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Two Coins

Assume someone gives you two coins and you flip each 7 times, and get the following data:

Coin 1 Coin 2

H H
H H
H T
H T
H T
T T
T T

Are the two coins both fair? In other words if you assume a bernoulli process, is the
chance of getting a Heads on each coin flip equal to 0.50 for both coins? If not, what is the
Pr(Heads)? Is there a difference between Pr(Heads) for Coin 1 and Coin 2?

MCMC

Here we will use Markov Chain Monte Carlo to answer these questions.
We will model each coin flip as a Bernoulli process. As such we have a model of each

coin, and the parameter we need to estimate for each coin is the probability of getting a
Heads on each coin toss, Pr(Heads).

We will use the rjags package in R to model this.
Here is the file http://www.gribblelab.org/stats/code/2coins.bug which specifies

the model for each coin:
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model {

# likelihood: each flip is bernoulli

for (i in 1:N1) {y1[i] ~ dbern(theta1)}

for (i in 1:N2) {y2[i] ~ dbern(theta2)}

# prior: slight expectation of 0.5

theta1 ~ dbeta(3,3)

theta2 ~ dbeta(3,3)

}

Now the R code to implement this (http://www.gribblelab.org/stats/code/2coins.R):

> # the data

> #

> y1 = c(1,1,1,1,1,0,0)

> y2 = c(1,1,0,0,0,0,0)

> N1 = length(y1)

> N2 = length(y2)

> # the model

> #

> library(rjags)

> jags = jags.model('../code/2coins.bug',
+ data = list('y1' = y1, 'y2' = y2, 'N1' = N1, 'N2' = N2),

+ n.chains = 1, n.adapt = 200)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 14

Unobserved stochastic nodes: 2

Total graph size: 22

Initializing model

> # run mcmc sampling, generate 1000 samples

> # from the posterior for theta1 and theta2

> post = coda.samples(jags, c('theta1', 'theta2'), 1000)

> plot(post)
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and then

> # plot credible differences in theta1 vs theta2

> #

> thetadif = post[[1]][,1] - post[[1]][,2]

> hist(thetadif,25,main="posterior: theta1-theta2",ylim=c(0,180))

> lines(c(0,0),c(0,130),col="black",lty=2,lwd=2)

> # mean difference

> #

> meandif = mean(thetadif)

> lines(c(meandif,meandif),c(0,130),col="blue",lty=1,lwd=2)

> # 95% credible range for difference between

> # theta1 & theta2

> #

> c95 = quantile(thetadif,c(.025, .975))

> lines(c(c95[1],c95[1]),c(0,130),col="magenta",lty=1,lwd=2)

> lines(c(c95[2],c95[2]),c(0,130),col="magenta",lty=1,lwd=2)

> legend(x="topright", col=c("blue","magenta"), lwd=c(2,2), lty=c(1,1),

+ legend=c(paste("mean = ",round(meandif,2)),

+ paste("95pCR : ", round(c95[1],2), "-", round(c95[2],2))))
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> # prob thetadif > 0

> #

> prob_g_0 = length(which(thetadif>0)) / length(thetadif)

> text(0, 150, paste("Pr (theta_dif > 0) = ", round(prob_g_0,2)), pos=4)

> text(-.1, 145, paste("Pr (theta_dif <= 0) = ", round(1-prob_g_0,2)), pos=1)

posterior: theta1−theta2
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