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In this chapter we will use a model of voltage-gated ion channels in a single neuron to simulate action
potentials. The model is based on the work by Hodgkin & Huxley in the 1940s and 1950s. A good reference
to refresh your memory about how ion channels in a neuron work is the Kandel, Schwartz & Jessel book
“Principles of Neural Science”.

• A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol. (Lond.), 117(4):500-544, Aug 1952

• A. L. Hodgkin, A. F. Huxley, A. L. Hodgkin, and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. 1952. Bull. Math. Biol., 52(1-2):25-71,
1990

• O. Ekeberg, P. Wallen, A. Lansner, H. Traven, L. Brodin, and S. Grillner. A computer based model for
realistic simulations of neural networks. I. The single neuron and synaptic interaction. Biol Cybern,
65(2):81-90, 1991

• E.R. Kandel, J.H. Schwartz, T.M. Jessell, et al. Principles of neural science, volume 4. McGraw-Hill
New York, 2000

1 Introduction

To model the action potential we will use an article by Ekeberg et al. (1991) published in Biological
Cybernetics (see citation above). When reading the article you can focus on the first three pages (up to
paragraph 2.3) and try to find answers to the following questions:

• How many differential equations are there?
• What is the order of the system described in equations 1-9?
• What are the states and state derivatives of the system?

Before we begin coding up the model, it may be useful to remind you of a fundamental law of electricity,
one that relates electrical potential V to electric current I and resistance R (or conductance G, the reciprocal
of resistance). This of course is known as Ohm’s law:

V = IR (1)
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http://en.wikipedia.org/wiki/Ohm's_law
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or

V =
I
G

(2)

Our goal here is to code up a dynamical model of the membrane’s electric circuit including two types of ion
channels: sodium and potassium channels. We will use this model to better understand the process
underlying the origin of an action potential.

2 The Neuron Model

Figure 1 below, adapted from Ekeberg et al., 1991, schematically illustrates the model of a neuron. In panel A
we see a soma, and multiple dendrites. Each of these can be modelled by an electrical “compartment” (Panel
B) and the passive interactions between them can be modelled as a pretty standard electrical circuit (see
Biological Neuron Model for more details about compartmental models of neurons). In panel C, we see an
expanded model of the Soma from panel A. Here, a number of active ion channels are included in the model
of the soma.

Figure 1: Schematic of Ekeberg et al. 1991 neuron model

For our purposes here, we will focus on the soma, and we will not include any additional dendrites in our
implementation of the model. Thus essentially we will be modelling what appears in panel C, and at that,
only a subset.

In panel C we see that the soma can be modelled as an electrical circuit with a sodium ion channel (Na), a
potassium ion channel (K), a calcium ion channel (Ca), and a calcium-dependent potassium channel (K(Ca)).
What we will be concerned with simulating, ultimately, is the intracellular potential E.

http://en.wikipedia.org/wiki/Biological_neuron_model
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3 Passive Properties

Equation (1) of Ekeberg is a differential equation describing the relation between the time derivative of the
membrane potential E as a function of the passive leak current through the membrane, and the current
through the ion channels. Note that Ekeberg uses E instead of the typical V symbol to represent electrical
potential.

dE
dt

=
(Eleak − E)Gm + ∑

(
Ecomp − E

)
Gcore + Ichannels

Cm
(3)

Don’t panic, it’s not actually that complicated. What this equation is saying is that the rate of change of
electrical potential across the current (the left hand side of the equation, dE

dt ) is equal to the sum of a bunch of
other terms, divided by membrane capacitance Cm (the right hand side of the equation). Recall from basic
physics that capacitance is a measure of the ability of something to store an electrical charge.

The “bunch of other things” is a sum of three things, actually, (from left to right): a passive leakage current,
plus a term characterizing the electrical coupling of different compartments, plus the currents of the various
ion channels. Since we are not going to be modelling dendrites here, we can ignore the middle term on the
right hand side of the equation ∑

(
Ecomp − E

)
Gcore which represents the sum of currents from adjacent

compartments (we have none).

We are also going to include in our model an external current Iext. This can essentially represent the sum of
currents coming in from the dendrites (which we are not explicitly modelling). It can also represent external
current injected in a patch-clamp experiment. This is what we as experimenters can manipulate, for
example, to see how neuron spiking behaviour changes. So what we will actually be working with is this:

dE
dt

=
(Eleak − E)Gm + Ichannels + Iext

Cm
(4)

What we need to do now is unpack the Ichannels term representing the currents from all of the ion channels in
the model. Initially we will only be including two, the potassium channel (K) and the sodium channel (Na).

