
Complex Data Types
Scientific Computing

Fall, 2019
Paul Gribble

1 Arrays 1
2 Matrices 7
3 Multidimensional arrays 15
4 Cell arrays 17
5 Structures 18

In the notes on basic data types, operators & expressions we saw data types such as double and char which
are used to represent individual values such as the number 1.234 or the character ’G’. Here we will learn
about a number of complex data types that MATLAB uses to store multiple values in one data structure. We
will start with the array and matrix—and in fact a matrix is just a two-dimensional array. What’s more, a
scalar value (like 3.14) is just an array with one row and one column. We will also cover cell arrays and
structures, which are data types designed to hold different kinds of information together in a single type.

1 Arrays

Arrays are simply ordered lists of values, such as the list of five numbers: 1,2,3,4,5. In MATLAB we can
define this array using square brackets:

>> a = [1,2,3,4,5]

a =

1 2 3 4 5

>> whos
Name Size Bytes Class Attributes

a 1x5 40 double

We can see that a is a 1x5 (1 row, 5 columns) array of double values.

We can also get the length of an array using the length function:

>> length(a)

ans =

5

We can in fact leave out the commas if we want, when we construct the array—we can use spaces instead.

1



Complex Data Types 2

It’s up to you to decide which is more readable.

>> a = [1 2 3 4 5]

a =

1 2 3 4 5

MATLAB has a number of built-in functions and operators for creating arrays and matrices. We can create
the above array using a colon (:) operator like so:

>> a = 1:5

a =

1 2 3 4 5

We can create a list of only odd numbers from 1 to 10 like so, again using the colon operator:

>> b = 1:2:10

b =

1 3 5 7 9

1.1 Array indexing

We can get the value of a specific item within an array by indexing into the array using round brackets ().
For example to get the third value of the array b:

>> third_value_of_b = b(3)

third_value_of_b =

5

To get the first three values of b:

>> b(1:3)

ans =

1 3 5

We can get the 4th value onwards to the end by using the end keyword:

>> b(4:end)

ans =

7 9



Complex Data Types 3

Remember, array indexing in MATLAB starts at 1. In other languages like C and Python, array indexing
starts at 0. This can be the source of significant confusion when translating code from one language into
another.

Another useful array construction built-in function in MATLAB is the linspace function:

>> c = linspace(0,1,11)

c =

Columns 1 through 8

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000

Columns 9 through 11

0.8000 0.9000 1.0000

By default arrays in MATLAB are defined as row arrays, like the array a above which is size 1x5—one row
and 5 columns. We can however define arrays as columns instead, if we need to. One way is to simply
transpose our row array using the transpose operator ’:

>> a2 = a'

a2 =

1
2
3
4
5

>> size(a2)

ans =

5 1

Now we can see a2 is a 5x1 column array.

We can directly define column arrays using the semicolon ; notation instead of commas or spaces, like so:

>> a2 = [1;2;3;4;5]

a2 =

1
2
3
4
5

So in general, commas or spaces denote moving from one column to another, and semicolons denote moving



Complex Data Types 4

from one row to another. This will become useful when we talk about matrices (otherwise know as
two-dimensional arrays).

1.2 Array sorting

MATLAB has a built-in function called sort() to sort arrays (and other structures). The algorithm used by
MATLAB under the hood is the quicksort algorithm. To sort an array of numbers is simple:

>> a = [5 3 2 0 8 1 4 8 5 6]

a =

5 3 2 0 8 1 4 8 5 6

>> a_sorted = sort(a)

a_sorted =

0 1 2 3 4 5 5 6 8 8

If you give the sort function two output variables then it also returns the indices corresponding to the
sorted values of the input:

>> [aSorted, iSorted] = sort(a)

aSorted =

0 1 2 3 4 5 5 6 8 8

iSorted =

4 6 3 2 7 1 9 10 5 8

The iSorted array contains the indices into the original array a, in sorted order. So this tells us that the first
value in the sorted array is the 4th value of the original array; the second value of the sorted array is the 6th
value of the original array, and so on.

