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Action observation can facilitate the acquisition of novel motor skills;
however, there is considerable individual variability in the extent to
which observation promotes motor learning. Here we tested the
hypothesis that individual differences in brain function or structure
can predict subsequent observation-related gains in motor learning.
Subjects underwent an anatomical MRI scan and resting-state fMRI
scans to assess preobservation gray matter volume and preobservation
resting-state functional connectivity (FC), respectively. On the fol-
lowing day, subjects observed a video of a tutor adapting her reaches to
a novel force field. After observation, subjects performed reaches in a
force field as a behavioral assessment of gains in motor learning resulting
from observation. We found that individual differences in resting-state
FC, but not gray matter volume, predicted postobservation gains in motor
learning. Preobservation resting-state FC between left primary somato-
sensory cortex and bilateral dorsal premotor cortex, primary motor
cortex, and primary somatosensory cortex and left superior parietal
lobule was positively correlated with behavioral measures of postob-
servation motor learning. Sensory-motor resting-state FC can thus
predict the extent to which observation will promote subsequent
motor learning.

NEW & NOTEWORTHY We show that individual differences in
preobservation brain function can predict subsequent observation-
related gains in motor learning. Preobservation resting-state functional
connectivity within a sensory-motor network may be used as a
biomarker for the extent to which observation promotes motor learn-
ing. This kind of information may be useful if observation is to be
used as a way to boost neuroplasticity and sensory-motor recovery for
patients undergoing rehabilitation for diseases that impair movement
such as stroke.

human; motor learning; action observation; resting-state fMRI; indi-
vidual differences

RECENT WORK HAS SHOWN that action observation can promote
motor learning. For example, individuals can learn how to
reach in novel robot-imposed force field (FF) environments by
observing the movements of a tutor (Mattar and Gribble 2005).

Subjects observed a video of a tutor adapting his reaches to a
novel robot-imposed FF. Subjects who later performed reaches
in the same FF showed a benefit, performing better (straighter)
reaches compared with control subjects who did not observe a
tutor. Subjects who later performed reaches in the opposite FF
performed worse (more curved) reaches than subjects who did
not observe. While these results demonstrate that FFs can be
partially learned from observation, there is considerable inter-
individual variability in the extent to which observation pro-
motes motor learning. Little is known about why this may be.
Some individuals may be more predisposed to learning from
observation than others, whether from birth, from experience-
dependent plasticity, or a combination of these or other indi-
vidual differences. Here we test the idea that individual differ-
ences in brain function or structure underlie the extent to which
observation promotes subsequent motor learning.

In a recent review article, Zatorre (2013) discusses findings
showing how structural and functional neural connectivity
patterns predict individual differences in musical training and
speech learning. Other studies have shown similar predictabil-
ity for a wide array of cognitive abilities including executive
function (Barnes et al. 2014; Reineberg et al. 2015), reading
(Koyama et al. 2011; Wang et al. 2013), second language
acquisition (Chai et al. 2016), visual perceptual discrimination
(Baldassarre et al. 2012), and memory recall (King et al. 2015).
In the motor domain, Tomassini et al. (2011) demonstrated that
individual differences in both functional and structural mag-
netic resonance imaging (MRI) measures correlate with the
acquisition of a novel visuomotor tracking skill through active
movement training. Task-based functional activation levels in
a network involving prefrontal, premotor, and parietal cortices,
as well as basal ganglia and the cerebellum, were associated
with behavioral measures of active motor learning. Structural
differences within the premotor cortex, higher-order visual
areas, and the cerebellum were also positively correlated with
learning abilities (Tomassini et al. 2011). Similarly, using
dense-array electroencephalography (EEG), Wu et al. (2014)
showed that resting-state functional connectivity (FC) between
premotor, primary motor, and parietal cortices predicts indi-
vidual differences in the subsequent learning of a visuomotor
tracking task. Together, these studies suggest that functional
and structural variations in motor learning-related brain net-
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works can, in part, explain individual differences in the ability
to learn novel motor tasks through active movement practice.
The results of these studies raise the possibility that individual
differences in brain structure or function may also be predictive
of motor learning by observing.

Here we tested the hypothesis that individual differences in
brain function or structure can predict the extent to which
individuals will learn to perform a novel sensory-motor task
(FF reaching) from observation. On the basis of our previous
work (McGregor et al. 2016; McGregor and Gribble 2015), we
expected that individual differences in brain function and
structure within visual and sensory-motor brain networks
would be predictive of motor learning by observing. On day 1,
subjects performed baseline (no FF) reaches using a robotic
arm and then underwent preobservation anatomical and rest-
ing-state functional MRI (fMRI) scans. Twenty-four hours
later, subjects in a learning group observed a video of a tutor
learning to reach in a novel FF. Subjects in a control group
observed a video of a tutor performing reaches in an unlearn-
able FF. After observation, all subjects performed reaches in a
FF as a behavioral assessment of motor learning by observing.
We found that, for the learning group, preobservation (day 1)
resting-state FC between bilateral dorsal premotor cortex
(PMd), primary motor cortex (M1), and primary somatosen-
sory cortex (S1) and left superior parietal lobule (SPL) was
reliably correlated with behavioral scores of motor learning by
observing acquired on day 2. No such correlation between
preobservation FC and motor learning by observing scores was
found for the control group. Moreover, we found that individ-
ual differences in gray matter volume could not predict subse-
quent motor learning by observing. Preobservation sensory-
motor resting-state FC can thus explain part of the between-
subject variation in motor learning by observing.

