand positions X in metres and an array of binary responses
R (where left=0 and right=1).

First let’s write our logistic function:

> logistic <- function(y) {

+ p = 1/(1+exp(-y))

+ p

+ }

We can write our cost function, called nll as follows:

> NLL <- function(B,X,R) {

+ y = B[1] + B[2]*X

+ p = logistic(y)

+ NLL = -sum(log(p[R==1])) - sum(log(1-p[R==0]))

+ NLL

+ }

Let’s load in some example data and plot it (note I’ve added some random scatter along
the y-axis to help visualize each individual response):

> pdata = read.table("http://www.gribblelab.org/stats/data/psychometric_data.txt",

+ sep=" ", header=FALSE)

> X = pdata$V2

> R = pdata$V3

> plot(X, R+rnorm(length(R),0,.01), type="p", col="blue",

+ xlab="X", ylab="Response")

> grid()

9

Intro Stats R 4 Estimating Psychometric Functions

●
●●●●●
●●●●●●●
●

●●●●●
●

●
●●●●●
●●

●
●●
●●●
●●●●
●
●
●● ●●

●

●
●●●●●●
●
●
●
● ●●●

●●

●●●
●
●●

●
●
●

●●
●
●●●

●●●
●●

●

●●

●

●●●●●●●●
●
●
●
●
● ●●●●●●●

●●●
●●●● ●

●
●●●●●
●
●
●●●●●

●●●●●●●
●
●
●
●
●●●

●
●
●●●●●

●
●●●
●
●●

−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

R
es

po
ns

e

You can see that when X is to the far left (negative values), the response is always
0, which corresponds to “Left”. On the far right, the response is always 1, or “Right”. In
between, the responses gradually change. In the middle somewhere, responses are about
half “Left” and half “Right”.

Now let’s use MLE to fit a psychometric function to the data. Again, note that one has
to give the optimizer an initial guess. Here my initial guess is (−.1, .1).

> out = optim(par=c(-.1,.1), NLL, X=X, R=R)

> (Bfit = out$par)

[1] 0.6043109 0.4870757

> Xp = seq(-20,20,.1)

> p = logistic(Bfit[1] + Bfit[2]*Xp)

> plot(X, R+rnorm(length(R),0,.01), type="p", col="blue",

+ xlab="X", ylab="Pr(Response=Right)")

> grid()

> lines(Xp, p, type="l", col="red")

10

Intro Stats R References

●●●
●
●
●●●●●●●
●● ●●

●
●●
●
●
●●●●
●●● ●●●●●

●

●●●
●●
●
●● ●

●
●
●
●●●●
●●●●●● ●●●

●●

●
●●
●●●

●
●●

●●
●●
●
●

●●
●●●

●

●
●

●

●●
●●
●
●●●●
●●●● ●

●
●
●●
●
●●●
●●●●● ●●●●

●
●●●●●●●
●● ●●●

●●
●●●●●
●
●
●● ●●●

●●●
●
●●●●●●●

−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

P
r(

R
es

po
ns

e=
R

ig
ht

)

You can see that the fitted curve does a very good job of characterizing how the par-
ticipant’s responses change as the stimulus changes value from left (negative X) to right
(positive X).

References

[1] Elizabeth T Wilson, Jeremy Wong, and Paul L Gribble. Mapping proprioception across
a 2-d horizontal workspace. PLoS One, 5(7):e11851, 2010.

[2] David J Ostry, Mohammad Darainy, Andrew AG Mattar, Jeremy Wong, and Paul L
Gribble. Somatosensory plasticity and motor learning. The Journal of Neuroscience,
30(15):5384–5393, 2010.

[3] Jeremy D Wong, Elizabeth T Wilson, and Paul L Gribble. Spatially selective enhance-
ment of proprioceptive acuity following motor learning. Journal of Neurophysiology,
105(5):2512–2521, 2011.

[4] Jeremy D Wong, Dinant A Kistemaker, Alvin Chin, and Paul L Gribble. Can propriocep-
tive training improve motor learning? Journal of Neurophysiology, 108(12):3313–3321,
2012.

11