The default sort happens in ascending order. If we want to reverse this we can specify this as an option to
the sort() function:

>> sort(a, 'descend')

ans =

8 8 6 5 5 4 3 2 1 0

1.3 Searching arrays

We can use MATLAB’s built-in function called find() to search arrays (or other structures) for particular
values. So for example if we wanted to find all values of the above array a which are greater than 5, we
could use:

https://en.wikipedia.org/wiki/Quicksort


Complex Data Types 5

>> ix = find(a > 5)

ix =

5 8 10

This tells us that the 5th, 8th and 10th values of a are greater than 5. If we want to see what those values are,
we index into a using those found indices idx:

>> a(ix)

ans =

8 8 6

We could combine these two steps into one line of code like this:

>> a(find(a>5))

ans =

8 8 6

We can also use a shorthand, like so:

>> a(a>5)

ans =

8 8 6

I will leave it as an exercise for you to see how this works. Deconstruct the expression into its constituent
parts and think about how they are combined.

1.4 Array arithmetic

One great feature of MATLAB is that arithmetic (and many other) operations can be carried out on an entire
array at once—and what’s more, under the hood MATLAB uses optimized, compiled code to carry out these
so-called vectorized operations. Vectorized code is typically many times faster than the equivalent code
organized in a naive way (for example using for-loops). We will talk about vectorized code and other ways
to speed up computation later in the course.

We can multiply each element of the array a2 by a scalar value:

>> a2 * 5

ans =

5
10
15
20



Complex Data Types 6

25

We can perform a series of operations all at once:

>> a3 = (a2 * 5) + 2.5

a3 =

7.5000
12.5000
17.5000
22.5000
27.5000

These mathematical operations are performed elementwise, meaning element-by-element.

We can also perform arithmetic operations between arrays. For example let’s say we wanted to multiply two
1x5 arrays together to get a third:

>> a = [1,2,3,4,5];
>> b = [2,4,6,8,10];
>> c = a*b
Error using *
Inner matrix dimensions must agree.

Oops! We get an error message. When you perform arithmetic operations between arrays in MATLAB, the
default assumption is that you are doing matrix (or matrix-vector) algebra, not elementwise operations. To
force elementwise operations in MATLAB we use dot-notation:

>> c = a.*b

c =

2 8 18 32 50

Now the multiplication happens elementwise. Needless to say we still need the dimensions to agree. If we
tried multiplying, elementwise, a 1x5 array with a 1x6 array we would get an error message:

>> d = [1,2,3,4,5,6];
>> e = c.*d
Error using .*
Matrix dimensions must agree.

>> size(c)

ans =

1 5

>> size(d)

ans =



Complex Data Types 7

1 6

2 Matrices

In mathematics a matrix is generally considered to have two dimensions: a row dimension and a column
dimension. We can define a matrix in MATLAB in the following way. Here we define a matrix A that has
two rows and 5 columns:

>> A = [1,2,3,4,5; 1,4,6,8,10]

A =

1 2 3 4 5
1 4 6 8 10

>> size(A)

ans =

2 5

We use commas (or we could have used spaces) to denote moving from column to column, and we use a
semicolon to denote moving from the first row to the second row.

If we want a 5x2 matrix instead we can either just transpose our 2x5 matrix:

>> A2 = A'

A2 =

1 1
2 4
3 6
4 8
5 10

Or we can define it directly:

>> A2 = [1,2; 2,4; 3,6; 4,8; 5,10]

A2 =

1 2
2 4
3 6
4 8
5 10

There are other functions in MATLAB that we can use to generate a matrix. The repmat function in
particular is useful when we want to repeat certain values and stick them into a matrix:



Complex Data Types 8

>> G = repmat([1,2,3],3,1)

G =

1 2 3
1 2 3
1 2 3

This means repeat the row vector [1,2,3] three times down columns, and one time across rows. Here’s
another example:

>> H = repmat(G,1,3)

H =

1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3

Now we’ve repeated the matrix G once down rows and three times across columns.