MATERIALS AND METHODS

Subjects. Thirty healthy subjects participated in this study. Fifteen
subjects were assigned to a learning group [6 men, 9 women; mean
age 22.87 � 1.02 (SE) yr], and fifteen were assigned to a control
group [6 men, 9 women; mean age 22.53 � 0.86 (SE) yr]. All subjects
were right handed, had normal or corrected-to-normal vision, were
naive to FFs, and reported no neurological or musculoskeletal disor-
ders. Subjects provided written informed consent before participating.
All experimental procedures were approved by the Research Ethics
Board at The University of Western Ontario.

Apparatus. Subjects were seated in front of a custom tabletop and
grasped the handle of a two-degree of freedom robotic arm (IMT2,
Interactive Motion Technologies) with the right hand (see Fig. 1). The
chair height was adjusted such that the subject’s upper arm was
abducted ~90° from the trunk. An air sled was secured beneath the
subject’s right arm to support the arm against gravity. A semisilvered
mirror, mounted horizontally just above the robotic arm, occluded the
subject’s vision of his or her own arm and the robotic arm. During the
reaching task, a liquid crystal display television (LCD TV) projected
visual feedback onto the semisilvered mirror. Visual feedback in-
cluded a start position (20-mm blue circle), a single target (20-mm
white circle), and a cursor representing hand position (12-mm pink
circle).

The reaching task involved guiding the handle of the robotic arm
from the start position to the target, which was located 15 cm in front
of the start position. Subjects were instructed to move as straight as
possible. At the end of each reach, the target changed color to provide
feedback about movement time: the target disappeared if the move-
ment time was within the desired range (450- to 550-ms duration),
turned red if the movement was too fast (�450 ms), or turned green
if the movement was too slow (�550 ms). After each reach, the
robotic arm returned the subject’s hand to the start position.

The robot applied a velocity-dependent FF during the reaching task
according to Eq 1:

�Fx

Fy
� � � 0 dk

�dk 0 ��vx

vy
� (1)

in which x and y are lateral and sagittal directions, Fx and Fy are the
applied robot forces, vx and vy are hand velocities, k � 14 Ns/m, and
d � 0 (null field), �1 (right FF), or �1 (left FF).

Reaching video stimuli. Each video showed a top-down view of a
tutor performing the reaching task described above with her right arm.
The tutors in the videos were naive to FFs. The learning video
consisted of a series of 30-s clips showing a tutor adapting her reaches
to a leftward FF (left FF). These clips showed the gradual progression
from curved to straight movements that is indicative of motor learn-
ing. The control video consisted of a series of 30-s clips showing a
tutor performing reaches in an unlearnable FF in which the direction
of the FF varied randomly from trial to trial (left FF, right FF, or null
field). These clips showed the tutor performing both high- and
low-curvature movements but lacked the progressive decrease in
movement curvature depicted in the learning video. Therefore, the
control video included movements similar to those shown in the
learning video but did not depict learning. The videos showed 200
reaches each and were 15 min in duration (including regular breaks).
Video screenshots are shown in Fig. 1B and Fig. 2A. Note that the
dashed trajectories and superimposed labels have been included for
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Fig. 1. Apparatus and experimental design. A: subjects were seated in front of an InMotion2 robotic arm and performed the reaching task in a horizontal plane
with the right arm. B: on day 1, all subjects performed reaches in a null field (no force applied by the robot). Subjects then underwent a preobservation MRI
scan session. The scan session consisted of 2 resting-state runs separated by an anatomical scan, followed by 2 functional localizer tasks. On day 2, subjects in
the learning group (n � 15) observed a learning video showing a tutor adapting her reaches to a left force field (FF). A control group (n � 15) observed a control
video showing a tutor performing curved reaches in an unlearnable (randomly varying) FF. Finally, all subjects performed reaches in a right FF as a behavioral
test of motor learning by observing.
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demonstrative purposes here and were not shown to subjects in the
experiment.

Experimental design. The experimental design is shown in Fig. 1B.
All subjects (n � 30) participated in three sessions. For each subject,
the sessions were held at the same time on three consecutive days. On
day 0, subjects were familiarized with the reaching task by performing
50 practice movements in a null field (no force applied by the robot).
On day 1, subjects performed 200 baseline reaches in the null field and
then walked to the imaging facility for a fMRI scan session. The scan
session, described in detail below, began ~20 min after the completion
of the reaching task and lasted 1 h. Data collected during the day 1
scan session were used to estimate preobservation resting-state FC
involving 10 visual and sensory-motor brain areas [see regions of
interest (ROIs) below] and to estimate whole brain gray matter
volume. On day 2, subjects performed the observational motor learn-
ing task. Subjects watched either the learning video or the control
video while seated in front of the robotic arm. The video was played
on the LCD TV positioned above the robotic arm and was projected
onto the semisilvered mirror surface. To ensure that subjects paid
attention during the video, we instructed them to count the number of
correctly timed reaches in the video (indicated by the target disap-
pearing upon the completion of a reach) and to report the final tally to
the experimenter after the video. Reported tallies were analyzed to
verify that subjects attended to the video, but these data were not
incorporated into the behavioral or neuroimaging analyses. Note that
subjects were not told to pay attention to any particular part of the
movement trajectory or arm, nor were they told that the robot would
be applying forces to the arm. Approximately 80 min after video
observation, we assessed motor learning by observing by having
subjects perform 100 reaches while the robotic arm applied a right-
ward FF (right FF).