4 Sodium Channels (Na)

The current through sodium channels that enter the soma are represented by equation (2) in Ekeberg et al.
(1991):

INa = (ENa − Esoma)GNam3h (5)

where m is the activation of the sodium channel and h is the inactivation of the sodium channel, and the
other terms are constant parameters: ENa is the reversal potential, GNa is the maximum sodium conductance
throught the membrane, and Esoma is the membrane potential of the soma.

The activation m of the sodium channels is described by the differential equation (3) in Ekeberg et al. (1991):

dm
dt

= αm(1 − m)− βmm (6)

where αm represents the rate at which the channel switches from a closed to an open state, and βm is rate for
the reverse. These two parameters α and β depend on the membrane potential in the soma. In other words
the sodium channel is voltage-gated. Equation (4) in Ekeberg et al. (1991) gives these relationships:

http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Patch_clamp
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αm =
A(Esoma − B)

1 − e(B−Esoma)/C
(7)

βm =
A(B − Esoma)

1 − e(Esoma−B)/C
(8)

A tricky bit in the Ekeberg et al. (1991) paper is that the A, B and C parameters above are different for α and
β even though there is no difference in the symbols used in the equations.

The inactivation of the sodium channels is described by a similar set of equations: a differential equation
giving the rate of change of the sodium channel deactivation, from Ekeberg et al. (1991) equation (5):

dh
dt

= αh(1 − h)− βhh (9)

and equations specifying how αh and βh are voltage-dependent, given in Ekeberg et al. (1991) equation (6):

αh =
A(B − Esoma)

1 − e(Esoma−B)/C
(10)

βh =
A

1 − e(B−Esoma)/C
(11)

Note again that although the terms A, B and C are different for αh and βh even though they are represented
by the same symbols in the equations.

So in summary, for the sodium channels, we have two state variables: (m, h) representing the activation (m)
and deactivation (h) of the sodium channels. We have a differential equation for each, describing how the
rate of change (the first derivative) of these states can be calculated: Ekeberg equations (3) and (5). Those
differential equations involve parameters (α, β), one set for m and a second set for h. Those (α, β) parameters
are computed from Ekeberg equations (4) (for m) and (6) (for h). Those equations involve parameters
(A, B, C) that have parameter values specific to α and β and m and h (see Table 1 of Ekeberg et al., 1991).

5 Potassium Channels (K)

The potassium channels are represented in a similar way, although in this case there is only channel
activation, and no inactivation. In Ekeberg et al. (1991) the three equations (7), (8) and (9) represent the
potassium channels:

Ik = (Ek − Esoma)Gkn4 (12)

dn
dt

= αn(1 − n)− βnn (13)

where n is the state variable representing the activation of potassium channels. As before we have
expressions for (α, β) which represent the fact that the potassium channel is also voltage-gated:
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αn =
A(Esoma − B)

1 − e(B−Esoma)/C
(14)

βn =
A(B − Esoma)

1 − e(Esoma−B)/C
(15)

Again, the parameter values for (A, B, C) can be found in Ekeberg et al., (1991) Table 1.

To summarize, the potassium channel has a single state variable n representing the activation of the
potassium channel.

6 Summary

We have a model now that includes four state variables:

1. E representing the potential in the soma, given by differential equation (1) in Ekeberg et al., (1991)
2. m representing the activation of sodium channels, Ekeberg equation (3)
3. h representing the inactivation of sodium channels, Ekeberg equation (5)
4. n representing the activation of potassium channels, Ekeberg equation (8)

Each of the differential equations that define how to compute state derivatives, involve (α, β) terms that are
given by Ekeberg equations (4) (for m), (6) (for h) and (9) (for n).

So what we have to do in order to simulate the dynamic behaviour of this neuron over time, is simply to
implement these equations in MATLAB code, give the system some reasonable initial conditions, and
simulate it over time using the ode45() function.

7 MATLAB code

Here is a MATLAB function called ekeberg.m that implements the equations. It looks intimidating but really
it’s just an implementation of the equations above.

function stated = ekeberg(t,state,params)

% Purpose: simulate Hodgkin and Huxley model for the action potential using
% the equations from Ekeberg et al, Biol Cyb, 1991
% Input: state ([E m h n] (ie [membrane potential; activation of
% Na++ channel; inactivation of Na++ channel; activation of K+
% channel]),
% t (time),
% and the params (parameters of neuron; see Ekeberg et al)
% Output: statep (state derivatives)

E = state(1);
m = state(2);
h = state(3);
n = state(4);

Epar = params.E;
Na = params.Na;
K = params.K;

% external current (from "voltage clamp", other compartments, other
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% neurons, etc)
I_ext = Epar.I_ext;

% calculate Na rate functions and I_Na
alpha_act = Na.A_alpha_m_act * (E-Na.B_alpha_m_act) / ...

