
Digital Representation Of Data
Scientific Computing

Fall, 2019
Paul Gribble

1 Binary 1
2 Hexadecimal 1
3 Floating point values 3
4 ASCII 5

Here we review how data are stored in a digital format on computers.

1 Binary

Information on a digital computer is stored in a binary format. Binary format represents information using a
series of 0s and 1s. If there are n digits of a binary code, one can represent 2n bits of information.

So for example the binary number denoted by:

0001

represents the number 1. The convention here is called little-endian because the least significant value is on
the right, and as one reads right to left, the value of each binary digit doubles. So for example the number 2
would be represented as:

0010

This is a 4-bit code since there are 4 binary digits. The full list of all values that can be represented using a
4-bit code are shown in Table 1.

So with a 4-bit binary code one can represent 24 = 16 different values (0-15). Each additional bit doubles the
number of values one can represent. So a 5-bit code enables us to represent 32 distinct values, a 6-bit code 64,
a 7-bit code 128 and an 8-bit code 256 values (0-255).

Another piece of terminology: a given sequence of binary digits that forms the natural unit of data for a
given processor (CPU) is called a word.

Have a look at the ASCII table. The standard ASCII table represents 128 different characters and the
extended ASCII codes enable another 128 for a total of 256 characters. How many bits are used for each?

2 Hexadecimal

You will also see in the ASCII table that it gives the decimal representation of each character but also the
Hexadecimal and Octal representations. The hexadecimal system is a base-16 code and the octal system is a
base-8 code. Hex values for a single hexadecimal digit can range over:

1

http://en.wikipedia.org/wiki/Binary_code
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Word_(computer_architecture)
http://www.asciitable.com
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Octal


Digital Representation Of Data 2

Binary Decimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Table 1: Binary and decimal values for a 4-bit code.

0 1 2 3 4 5 6 7 8 9 A B C D E F

If we use a 2-digit hex code we can represent 16 ∗ 16 = 256 distinct values. In computer science, engineering
and programming, a common practice is to represent successive 4-bit binary sequences using single-digit
hex codes.

Table 2 shows 4-bit values of Binary, Decimal and Hexadecimal.

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Table 2: Binary, Decimal and Hexadecimal values for a 4-bit code.

If we have 8-bit binary codes we would use successive hex digits to represent each 4-bit word of the 8-bit
byte (another piece of lingo). Table 3 shows how this would look for some 8-bit values in binary, decimal
and hexadecimal.

The left chunk of 4-bit binary digits (the left word) is represented in hex as a single hex digit (0-F) and the
next chunk of 4-bit binary digits (the right word) is represented as another single hex digit (0-F).

http://en.wikipedia.org/wiki/Byte


Digital Representation Of Data 3

Binary Decimal Hexadecimal
0000 0000 0 00
0000 0001 1 01
0000 0010 2 02

... ... ...
1111 1101 253 FD
1111 1110 254 FE
1111 1111 255 FF

Table 3: Binary, Decimal and Hexadecimal values for an 8-bit (1-byte) code.

Hex is typically used to represent bytes (8-bits long) because it is a more compact notation than using 8
binary digits (hex uses just 2 hex digits).

3 Floating point values

The material above talks about the decimal representation of bytes in terms of integer values (e.g. 0-255).
Frequently however in science we want the ability to represent real numbers on a continuous scale, for
example 3.14159, or 5.5, or 0.123, etc. For this, the convention is to use floating point representations of
numbers.

The idea behind the floating point representation is that it allows us to represent an approximation of a real
number in a way that allows for a large number of possible values. Floating point numbers are represented
to a fixed number of significant digits (called a significand) and then this is scaled using a base raised to an
exponent:

s x be (1)

This is related to something you may have come across in high-school science, namely scientific notation. In
scientific notation, the base is 10 and so a real number like 123.4 is represented as 1.234 x 102.