There are also special functions zeros() and ones() to create arrays or matrices filled with zeros or ones:

>> I = ones(4,5)

I =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

>> J = zeros(7,3)

J =

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Of course we can fill a matrix with any value we want by multiplying a matrix of ones by a scalar:

>> P = ones(3,4) * pi

P =

3.1416 3.1416 3.1416 3.1416
3.1416 3.1416 3.1416 3.1416
3.1416 3.1416 3.1416 3.1416



Complex Data Types 9

If we use zeros or ones with just a single input argument we end up with a square matrix (same number of
rows and columns):

>> Q = ones(5)

Q =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

There is also a special MATLAB function called eye which will generate the identity matrix (a special matrix
in linear algebra sort of equivalent to the number 1 in scalar arithmetic):

>> eye(3)

ans =

1 0 0
0 1 0
0 0 1

2.1 Matrix indexing

We can index into a matrix using round brackets, just like with an array. Now however we need to specify
both a row and a column index. So for example the entry in the matrix A2 corresponding to the 3rd row and
the second column is:

>> A2(3,2)

ans =

6

To get the value in the last row, and the first column:

>> A2(end,1)

ans =

5

We can also specify a range in our index values. So to get rows 1 through 3 and columns 1 through 2:

>> A2(1:3,1:2)

ans =

1 2



Complex Data Types 10

2 4
3 6

We can use a shorthand for “all columns” (also works for all rows) using the colon operator:

>> A2(1:3,:)

ans =

1 2
2 4
3 6

We can use indexing to replace parts of a matrix. For example to replace the first row of A2 (which is
presently [1 2] with [99 99] we could use this code:

>> A2(1,:) = [99 99]

A2 =

99 99
2 4
3 6
4 8
5 10

To replace the second column of A2 with 5 random numbers chosen from a gaussian normal distribution
with mean zero and standard deviation one, we could use this code:

>> A2(:,2) = randn(5,1)

A2 =

99.0000 0.5377
2.0000 1.8339
3.0000 -2.2588
4.0000 0.8622
5.0000 0.3188

Note the use of the randn() function to generate (pseudo)random deviates from a gaussian normal
distribution.

2.2 Matrix reshaping

MATLAB has a built-in function called reshape() which is handy for reshaping matrices into new
dimensions. For example let’s say we have a 4x3 matrix M:

>> M = [1,2,3; 4,5,6; 7,8,9; 10,11,12]

M =

1 2 3



Complex Data Types 11

4 5 6
7 8 9
10 11 12

We can use reshape() to reshape M into a 6x2 matrix Mr:

>> Mr = reshape(M,6,2)

Mr =

1 8
4 11
7 3
10 6
2 9
5 12

Note that reshape() does its work by taking values columnwise from the original input matrix M. If we want
to perform the reshaping in the other way—row-wise—we can do this by transposing the original matrix:

>> Mr2 = reshape(M',6,2)

Mr2 =

1 7
2 8
3 9
4 10
5 11
6 12

To reshape a matrix (or indeed any multi-dimensional array) into a column vector, there is a convenient
shorthand in MATLAB, namely the colon operator (:):

>> M_col = M(:)

M_col =

1
4
7
10
2
5
8
11
3
6
9
12

If we want a row vector instead we can just transpose the result:



Complex Data Types 12

>> M_row = M(:)'

M_row =

1 4 7 10 2 5 8 11 3 6 9 12

2.3 Matrix arithmetic

In MATLAB as with arrays, matrix–scalar operations happen elementwise, whereas matrix–matrix
operations are assumed to be based on the rules of matrix algebra. We won’t go through matrix algebra in
all its glory here, but you can see a reminder of the basic operations on this wikipedia page:

Matrix Basic Operations

I can recommend a great book on Linear Algebra by Gilbert Strang:

Introduction to Linear Algebra, 4th Edition by Gilbert Strang. Wellesley-Cambridge Press, 2009

He also has his course on MIT’s open-courseware, complete with videos for all lectures here:

video lectures of Professor Gilbert Strang teaching 18.06 (Fall 1999)