During the 80 min between video observation and the motor
learning test on day 2, both groups underwent a second fMRI scan
session identical to the day 1 fMRI scan session. Data from the second
fMRI scan session were not used in any of the analyses presented here
since the main objective of the present study was prediction of motor
learning by observing based on preobservation (day 1) neuroimaging
data. Using this same data set, we have previously examined changes
in resting-state FC from preobservation (day 1 scan) to postobserva-
tion (day 2 scan). See McGregor and Gribble (2015) for details of FC
changes from day 1 to day 2 and how they relate to observation-
related gains in motor learning.

We assessed motor learning behaviorally by having subjects per-
form reaches in a right FF, which was the opposite FF to what was
depicted in the learning video. The more subjects learned about the
observed left FF, the worse their performance would be in the right

FF. The idea is that during observation subjects learn about the
compensatory pattern of muscle forces (i.e., rightward compensation)
that is required to counteract the left FF. Subjects use this learned
pattern of muscle forces when they subsequently perform reaches,
resulting in aftereffects (see, e.g., Shadmehr and Mussa-Ivaldi 1994).
As is the case in this study, aftereffects are especially large if the FF
is changed such that it is the opposite of the learned environment. This
is because the subject compensates rightward (persistence of the
learned pattern of muscle forces) and the robotic arm also pushes the
hand to the right. Therefore, we expected that those subjects who
better learned about the observed left FF would perform more highly
curved reaches when first exposed to the right FF (Brown et al. 2009;
Cothros et al. 2006; McGregor et al. 2016; McGregor and Gribble
2015). We chose to use this interference paradigm to assess motor
learning by observing because it tends to be a more sensitive measure
compared with testing subjects in the same FF that they observed.

Imaging procedure. Neuroimaging data were acquired by a 3-T
Siemens Magnetom Tim Trio imaging system using a 32-channel
head coil. The fMRI scan session lasted 1 h. The scan session began
with two 8-min resting-state runs during which subjects were in-
structed to relax with their eyes closed. The resting-state runs were
separated by a 5-min anatomical scan during which subjects were
instructed to fixate their gaze on a cross hair projected onto a screen.
Subjects then performed two 6-min functional localizer tasks: an
action observation network localizer task and a motor localizer task.
We selected 10 a priori ROIs known to be involved in action
observation and/or motor learning (see below). The two localizer tasks
allowed us to determine the coordinates of each ROI for use in the
functional connectivity analysis described below.

For the action observation network localizer task, subjects viewed
intact and scrambled video clips of a tutor performing reaches while
holding the robotic arm (ten 36-s interleaved blocks in total). Intact
video clips showed a top-down view of a tutor performing straight
reaching movements in a null field (no forces applied by the robot).
For the baseline condition, subjects viewed scrambled versions of
these video clips in which only the start and target positions remained
in their original locations. Scrambling the videos allowed us to
preserve the low-level motion features such as movement direction
and velocity while removing such movement features as shoulder and
elbow joint rotations and the hand path (Malfait et al. 2010). During
the action observation network localizer task, subjects were instructed
to count the number of correctly timed movements the tutor per-
formed and to report the final tally to the experimenter at the end of
the video. This was done to verify that subjects attended to the video.
Reported tallies were not incorporated into the behavioral or neuro-
imaging analyses.
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Fig. 2. Behavioral results. A: experimental design showing the average perpendicular deviation (PD) of reaches for each group across trials in the null field on
day 1 and in the right FF on day 2. Behavioral data from the learning and control groups are shown in magenta and orange, respectively. Data are shown as 10-trial
blocks except for the first 2 blocks in the right FF, which are shown as 5-trial blocks. Error bars represent SE. B: motor learning by observing scores for the
learning group and the control group, reflecting initial PD in the right FF relative to baseline PD in the null field. Error bars represent SE. *P � 0.01.
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For the motor localizer task, subjects performed interleaved blocks
of arm movement and rest (ten 36-s blocks in total). During movement
blocks, subjects slowly moved their right forearm along the frontal
plane in a cyclic manner (90° elbow flexion). Color-coded visual cues
were used to pace movements at a frequency of 0.1 Hz.

Image acquisition. Whole brain functional data were acquired with
a T2-weighted EPI sequence (TR � 3,000 ms, TE � 30 ms, 90° flip
angle, 3-mm isotropic voxels, 80 � 80 � 50 matrix, iPAT accelera-
tion factor � 2). T1-weighted anatomical images were collected with
a MPRAGE sequence (TR � 2,300 ms, TE � 2.98 ms, 9° flip angle,
1-mm isotropic voxels, 192 � 240 � 256 matrix). For each subject,
a field map was acquired at the beginning of the scan session with a
gradient echo sequence (TR � 531 ms, TE � 4.92 ms/7.38 ms, 60°
flip angle, 3-mm isotropic voxels, 80 � 80 � 50 matrix).