In computers there are different conventions for different CPUs but there are standards, like the IEEE 754
floating-point standard. As an example, a so-called single-precision floating point format is represented in
binary (using a base of 2) using 32 bits (4 bytes) and a /double precision/ floating point number is
represented using 64 bits (8 bytes). In C you can find out how many bytes are used for various types using
the sizeof() function:

#include <stdio.h>
int main(int argc, char *argv[]) {
printf("a single precision float uses %ld bytes\n", sizeof(float));
printf("a double precision float uses %ld bytes\n", sizeof(double));
return 0;

}

On my macbook pro laptop this results in this output:

a single precision float uses 4 bytes
a double precision float uses 8 bytes

According to the IEEE 754 standard, a single precision 32-bit binary floating point representation is

http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Scientific_notation
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/Binary32


Digital Representation Of Data 4

composed of a 1-bit sign bit (signifying whether the number is positive or negative), an 8-bit exponent and a
23-bit significand. See the various wikipedia pages for full details.

There is a key phrase in the description of floating point values above, which is that floating point
representation allows us to store an approximation of a real number. If we attempt to represent a number that
has more significant digits than can be store in a 32-bit floating point value, then we have to approximate
that real number, typically by rounding off the digits that cannot fit in the 32 bits. This introduces rounding
error.

Now with 32 bits, or even 64-bits in the case of double precision floating point values, rounding error is
likely to be relatively small. However it’s not zero, and depending on what your program is doing with
these values, the rounding errors can accumulate (for example if you’re simulating a dynamical system over
thousands of time steps, and at each time step there is a small rounding error).

We don’t need a fancy simulation however to see the results of floating point rounding error. Open up your
favourite programming language (MATLAB, Python, R, C, etc) and type the following (adjust the syntax as
needed for your language of choice):

(0.1 + 0.2) == 0.3

What do you get? In MATLAB I get:

>> (0.1 + 0.2) == 0.3

ans =

0

In MATLAB, 0 is synonymous with the logical value FALSE. What’s going on here? What’s happening is that
these decimal numbers, 0.1, 0.2 and 0.3 are being represented by the computer in a binary floating-point
format, that is, using a base 2 representation. The issue is that in base 2, the decimal number 0.1 cannot be
represented precisely, no matter how many bits you use. Plug in the decimal number 0.1 into an online
binary/decimal/hexadecimal converter (such as here) and you will see that the binary representation of 0.1
is an infinitely repeating sequence:

0.000110011001100110011001100... (base 2)

This shouldn’t be an unfamiliar situation, if we remember that there are also real numbers that cannot be
represented precisely in decimal format, either, because they involve an infintely repeating sequence. For
example the real number 1

3 when represented in decimal is:

0.3333333333... (base 10)

If we try to represent 1
3 using n decimal digits then we have to chop off the digits to the right that we cannot

include, thereby rounding the number. We lose some amount of precision that depends on how many
significant digits we retain in our representation.

So the same is true in binary. There are some real numbers that cannot be represented precisely in binary
floating-point format.

See here for some examples of significant adverse events (i.e. disasters) cause by numerical errors.

http://en.wikipedia.org/wiki/Round-off_error
http://en.wikipedia.org/wiki/Round-off_error
http://www.wolframalpha.com/input/?i=0.1+to+binary
http://www.wolframalpha.com/input/?i=1%2F3+in+decimal
http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html


Digital Representation Of Data 5

Rounding can be used to your advantage, if you’re in the business of stealing from people (see salami
slicing). In the awesomely kitchy 1980s movie Superman III, Richard Pryor’s character plays a “bumbling
computer genius” who embezzles a ton of money by stealing a large number of fractions of cents (which in
the movie are said to be lost anyway due to rounding) from his company’s payroll (YouTube clip here).

There is a comprehensive theoretical summary of these issues here: What Every Computer Scientist Should
Know About Floating-Point Arithmetic.

Also see these webpages from the MathWorks online documentation about how MATLAB represents
floating-point numbers:

Floating-Point Numbers

and this section on avoiding common problems with Floating-Point Arithmetic:

Avoiding Common Problems with Floating-Point Arithmetic

Here is a fantastic blog post that takes you through how floating-point numbers are represented:

Exposing Floating Point

3.1 Integer Overflow

Just in case you thought that floating point values are the only source of problems, representing integer
values also comes with the problem of integer overflow. This is when one attempts to represent an integer that
is larger than possible given the number of bits available.