The Mathworks has a web page with a matrix algebra “refresher” that might serve as a useful reminder for
those who have had linear algebra in the past:

Matrix Algebra Refresher

Here is an example of a scalar–matrix operation on our matrix A2 from above:

>> A2 * 10

ans =

10 20
20 40
30 60
40 80
50 100

Let’s say we wanted to multiply, elementwise, a 5x2 matrix A3 by A2:

>> A3 = rand(5,2)

A3 =

0.2785 0.9706
0.5469 0.9572
0.9575 0.4854
0.9649 0.8003
0.1576 0.1419

As with arrays, we can use dot notation to force elementwise multiplication:

>> A4 = A2 .* A3

https://en.wikipedia.org/wiki/Matrix_(mathematics)#Basic_operations
http://math.mit.edu/~gs/linearalgebra/
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
http://www.mathworks.com/help/finance/matrix-algebra-refresher.html


Complex Data Types 13

A4 =

0.2785 1.9412
1.0938 3.8287
2.8725 2.9123
3.8596 6.4022
0.7881 1.4189

Without the dot notation we would get an error message:

>> A4 = A2 * A3
Error using *
Inner matrix dimensions must agree.

>> size(A2)

ans =

5 2

>> size(A3)

ans =

5 2

To perform matrix multiplication we need a right-hand-side that has legal dimensions, in other words the
same number of rows as A2 has columns. For example, if we have another matrix A5 sized 2x3:

>> A5 = rand(2,3)

A5 =

0.8147 0.1270 0.6324
0.9058 0.9134 0.0975

then we can perform matrix multiplication:

>> A6 = A2 * A5

A6 =

2.6263 1.9537 0.8274
5.2526 3.9075 1.6549
7.8789 5.8612 2.4823
10.5052 7.8150 3.3098
13.1315 9.7687 4.1372

Again, review your linear algebra if you have forgotten about the rules of matrix multiplication. Just
remember that to force elementwise operations, use dot-notation.



Complex Data Types 14

Addition and subtraction are always elementwise.

2.4 Matrix Algebra

As we saw above, MATLAB assumes that matrix–matrix operations are not elementwise, but conform to the
rules of linear algebra and matrix arithmetic. The exception is matrix addition and subtraction, which
happen elementwise even in matrix algebra. Multiplication is special however, as we saw above.

What about division (/)? In MATLAB the so-called slash operator is the gateway to much complexity.

>> help slash
Matrix division.
\ Backslash or left division.

A\B is the matrix division of A into B, which is roughly the
same as INV(A)*B , except it is computed in a different way.
If A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then
X = A\B is the solution to the equation A*X = B. A warning
message is printed if A is badly scaled or nearly
singular. A\EYE(SIZE(A)) produces the inverse of A.

If A is an M-by-N matrix with M < or > N and B is a column
vector with M components, or a matrix with several such columns,
then X = A\B is the solution in the least squares sense to the
under- or overdetermined system of equations A*X = B. The
effective rank, K, of A is determined from the QR decomposition
with pivoting. A solution X is computed which has at most K
nonzero components per column. If K < N this will usually not
be the same solution as PINV(A)*B. A\EYE(SIZE(A)) produces a
generalized inverse of A.

/ Slash or right division.
B/A is the matrix division of A into B, which is roughly the
same as B*INV(A) , except it is computed in a different way.
More precisely, B/A = (A'\B')'. See \.

./ Array right division.
B./A denotes element-by-element division. A and B
must have the same dimensions unless one is a scalar.
A scalar can be divided with anything.

.\ Array left division.
A.\B. denotes element-by-element division. A and B
must have the same dimensions unless one is a scalar.
A scalar can be divided with anything.

The backslash (left division) when used like this: A\B performs matrix division of B into A. As the
documentation says, this is roughly like INV(A)*B but it’s not computed this way under the hood. The
typical way you will use the backslash matrix operator in MATLAB is to solve systems of linear equations.
So for example X = A\B is the solution to the matrix equation A*X=B. For example, if B is a column
representing measurements of a dependent variable, and A is a matrix representing measurements of several
independent variables, then X is the vector of regression weights that minimize the sum of squared
deviations between B and A*X. More on this later in the course.