(1.0 - exp((Na.B_alpha_m_act-E) / Na.C_alpha_m_act));
beta_act = Na.A_beta_m_act * (Na.B_beta_m_act-E) / ...

(1.0 - exp((E-Na.B_beta_m_act) / Na.C_beta_m_act) );
dmdt = ( alpha_act * (1.0 - m) ) - ( beta_act * m );

alpha_inact = Na.A_alpha_m_inact * (Na.B_alpha_m_inact-E) / ...
(1.0 - exp((E-Na.B_alpha_m_inact) / Na.C_alpha_m_inact));

beta_inact = Na.A_beta_m_inact / (1.0 + (exp((Na.B_beta_m_inact-E) / ...
Na.C_beta_m_inact)));

dhdt = ( alpha_inact*(1.0 - h) ) - ( beta_inact*h );

% Na−current:
I_Na =(Na.Na_E-E) * Na.Na_G * (m^Na.k_Na_act) * h;

% calculate K rate functions and I_K
alpha_kal = K.A_alpha_m_act * (E-K.B_alpha_m_act) / ...

(1.0 - exp((K.B_alpha_m_act-E) / K.C_alpha_m_act));
beta_kal = K.A_beta_m_act * (K.B_beta_m_act-E) / ...

(1.0 - exp((E-K.B_beta_m_act) / K.C_beta_m_act));
dndt = ( alpha_kal*(1.0 - n) ) - ( beta_kal*n );
I_K = (K.k_E-E) * K.k_G * n^K.k_K;

% leak current
I_leak = (Epar.E_leak-E) * Epar.G_leak;

% calculate derivative of E
dEdt = (I_leak + I_K + I_Na + I_ext) / Epar.C_m;
stated = [dEdt; dmdt; dhdt; dndt];

end

Here is a MATLAB script called go_ekeberg.m that sets up the parameters of the model, and runs a
simulation:

%% setup parameters

E.E_leak = -7.0e-2;
E.G_leak = 3.0e-09;
E.C_m = 3.0e-11;
E.I_ext = 0*1.0e-10;

Na.Na_E = 5.0e-2;
Na.Na_G = 1.0e-6;
Na.k_Na_act = 3.0e+0;
Na.A_alpha_m_act = 2.0e+5;
Na.B_alpha_m_act = -4.0e-2;
Na.C_alpha_m_act = 1.0e-3;
Na.A_beta_m_act = 6.0e+4;
Na.B_beta_m_act = -4.9e-2;
Na.C_beta_m_act = 2.0e-2;
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Na.l_Na_inact = 1.0e+0;
Na.A_alpha_m_inact = 8.0e+4;
Na.B_alpha_m_inact = -4.0e-2;
Na.C_alpha_m_inact = 1.0e-3;
Na.A_beta_m_inact = 4.0e+2;
Na.B_beta_m_inact = -3.6e-2;
Na.C_beta_m_inact = 2.0e-3;

K.k_E = -9.0e-2;
K.k_G = 2.0e-7;
K.k_K = 4.0e+0;
K.A_alpha_m_act = 2.0e+4;
K.B_alpha_m_act = -3.1e-2;
K.C_alpha_m_act = 8.0e-4;
K.A_beta_m_act = 5.0e+3;
K.B_beta_m_act = -2.8e-2;
K.C_beta_m_act = 4.0e-4;

params.E = E;
params.Na = Na;
params.K = K;

%% simulate

% set initial states and time vector
state0 = [-70e-03, 0, 1, 0];
t = 0:0.001:0.2;

% let's inject some external current
params.E.I_ext = 1.0e-10;

% run simulation
ekeberg_f = @(t,state) ekeberg(t,state,params);
[t,state] = ode45(ekeberg_f, t, state0);

%% plot the results

figure('position',[39 268 560 925],'paperposition',[2.4 2.5 3.6 6.0])
subplot(4,1,1)
plot(t, state(:,1))
title('membrane potential')
subplot(4,1,2)
plot(t, state(:,2))
title('Na2+ channel activation')
subplot(4,1,3)
plot(t, state(:,3))
title('Na2+ channel inactivation')
subplot(4,1,4)
plot(t, state(:,4))
title('K+ channel activation')
xlabel('TIME (sec)')

What you will see is a figure as shown in Figure 2 below.
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Figure 2: Simulation of a neuron using equations from Ekeberg et al., Biol. Cybern. (1991)
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