Behavioral data analysis. During the reaching task, the position
and velocity of the robotic handle were sampled at 600 Hz and stored
for off-line analysis. Positional data were low-pass filtered off-line at
40 Hz. The start and end of each trial were defined with a threshold
of 5% of the peak tangential velocity of the hand. Movement curva-
ture was quantified for each trial as the maximum perpendicular
deviation (PD) of the hand from a straight line connecting the start and
target locations (Mattar and Gribble 2005).

We calculated a behavioral motor learning by observing score for
each subject. The motor learning by observing scores were calculated
as the mean PD of the first 3 reaches in the right FF minus the mean
PD of the last 50 reaches in the baseline null field. This approach
allowed us to examine the extent to which observing the left FF
interfered with subjects’ initial performance in the right FF compared
with control subjects who did not observe the tutor undergoing
learning. As in our previous work (Cothros et al. 2006; Brown et al.
2009; McGregor et al. 2016), we expected that motor learning by
observing would primarily affect initial performance in the right FF,
after which motor learning through active movement in the right FF
would occur for both groups.

Functional connectivity analysis. We carried out a whole brain
seed-based correlation analysis to examine whether intersubject dif-
ferences in resting-state FC on day 1 could predict the amount of
motor learning by observing that subjects would achieve on the
following day. Neuroimaging data analyses were performed with FSL
version 5.04 (FMRIB’s Software Library, https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki). Image preprocessing steps for the functional connectivity
analysis included the removal of the first two volumes in each
functional run, slice-timing correction, motion correction, spatial
smoothing using a 6-mm kernel, and high-pass temporal filtering
(100 s). Field map distortion correction and affine coregistration of
functional and anatomical images were performed with boundary-
based registration (BBR) in FLIRT. Subjects’ images were registered
to Montreal Neurological Institute (MNI) standard space (MNI’s
152-brain T1 template, 2-mm isotropic voxel size) with a 12-degrees
of freedom affine registration.

After preprocessing, each resting-state run was band-pass filtered
between 0.01 Hz and 0.1 Hz (Biswal et al. 1995; Damoiseaux et al.
2006). Mean-based intensity normalization was performed (mean
value of 10,000) to remove global intensity differences between runs
(Damoiseaux et al. 2006). We then carried out our seed-based corre-
lation analysis with FILM (FMRIB’s Improved General Linear
Model).

We selected 10 a priori ROIs known to be involved in action
observation and/or motor learning. ROIs included left supplementary
motor area (SMA), PMd, ventral premotor cortex (PMv), M1, S1,
visual area V5/MT, SPL, inferior parietal lobule (IPL), putamen, and
right cerebellum. We determined the coordinates of each ROI based
on the results of the block-design analyses of the action observation
network localizer task and the motor localizer task. For each localizer,
the task-induced response was assessed with a per-subject general
linear model (GLM). Data from all 30 subjects were then included in
a mixed-effects analysis (Z � 2.3, P � 0.05, cluster-based threshold-

ing) for each localizer. These analyses yielded Z-score maps showing
areas of the brain that were activated (on average across all 30
subjects) during arm movement or action observation, which we used
to determine the coordinates of our ROIs. For each of our 10 ROIs, we
found the peak activated voxel within that brain area and centered the
ROI on that voxel. Each ROI consisted of all voxels within a 6-mm
radius of the activation peak. Table 1 shows the coordinates of the
activation peaks on which each ROI was centered.

We then carried out a functional connectivity analysis to estimate
FC between each ROI and the rest of the brain on day 1. For each
ROI, we carried out a subject-level analysis on each resting-state run
in which the mean time series of the ROI was used as the predictor of
interest. Nuisance regressors included the temporal derivative of the
mean ROI time series, six rigid body motion parameters obtained
from motion correction, mean global signal, mean white matter signal,
and mean CSF signal. The results of the subject-level analyses were
then entered into a mixed-effects group-level analysis for each of the
ROIs. A separate mixed-effects analysis was carried out for each
group. In the group-level analysis, we also included a nuisance
regressor modeling intersubject differences in baseline movement
curvature in the null field. This nuisance regressor consisted of each
subject’s average PD of the last 50 reaches in the null field. This was
done because subjects had performed 200 reaches in the null field
before the fMRI scan session on day 1. Even though the robot did not
apply forces to the hand during null field reaches, subjects likely
underwent some degree of motor learning as they learned the inertial
properties of the robotic arm. We included the nuisance regressor
modeling subjects’ behavioral performance in the null field to account
for variability in preobservation resting-state FC that could be ex-
plained by differences in subjects’ movement curvature at baseline (in
the null field condition). Group-level functional connectivity analyses
were performed using both of the subjects’ resting-state runs together
as well as separately (see RESULTS).

Group-level analysis results were thresholded based on Gaussian
random field theory using a maximum height thresholding (Z �5.3)
with a corrected significance level of P � 0.005 (voxelwise thresh-
olding, corrected for familywise error). We applied a Bonferroni
correction for the number of ROIs used; therefore, our corrected
significance threshold of P � 0.005 reflects P � 0.05/10 ROIs. These
analyses resulted in 10 Z-score maps per group (1 per ROI) showing
areas that, on average, exhibited FC with the seed region across
subjects.