Complex Data Types 15

MATLAB has many, many built-in (and compiled and optimized) functions for matrix algebra and matrix
algorithms of all sorts. After all, the origins of MATLAB are “Matrix Laboratory”, and so from the start the
emphasis has been on matrix computation.

In their web documentation, the MathWorks has a listing of some linear algebra algorithms implemented in
MATLAB:

Linear Algebra

These include algorithms for solving linear equations, for matrix decomposition, for finding eigenvalues and
singular values, for matrix analysis and so on.

3 Multidimensional arrays

We have seen one-dimensional (row or column) arrays and we have seen (two dimensional) matrices. In
MATLAB you can create arrays with more than two dimensions. Here is an example of a three dimensional
array:

>> A = ones([2,3,4])

A(:,:,1) =

1 1 1
1 1 1

A(:,:,2) =

1 1 1
1 1 1

A(:,:,3) =

1 1 1
1 1 1

A(:,:,4) =

1 1 1
1 1 1

We have created a three-dimensional array A that is size 2x3x4:

>> size(A)

ans =

2 3 4

You can think of it like this: A is a 2x3 matrix that is repeated 4 times (in a third dimension). Perhaps the
third dimension is time. Perhaps it is something else (e.g. spatial third dimension).

http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/help/matlab/linear-algebra.html


Complex Data Types 16

We can even create 4-dimensional arrays:

>> B = rand(256,256,10,50);
>> whos
Name Size Bytes Class Attributes

B 4-D 262144000 double

>> size(B)

ans =

256 256 10 50

Here is a 4-dimensional array B. You can think of it as a 256x256x128 dimensional 3D array repeated 50 times
in a fourth dimension. Note how large the array is (262,144,000 bytes, about 250 megabytes). Depending on
how much RAM you have in your computer, you can potentially have MATLAB work with very large data
structures indeed.

A quick example, we could take the mean across the 4th dimension like so:

>> Bm = mean(B,4);
>> whos
Name Size Bytes Class Attributes

B 4-D 262144000 double
Bm 256x256x10 5242880 double

Another useful function to know about is the squeeze() function in MATLAB. This will remove any
singleton dimensions—that is, dimensions that have size 1. So for example consider the following
three-dimensional array:

>> A = reshape(1:12,[3,1,4])

A(:,:,1) =

1
2
3

A(:,:,2) =

4
5
6

A(:,:,3) =

7
8
9



Complex Data Types 17

A(:,:,4) =

10
11
12

>> size(A)

ans =

3 1 4

The second (middle) dimension is size 1, so we can use squeeze to reshape this three-dimensional array into
a two-dimensional array of size [3x4]:

>> As = squeeze(A)

As =

1 4 7 10
2 5 8 11
3 6 9 12

>> size(As)

ans =

3 4

4 Cell arrays

Arrays (single-dimensional vectors as well as two-dimensional matrices and multi-dimensional arrays) must
contain values of the same type. MATLAB has another data structure called a cell array that allows one to
store data of different types in a structed similar to an array—namely it’s an indexed data container
containing cells, and each cell can contain different data types. Cell arrays use curly brackets instead of
square brackets.

The MathWorks online documentation has a page devoted to cell arrays here:

Cell Arrays

So for example we can create a cell array called myCell that contains 5 cells:

>> myCell = {1, 2, 3, 'hello', rand(1,10)}

myCell =

[1] [2] [3] 'hello' [1x10 double]

Cells 1 through 3 are numeric, cell 4 is a character string, and cell 5 is a [1x10] array of double values. We
can index into a cell array just like a regular array:

http://www.mathworks.com/help/matlab/cell-arrays.html


Complex Data Types 18

>> myCell{4}

ans =

hello

>> myCell{5}

ans =

Columns 1 through 8

0.7577 0.7431 0.3922 0.6555 0.1712 0.7060 0.0318 0.2769

Columns 9 through 10

0.0462 0.0971

You can create an empty cell array like this:

>> emptyCell = {}

emptyCell =

{}

Or a cell array with a certain structure that is empty, like this:

>> emptyCell = cell(3,5)

emptyCell =

[] [] [] [] []
[] [] [] [] []
[] [] [] [] []

>> emptyCell{2,3} = 'hello'

emptyCell =

[] [] [] [] []
[] [] 'hello' [] []
[] [] [] [] []

5 Structures

MATLAB has another data type called a structure that is similar to what you might have seen in other
languages like Python, and is called a Dictionary. In MATLAB a structure is an array with named fields that
can contain any data type.