So for example if we were representing positive integers using only 16 bits, we would only be able to store
216 = 65536 distinct values. So if the first value is 0 then we are able to store positive integers up to 65535. If
we attempt to add the value 1 to a variable that uses 16 bits and is currently storing the value 65535, the
variable will “overflow”, probably back to zero, in this case.

Here is a not-well-enough-known recent case of integer overflow error affecting Boeing’s new 787
“Dreamliner” aircraft:

Reboot Your Dreamliner Every 248 Days To Avoid Integer Overflow

4 ASCII

ASCII stands for American Standard Code for Information Interchange. ASCII codes delineate how text is
represented in digital format for computers (as well as other communications equipment).

ASCII uses a 7-bit binary code to represent 128 specific characters of text. The first 32 codes (decimal 0
through 31) are non-printable codes like TAB, BEL (play a bell sound), CR (carriage return), etc. Decimal codes
32 through 47 are more typical text symbols like # and &. Decimal codes 48 through 57 are the numbers 0
through 9. Decimal codes 65 through 90 are capital letters A through Z, and codes 97 through 122 are
lowercase letters a through z. Table 4 shows codes in decimal, hexadecimal and octal (base-8) for the
numbers 0 through 9. Table 5 shows codes for uppercase and lowercase letters.

For a full description of the 7-bit ascii codes in their entirety, including the extended ASCII codes (where you
will find things like ö and é), see this webpage:

http://www.asciitable.com (ASCII Table and Extended ASCII Codes).

In MATLAB, all individual text characters (variable type char) are represented, under the hood, as decimal

http://en.wikipedia.org/wiki/Salami_slicing
http://en.wikipedia.org/wiki/Salami_slicing
http://en.wikipedia.org/wiki/Superman_III
http://www.youtube.com/watch?v=iLw9OBV7HYA
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html#bqxyrhp
https://ciechanow.ski/exposing-floating-point/
https://www.i-programmer.info/news/149-security/8548-reboot-your-dreamliner-every-248-days-to-avoid-integer-overflow.html
http://www.asciitable.com


Digital Representation Of Data 6

Dec Hex Oct Chr
48 30 060 0
49 31 061 1
50 32 062 2
51 33 063 3
52 34 064 4
53 35 065 5
54 36 066 6
55 37 067 7
56 38 070 8
57 39 071 9

Table 4: 7-bit ASCII codes for the numbers 0 through 9.

ASCII values. Have a look at this code, in which we ask for the numeric value of individual characters. You
can see that the result corresponds to their decimal ASCII values in Table 5.

>> double('a')

ans =

97

>> double('b')

ans =

98

>> double('z')

ans =

122

You can get the character value of an ASCII code in MATLAB using the char() function:

>> char(65)

ans =

A

You can use your knowledge of ASCII codes to do tricky things in MATLAB, like convert to and from
uppercase and lowercase, given your knowledge that the difference (in decimal) between ASCII A and ASCII
a is 32 (see Table 5).

>> char('A' + 32)

ans =

a



Digital Representation Of Data 7

Dec Hex Oct Chr Dec Hex Oct Chr
65 41 101 A 97 61 141 a
66 42 102 B 98 62 142 b
67 43 103 C 99 63 143 c
68 44 104 D 100 64 144 d
69 45 105 E 101 65 145 e
70 46 106 F 102 66 146 f
71 47 107 G 103 67 147 g
72 48 110 H 104 68 150 h
73 49 111 I 105 69 151 i
74 4A 112 J 106 6A 152 j
75 4B 113 K 107 6B 153 k
76 4C 114 L 108 6C 154 l
77 4D 115 M 109 6D 155 m
78 4E 116 N 110 6E 156 n
79 4F 117 O 111 6F 157 o
80 50 120 P 112 70 160 p
81 51 121 Q 113 71 161 q
82 52 122 R 114 72 162 r
83 53 123 S 115 73 163 s
84 54 124 T 116 74 164 t
85 55 125 U 117 75 165 u
86 56 126 V 118 76 166 v
87 57 127 W 119 77 167 w
88 58 130 X 120 78 170 x
89 59 131 Y 121 79 171 y
90 5A 132 Z 122 7A 172 z

Table 5: 7-bit ASCII codes for uppercase and lowercase letters.

>> char('a' - 32)

ans =

A


	Binary
	Hexadecimal
	Floating point values
	ASCII