Table 1. Region of interest coordinates used in functional
connectivity analyses for learning and control groups

ROI x y z Z Score

L SMA �4 �10 56 5.93
L PMd �24 �22 66 6.02
L PMv �42 �6 56 5.16
L M1 �26 �30 64 6.41
L S1 �30 �36 62 6.32
L V5/MT �42 �76 2 5.70
L SPL �22 �48 68 5.87
L IPL �60 �44 22 4.01
L BG �28 �14 8 4.52
R CB 26 �44 �26 5.22

Region of interest (ROI) coordinates were determined on the basis of a
block-design analysis of the action observation network localizer task and the
motor localizer task. The seed coordinates were chosen as the peak activated
voxel within each of the 10 a priori-selected brain regions listed. L, left; R,
right; SMA, supplementary motor area; PMd, dorsal premotor cortex; PMv,
ventral premotor cortex; M1, primary motor cortex; S1, primary somatosen-
sory cortex; V5/MT, middle temporal visual area; SPL, superior parietal
lobule; IPL, inferior parietal lobule; BG, putamen; CB, cerebellum. ROI
locations are given in the MNI coordinate frame.
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For each of the 10 resulting Z-score maps, FC was computed for
each subject in the group as the temporal correlation (Fisher Z-trans-
formed correlation coefficient) between the ROI time series and the
average time series across all clusters in the identified network. This
allowed us to estimate each subject’s day 1 FC between the ROI and
all of the clusters in each of the identified networks. At the group
level, we computed the correlation (across subjects) between day 1 FC
values and day 2 motor learning by observing scores for each of the
identified networks. This was done to assess whether individual
differences in day 1 FC among brain areas in any of the identified
networks were related to performance during the behavioral test of
motor learning by observing on day 2. We again applied a Bonferroni
correction for the number of ROIs used; therefore, we considered
statistically significant only those correlations between day 1 FC and
motor learning by observing scores for which P � 0.005 (i.e., P �
0.05/10 ROIs).

Voxel-based morphometry analysis. We carried out a whole brain
voxel-based morphometry (VBM) analysis to test for intersubject
differences in gray matter volume across the whole brain (measured
on day 1) that could predict motor learning by observing scores on day
2. This analysis was carried out on the T1-weighted images with
FSL-VBM v1.1. First, each subject’s anatomical image was brain
extracted, gray matter segmented, and transformed to MNI space
using a nonlinear registration. The resulting anatomical images were
then averaged and flipped along the x-axis to generate a left-right
symmetrical, study-specific template. Each subject’s gray matter-
segmented anatomical image was registered to the study-specific
template and smoothed with a 3-mm Gaussian kernel. The VBM
analysis was carried out with a voxelwise GLM. The predictor of
interest modeled the subjects’ motor learning by observing scores
(demeaned). Two nuisance regressors were also included in the GLM;
one modeled the gray matter grand mean across all subjects, and the
second modeled each subject’s unnormalized total brain volume. Each
subject’s total brain volume was estimated before standard space
normalization using FSL’s SIENAX tool. The voxelwise GLM was
applied using nonparametric permutation (50,000 iterations) to correct
for multiple comparisons with a significance threshold of P � 0.05.

RESULTS

Behavioral results. Figure 2A shows the behavioral data
from the learning and control groups. It can be seen that on day
1 reaches are straight in the baseline null field condition for
both groups. After video observation on day 2, we assessed
motor learning by observing by instructing subjects to perform

straight reaches while the robotic arm applied a right FF (the
opposite FF to what had been observed in the learning video).
The more subjects learned about the observed left FF, the
worse their performance would be during their initial perfor-
mance in the right FF. Indeed, we found that subjects who
observed the tutor adapting to a left FF in the learning video
exhibited greater PD during initial reaches in the right FF
compared with control subjects who observed the tutor per-
forming curved reaches in an unlearnable FF. As in previous
work (Bernardi et al. 2013; Brown et al. 2009; Cothros et al.
2006; Mattar and Gribble 2005; McGregor et al. 2016; Wil-
liams and Gribble 2012), the effects of observation are most
apparent early in the motor learning test (i.e., the first 10
reaches shown as blocks 1 and 2 in Fig. 2A) and diminish as
subjects in both the learning and control groups adapt to the
right FF. Average motor learning by observing scores are
shown in Fig. 2B. Motor learning by observing scores reflect
the PD of the first three reaches in the right FF relative to the
subject’s baseline PD in the null field. As shown in Fig. 2B,
subjects who observed the tutor undergoing left FF learning
exhibited significantly higher motor learning by observing
scores compared with control subjects who observed the tutor
performing reaches in an unlearnable FF [t(28) � 2.58, P �
0.01].

