
Input & Output
Scientific Computing

Fall, 2019
Paul Gribble

1 Plain text files 1
2 Binary files 4
3 ASCII or binary? 4

Most of the time you will be writing programs that analyse data—whether those data are collected from
experiments, or generated by models and simulations. We will need to be able to read in data from a file. It
will also be useful to be able to write data out to a file.

The MathWorks online documentation has a page devoted to importing and exporting data, here:

Data Import and Export

Here we will go over how to read and write to some common types of files including ASCII files (plain text),
MATLAB .mat files, as well as other binary formats. The MathWorks has a page listing all of the various file
formats that MATLAB knows how to import, it is quite lengthy:

Supported File Formats for Import and Export

In general, there are two types of file formats, ASCII files (otherwise known as plain text files) and binary
files. In fact, this is a lie and there really is only one file type, namely binary files, since all data are ultimately
stored as 0s and 1s (binary)—but we have conventions, like the ASCII code, which allow us to make
assumptions, to make life easier. So we know that if a (binary) file is coded using a series of bytes, each of
which corresponds to an ASCII code, then this file is in fact a “plain text” or ASCII file (and you can read it
using any plain text editor like vim, emacs, sublime text, notepad, even MS Turd will open plain text files).
Binary files include things like image formats such as .png, .jpeg, sound files such as .mp3 and video files
such as .mp4 and .mov. Like I said before though, really, all files are binary. It’s just that we can open files
containing ASCII code using many programs which know how to interpret the 0s and 1s as ASCII codes.

1 Plain text files

If your data are stored in a plan text file (ascii) then you can use the MATLAB function load to load in the
file. For example let’s say we have a plain text file called mydata.txt that contains the following:

2 3
4 5
6 7
8 9

Then we can use the load command to load the data:

>> d = load('mydata.txt');
>> whos

1

http://www.mathworks.com/help/matlab/data-import-and-export.html
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html


Input & Output 2

Name Size Bytes Class Attributes

d 4x2 64 double

>> d

d =

2 3
4 5
6 7
8 9

You can also load the data without giving the load function an output variable to store the data—in this case
the data will be stored in a new variable with the same name as the filename (but any file suffix, such as .txt
stripped):

>> load mydata.txt
>> whos
Name Size Bytes Class Attributes

mydata 4x2 64 double

>> mydata

mydata =

2 3
4 5
6 7
8 9

For loading ASCII files, the file must contain a rectangular table of numbers, with an equal number of
elements in each row. Delimiters such as spaces, commas, semicolons or tabs can be used—but they have to
the same througout the file. If these conditions are not met, MATLAB will complain. For example if our data
file mydata2.txt looks like this:

2 3
4 5
6 7 8
8 9

MATLAB will complain about number of columns not being the same:

>> load mydata2.txt
Error using load
Number of columns on line 3 of ASCII file mydata2.txt must be the same as previous lines.

To save data to an ASCII file, you can use the save command. For example let’s say we have data store in a
variable called data that looks like this:

data =



Input & Output 3

0.6557 0.7577
0.0357 0.7431
0.8491 0.3922
0.9340 0.6555
0.6787 0.1712

Then we can use save with the -ascii flag to save this into an ASCII file:

>> save mynewdata.txt data -ascii

The first argument (mynewdata.txt) is the filename of the new file to be created. The second argument (data)
is the name of the variable to be saved to the file, and the third argument (-ascii) is a flag to the save

command that tells MATLAB to save the data in plain text (ASCII) format. Now if we look at the new file
(for example by opening it in the MATLAB text editor) that was created, mynewdata.txt it looks like this:

6.5574070e-01 7.5774013e-01
3.5711679e-02 7.4313247e-01
8.4912931e-01 3.9222702e-01
9.3399325e-01 6.5547789e-01
6.7873515e-01 1.7118669e-01

Note how it has been saved in scientific notation.

If you want finer control over how things are stored in an ASCII file, you can read (as well as write) using
lower-level control using MATLAB’s built-in functions fprintf and fscanf. These mirror the functions with
the same name that may be familiar to you if you have programmed in C before. Here is an example of
writing to an ASCII file where we want a very specific format:

data = [
0.6557 0.7577
0.0357 0.7431
0.8491 0.3922
0.9340 0.6555
0.6787 0.1712

];

fid = fopen('myfile.txt','w');
fprintf(fid, 'myfile.txt contains some data\n');
for i=1:size(data,1)

fprintf(fid,'item 1.1: %.4f, item 1.2: %.4f\n', data(i,1), data(i,2));
end
fprintf(fid, 'end of data\n');
fclose(fid);

This creates a file called myfile.txt that looks like this:

myfile.txt contains some data
item 1.1: 0.6557, item 1.2: 0.7577
item 1.1: 0.0357, item 1.2: 0.7431
item 1.1: 0.8491, item 1.2: 0.3922
item 1.1: 0.9340, item 1.2: 0.6555



Input & Output 4

item 1.1: 0.6787, item 1.2: 0.1712
end of data

2 Binary files

MATLAB has its own binary format for files, denoted using a .mat file suffix. The save and load functions in
MATLAB with no other options use this default binary format. The advantage of MATLAB’s binary format
over an ASCII format is (1) your data files will be smaller in size, and (2) with MATLAB’s .mat format you
can store more than one variable (and variables of different kinds) in a single file. For example here we store
a scalar variable called mynumber, a vector called myvector, a matrix called mymatrix and a structure called
mystructure in a single binary .mat file called myfile.mat:

>> whos
Name Size Bytes Class Attributes

mymatrix 4x2 64 double
mynumber 1x1 8 double
mystructure 1x1 840 struct
myvector 1x7 56 double

>> save myfile mynumber myvector mymatrix mystructure

Now there is a file in my working directory called myfile.mat. I can now load the file (and all the variables
contained within it) into MATLAB’s memory using the load function. First I clear the memory to
demonstrate that I’m not cheating:

>> clear
>> whos

Now I load the file:

>> load myfile
>> whos
Name Size Bytes Class Attributes

mymatrix 4x2 64 double
mynumber 1x1 8 double
mystructure 1x1 840 struct
myvector 1x7 56 double

3 ASCII or binary?

The question of which file format to use as you go forward and write programs for analysing your data is an
interesting one to consider. For long-term archival purposes, I would suggest storing your data in an ASCII
format, so that it remains readable by human eyes. There will always be programs to read ASCII files. The
risk of storing data in a binary format is that (a) whatever program you used to save the data will no longer
be easily accessible in the future, and/or (b) you may not even remember what the binary format is. The
disadvantage of storing data in ASCII format is that the files will be larger than if they were stored in a
binary format. The availability and affordability of large amounts of storage is growing so quickly however,



Input & Output 5

so perhaps one does not have to worry too much about this.


	Plain text files
	Binary files
	ASCII or binary?