The MathWorks online documentation has a page devoted to structures here:



Complex Data Types 19

Structures

Let’s create a structure called subject1 that contains a character string corresponding to their name, a
numeric value corresponding to their age, a numeric value correponding to their height, a value
corresponding to the date the experiment was run, and an array corresponding to some recorded empirical
data during an experiment:

>> subject1.name = 'Mr. T';
>> subject1.age = 63;
>> subject1.height = 1.78;
>> subject1.date = datetime(2015,08,12);
>> subject1.data = rand(100,2);
>> subject1.catchphrase = 'I pity the fool!';
>> subject1

subject1 =

name: 'Mr. T'
age: 63

height: 1.7800
date: [1x1 datetime]
data: [100x2 double]

catchphrase: 'I pity the fool!'

As you can see we use dot-notation to denote a field of a structure. As soon as you introduce dot notation
into a variable, it becomes a structure type. If a field with the given name does not exist, it is created. Note
the use of the datetime() function which is a built-in function in MATLAB that handles dates and times.

We can access a field of a structure using dot-notation:

>> subject1.name

ans =

Mr. T

>> subject1.date

ans =

12-Aug-2015

5.1 Arrays of structures

We can of course form arrays of structures. An array can hold any data type as long as each element is the
same.

subject1.name = 'Mr. T';
subject1.age = 63;
subject1.height = 1.78;
subject1.date = datetime(2015,08,12);
subject1.data = rand(100,2);
subject1.catchphrase = 'I pity the fool!';

http://www.mathworks.com/help/matlab/structures.html


Complex Data Types 20

subject2.name = 'Polly Holliday';
subject2.age = 78;
subject2.height = [];
subject2.date = datetime(2015,08,12);
subject2.data = rand(100,2);
subject2.catchphrase = 'Kiss my grits!';

subject3.name = 'Leonard Nimoy';
subject3.age = 83;
subject3.height = [];
subject3.date = datetime(2015,02,26);
subject3.data = rand(100,2);
subject3.catchphrase = 'Live long and prosper';

allSubjects = [subject1, subject2, subject3];

>> allSubjects

allSubjects =

1x3 struct array with fields:

name
age
height
date
data
catchphrase

Now we can do convenient things like look at all of the age fields across the whole array:

>> allSubjects.age

ans =

63

ans =

78

ans =

83

We can collect these into an array:

>> allAges = [allSubjects.age]

all_ages =



Complex Data Types 21

63 78 83

Or we could collect all the data fields together into a three-dimensional array, and then average across
subjects:

>> allData = [allSubjects.data];
>> size(allData)

ans =

100 6

>> allData = reshape(allData,100,2,3);
>> size(allData)

ans =

100 2 3

>> allDataMean = mean(allData,3);
>> size(allDataMean)

ans =

100 2

Note that if all elements of an array are not the same identical structure (i.e. do not have the same fields
defined) then we get an error:

>> subject4.name = 'me'

subject4 =

name: 'me'

>> allSubjects = [subject1, subject2, subject3, subject4];
Error using horzcat
Number of fields in structure arrays being concatenated do not match.
Concatenation of structure arrays requires that these arrays have the
same set of fields.

The solution here would be to use a cell array instead of a plain array—remember, in a cell array the cells do
not have to be the same type:

>> allSubjects = {subject1, subject2, subject3, subject4}

allSubjects =

[1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]


	Arrays
	Matrices
	Multidimensional arrays
	Cell arrays
	Structures