Functional connectivity analysis. We performed a functional
connectivity analysis using the resting-state fMRI data ac-
quired on day 1 to test whether individual differences in
preobservation FC could predict motor learning by observing
scores on the following day. Of the 10 ROIs used, only the
analysis using the left S1 ROI revealed a network in which
preobservation FC was reliably correlated with day 2 motor
learning by observing scores for the learning group. As can be
seen in Fig. 3, day 1 FC between the left S1 ROI and the
average FC across clusters in bilateral PMd, bilateral M1,
bilateral S1, and left SPL was positively correlated with day 2
motor learning by observing scores (r � 0.76, P � 0.001) for
the learning group. Subjects with greater preobservation FC
among these areas on day 1 went on to achieve higher motor
learning by observing scores on the following day. Table 2
shows cluster activation peaks and statistics for the learning
group. For the control group, the analysis using the left S1 ROI
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Fig. 3. Preobservation FC predicted motor learning by observing scores for the learning group. This figure shows neuroimaging data from the learning group only.
Preobservation (day 1) resting-state FC between the left S1 ROI (inset at left) and clusters in bilateral PMd, bilateral M1, bilateral S1, and left SPL are shown.
FC values reflect the Fisher Z-transformed temporal correlation between the ROI time series and the average time series of all clusters in the identified network
for each subject. Across subjects in the learning group, the average day 1 resting-state FC within this network was positively correlated with day 2 motor learning
by observing scores. As shown in the scatterplot on right, subjects who exhibited stronger resting-state FC within this network on day 1 achieved greater motor
learning by observing scores on the following day (r � 0.76, P � 0.001).
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revealed a qualitatively similar network consisting of bilateral
PMd, bilateral M1, bilateral S1, and left SPL. This is expected
because subjects in the learning and control groups have had
identical experiences as of the day 1 resting-state scan session.
However, for the control group, day 1 FC within the identified
network was not reliably correlated with day 2 behavioral
motor learning by observing scores (r � �0.43, P � 0.67; see
Fig. 5).

Our computed motor learning by observing score took into
account the average PD of a subject’s first three reaches in the
right FF relative to his or her baseline PD in the null field. To
assess the sensitivity of the learning group’s correlation be-
tween preobservation FC and motor learning by observing
scores, we computed additional motor learning by observing
scores to use in our analysis. The additional motor learning by
observing scores reflected the average PD of the first 4, 5, 6, 7,
8, 9, or 10 reaches in the right FF minus the average PD of the
last 50 reaches in the null field. The learning group’s correla-
tion between day 1 FC and motor learning by observing scores
remained statistically significant for all of the additional
measures.

The GLMs used for the group-level functional connectivity
analyses included a nuisance regressor modeling each subject’s
baseline PD in the null field during the last 50 trials. This

nuisance regressor was included to account for variability in
preobservation resting-state FC that could be explained by
intersubject differences in movement curvature at baseline.
Our results were consistent whether the null field nuisance
regressor reflected the average PD of the last 3, 5, 10, or 50 null
field reaches or the average PD of the first 3, 5, 10, or 50 null
field reaches.

It is possible that the correlation between preobservation FC
and the day 2 motor learning by observing scores is due to
random chance (e.g., spurious correlations in the BOLD time
series) and not due to stable individual differences in functional
connectivity. To assess this, we repeated the functional con-
nectivity analysis on each of the two resting-state runs sepa-
rately. The resting-state runs were independent, separated in
time by a 5-min anatomical scan. Again using the ROI in left
S1, we found consistent spatial patterns of preobservation (day
1) FC between left S1, bilateral PMd, M1, and S1, and left SPL
for both individual runs (see Fig. 4). Moreover, for the learning
group, the correlation between preobservation (day 1) FC and
day 2 motor learning by observing scores was statistically
significant for both resting-state run 1 (r � 0.75, P � 0.001)
and run 2 (r � 0.63, P � 0.01). Therefore, when performed on
the each of the two independent resting-state runs, our analysis
yielded similar results in terms of both the spatial extent of the
clusters and the correlations with day 2 motor learning by
observing scores. It is therefore unlikely that our main result
arises from a spurious correlation. For the control group, there
was no statistically significant correlation between preobserva-
tion FC during either run 1 or run 2 and motor learning by
observing scores (r � �0.38, P � 0.15 and r � �0.03, P �
0.91, respectively; Fig. 5).

Voxel-based morphometry analysis. We carried out a whole
brain VBM analysis on the T1-weighted anatomical images.
This was done to test whether individual differences in gray
matter volume could predict subsequent motor learning by
observing scores. This analysis yielded no significant results.
We tested the sensitivity of this null result to the chosen
statistical threshold. For the learning group, no significant
clusters survived statistical thresholding at the group level until
the P-value threshold was raised to 0.27, at which level clusters
survived in left frontal lobe (�32, 54, 12) and Broca’s area

Table 2. Functional connectivity analysis using ROI in left S1

Z Score x y z Label

7.40 �26 �40 58 L S1 (BA2)
6.75 �22 �20 66 L PMd (BA6)
6.12 �16 �50 62 L SPL (BA5L)
5.80 �34 �28 52 L M1 (BA4p)
6.97 22 �42 60 R S1 (BA2)
7.10 30 �32 56 R M1 (BA4p)
6.36 26 �16 64 R PMd (BA6)

Functional connectivity analysis using the region of interest (ROI) in left S1
(Table 1) revealed a sensory-motor functional network in which preobserva-
tion (day 1) functional connectivity predicted day 2 motor learning by observ-
ing scores for the learning group. Z-score activation peaks, MNI coordinates,
and anatomical labels of the sensory-motor clusters in the identified functional
network are shown. L, left; R, right; S1, primary somatosensory cortex; PMd,
dorsal premotor cortex; SPL, superior parietal lobule; M1, primary motor
cortex.
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Fig. 4. Preobservation FC in run 1 and run 2 both predicted motor learning by observing scores for the learning group. The figure shows neuroimaging data from
the learning group only. Data from resting-state run 1 and run 2 were analyzed separately. For each run, the ROI in left S1 (inset at left) exhibited resting-state
FC with clusters in bilateral PMd, bilateral M1, bilateral S1, and left SPL. FC values reflect the Fisher Z-transformed temporal correlation between the ROI time
series and the average time series of all clusters in the identified network. For each of the runs, preobservation (day 1) resting-state FC between bilateral PMd,
M1, and S1 and left SPL was reliably correlated with day 2 motor learning by observing scores across subjects in the learning group. As shown in the scatterplot
on right, subjects who exhibited stronger FC within the network identified in each run on day 1 achieved greater motor learning by observing scores on day 2.
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(�50, 20, 12). When the P-value threshold was raised further
to 0.37, a cluster survived that spanned right premotor cortex
(54, �8, 52), M1 (54, �10, 46), S1 (56, �14, 44), and IPL (64,
�20, 40). However, since none of these clusters survived an
appropriate statistical threshold, these results are not interpre-
table. In the context of the data set here, individual differences
in gray matter volume could not account for variability in the
extent to which observation promotes motor learning.

DISCUSSION

Here we examined whether preobservation measures of
brain function or structure could account for individual differ-
ences in the extent to which observation facilitates motor
learning. We acquired measures of resting-state FC and gray
matter volume with MRI before an observational learning task
on the following day. We found that, for the learning group,
preobservation (day 1) resting-state FC between bilateral PMd,
bilateral M1, bilateral S1, and left SPL was reliably correlated
with behavioral scores of motor learning by observing acquired
on day 2. Those subjects in the learning group who exhibited
greater resting-state FC on day 1 achieved greater motor
learning by observing scores on day 2. No such correlation
between preobservation FC and motor learning by observing
scores was found for the control group who observed a tutor
performing reaches but not learning. Individual differences in
gray matter volume could not predict subsequent motor learn-
ing by observing behavioral scores. Although the analyses
presented here are correlational, the temporal order of events in
the experimental design, namely the resting-state scans preced-
ing the observational motor learning task by 24 h, supports the
idea that greater FC in a network linking S1, PMd, M1, and
SPL predisposes individuals to learn more about a novel motor
skill through visual observation.

The finding that preobservation resting-state FC between S1
and PMd, M1, and SPL predicts subsequent motor learning by
observing is consistent with previous work demonstrating that
M1 and the somatosensory system play necessary roles in
motor learning by observing. Brown et al. (2009) used repet-
itive transcranial magnetic stimulation (rTMS) to reduce cor-

tical excitability in M1 immediately after subjects observed a
FF learning video. A subsequent behavioral assessment
showed that reducing M1 excitability after observation dis-
rupted motor learning by observing. rTMS applied to M1 after
observation of FF learning reduced the beneficial effect of
observing congruent forces and eliminated the detrimental
effect of observing incongruent forces. These results suggest
that M1 plays a key role in motor learning by observing.

We have also recently demonstrated that the somatosensory
system plays a necessary role in motor learning by observing
(McGregor et al. 2016). We used median nerve stimulation to
occupy the somatosensory system with unrelated afferent in-
puts while subjects observed a video of a tutor undergoing FF
learning. During observation, subjects received median nerve
stimulation either to the right arm (the same arm used by the
tutor in the video) or to the left arm (opposite the arm used by
the tutor) or no stimulation. Stimulation disrupted motor learn-
ing by observing in a limb-specific manner, such that stimula-
tion of the right arm (observed effector) interfered with learn-
ing whereas stimulation applied to the opposite arm did not.
This result demonstrated that the somatosensory representation
of the observed effector is necessary and therefore must be
unoccupied during observation for motor learning by observing
to occur. In a follow-up EEG experiment, we showed that S1
cortical activity, as assessed using somatosensory evoked po-
tentials, increased for subjects who observed learning by an
amount that positively correlated with subsequent behavioral
motor learning by observing scores. These results suggest that
observation-induced functional changes in S1 support motor
learning by observing (McGregor et al. 2016).

The network identified in the present study overlaps with
those identified in neuroimaging studies showing that sensory-
motor networks support observational learning. We have pre-
viously shown that observing motor learning results in changes
in resting-state FC between M1, S1, visual area V5/MT, and
the cerebellum. Functional connectivity changes within this
network were correlated with behavioral measures of motor
learning, assessed after the fMRI sessions (McGregor and
Gribble 2015). Cross et al. (2009) showed that observation of
learned dance movement sequences recruits brain areas includ-
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Fig. 5. Preobservation FC did not predict motor learning by observing scores for the control group. As was the case with the learning group, subjects in the control
group exhibited preobservation (day 1) resting-state FC between the left S1 ROI and clusters in bilateral PMd, M1, and S1 and left SPL (not shown). FC values
reflect the Fisher Z-transformed temporal correlation between the ROI time series and the average time series of all clusters in the identified network. Across
subjects in the control group, there was no correlation between day 1 resting-state FC within this network and day 2 motor learning by observing scores. This
was the case when both runs were analyzed together (r � �0.38, P � 0.15; shown in scatterplot on left) as well as when the runs were analyzed separately
(r � �0.03, P � 0.91; shown in scatterplot on right).
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ing premotor and parietal cortices. The authors reported greater
activation in premotor and parietal regions when subjects
observed movement sequences on which they had been trained
(by observation) over the previous 5 days, compared with
untrained movement sequences. These studies suggest that the
neural substrates of motor learning by observing include pre-
motor cortex, M1, S1, and parietal cortex. This is consistent
with the results of the present study in which subjects who
exhibited greater preobservation resting-state FC between S1
and PMd, M1, and SPL later showed the greatest observation-
related facilitation of motor learning.

More generally, the present study provides insight into the
neural basis of motor learning. The network identified here
closely corresponds to functional networks involved in active
motor learning. For example, resting-state fMRI studies of
active motor learning have found FC changes between M1,
PMd, and the cerebellum following FF adaptation (Vahdat et
al. 2011) and FC changes within the fronto-parietal resting-
state network following visuomotor adaptation (Albert et al.
2009). Several task-based neuroimaging studies have similarly
suggested a role for PMd (e.g., Steele and Penhune 2010), M1
(e.g., Grafton et al. 1992; Steele and Penhune 2010), S1, and
SPL in motor learning through active movement (see Hardwick
et al. 2013 for review).

There are commonalities between the functional network
identified in the present study and those functional networks
that have been previously reported to predict aspects of motor
learning through active movement training. Tomassini et al.
(2011) showed that the task-based activation of premotor and
parietal cortices (along with prefrontal cortex, basal ganglia,
and the cerebellum) is associated with higher behavioral mea-
sures of motor learning. Wu et al. (2014) have similarly shown
that resting-state FC (as measured by high-density EEG) be-
tween M1, premotor cortex, and parietal cortex can predict
skill acquisition. The consistency between predictive func-
tional networks for learning through active movement training
and observational motor learning provides evidence in favor of
similar neural substrates for these two forms of motor learning.

There is evidence from the motor learning literature that
individual differences in brain structure can predict learning
through active practice. Tomassini et al. (2011) demonstrated
that individual differences in gray matter volume within the
cerebellum and higher-order visual areas (V2, V3, V5/MT) can
also predict behavioral measures of motor learning during a
visuomotor tracking task. While there is evidence for structure-
based predictability of active motor learning, in the present
study we found that this was not the case for motor learning by
observing; individual differences in gray matter volume could
not account for variability in behavioral scores of motor learn-
ing by observing. The discrepancy between the results of the
present study and that of Tomassini et al. (2011) may be due to
methodological differences in terms of the T1-image acquisi-
tion parameters and VBM analysis procedures used, and/or the
present study may have had insufficient statistical power.
Future studies investigating gray matter volume correlates of
motor learning by observing should have a larger sample size
to increase statistical power.

Here we tested whether preobservation measures of brain
function or structure could predict subsequent motor learning
by observing. We found that preobservation resting-state FC
between bilateral S1, PMd, M1 and left SPL predicted the

extent to which observation would promote motor learning on
the following day. Individual differences in gray matter vol-
ume could not predict behavioral scores of learning following
observation. These results demonstrate that individual differ-
ences in resting-state FC among sensory-motor cortical brain
areas can explain part of the individual variability in the extent
to which observation facilitates motor learning. This finding is
consistent with the idea that those individuals who have more
“primed” sensory-motor circuits are more predisposed to motor
learning through observation. Preobservation FC within the
identified sensory-motor network may be used as a biomarker
of the extent to which observation will promote motor learning.
Predicting an individual’s predisposition for motor learning by
observing could be valuable in a clinical context for planning
individualized rehabilitation strategies and improving prognos-
tic accuracy (Stinear 2010).

The origin of individual variability in preobservation sensory-
motor FC is still unclear. In one scenario, it is possible that the
observed individual differences in FC are a reflection of func-
tional variability and not anatomical variability within this
network. However, given the close correspondence between
anatomical and functional connectivity (see, e.g., Fox et al.
2005), another scenario is that the observed differences in FC
arise from individual differences in anatomical connectivity.
For example, it could be the case that greater structural con-
nectivity between these sensory-motor brain areas results in
higher preobservation sensory-motor FC that, in turn, promotes
greater motor learning by observing. Since we did not acquire
images for performing structural connectivity-based analyses
(such as diffusion tensor images) in the present study, we
cannot rule out the possibility that individual differences in
structural connectivity among sensory-motor brain areas un-
derlie the effect seen here, whereby preobservation FC predicts
motor learning by observing.

However, resting-state FC does not only reflect anatomical
connectivity. Indeed, much work has shown that resting-state
FC can be shaped by recent experiences. Such “stimulus-rest
interactions” have been demonstrated across several domains.
For example, exposure to visual stimuli (Lewis et al. 2009) or
undergoing active motor learning (Albert et al. 2009) can
change resting-state FC. Since resting-state FC is affected by
both structure and function, it is likely the case that both of
these factors contribute to individual differences in preobser-
vation sensory-motor FC. While we cannot pursue this ques-
tion further with the present data set, this would be an inter-
esting avenue for future research. Since previous experiences
can alter resting-state FC, it is likely that performance of null
field reaches in the baseline condition “primed” sensory-motor
networks before the day 1 resting-state scans and perhaps
increased the sensitivity of the present study. It would be of
interest to examine whether baseline measures (i.e., without
prior null field reaches) of resting-state FC within the identified
network could also predict motor learning by observing. An-
other outstanding issue is the stability of these individual
differences in preobservation FC over time. Future research
should examine the test-retest reliability of preobservation FC
over longer time periods (e.g., several days or weeks apart) to
establish the long-term stability of the FC patterns within the
network presented here. This would allow one to better distin-
guish within-session patterns from those more permanent
structural or functional patterns.
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