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The problem of selecting one action from a set of different possible ac-
tions, simply referred to as the problem of action selection, is a ubiq-
uitous challenge in the animal world. For vertebrates, the basal ganglia
(BG) are widely thought to implement the core computation to solve this
problem, as its anatomy and physiology are well suited to this end. How-
ever, the BG still display physiological features whose role in achiev-
ing efficient action selection remains unclear. In particular, it is known
that the two types of dopaminergic receptors (D1 and D2) present in the
BG give rise to mechanistically different responses. The overall effect
will be a difference in sensitivity to dopamine, which may have ram-
ifications for action selection. However, which receptor type leads to a
stronger response is unclear due to the complexity of the intracellular
mechanisms involved. In this study, we use an existing, high-level com-
putational model of the BG, which assumes that dopamine contributes to
action selection by enabling a switch between different selection
regimes, to predict which of D1 or D2 has the greater sensitivity. Thus,
we ask, Assuming dopamine enables a switch between action selection
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Differential Dopamine Receptor Sensitivity for Action Selection 1589

regimes in the BG, what functional sensitivity values would result in
improved action selection computation? To do this, we quantitatively as-
sessed the model’s capacity to perform action selection as we paramet-
rically manipulated the sensitivity weights of D1 and D2. We show that
differential (rather than equal) D1 and D2 sensitivity to dopaminergic
input improves the switch between selection regimes during the action
selection computation in our model. Specifically, greater D2 sensitivity
compared to D1 led to these improvements.

1 Introduction

The need for selection usually arises when a system needs to use a quan-
titatively limited resource. In the case of action selection, several potential
actions may require the same body effectors, making those actions mutu-
ally exclusive and requiring the brain to implement a solution to the ensuing
action selection problem. The basal ganglia (BG) are now widely accepted
as the brain structure that implements the computation pertaining to ac-
tion selection by acting as the nervous system’s central switch (Redgrave,
Prescott, & Gurney, 1999; Ringo, 1991; Gurney, Prescott, & Redgrave, 2001a;
Humphries, Stewart, & Gurney, 2006; Friend & Kravitz, 2014; Mink, 1996).

1.1 Overview of the Basal Ganglia Architecture. The primate BG are
composed of several distinct nuclei with a complex but reasonably well-
understood connectivity (Mink, 1996). The principal nuclei are the striatum,
the subthalamic nucleus (STN), the globus pallidus (GP), and the substan-
tia nigra (SN; Figure 1a). The GP is also subdivided into the internal (GPi)
and external (GPe) segments and the SN into the pars reticulata (SNr) and
pars compacta (SNc; see Figure 1b). The largest neural population in the
SNc are dopaminergic neurons sending diffuse projections to the striatum
(Smith, Bennett, Bolam, Parent, & Sadikot, 1994) and connecting to two dif-
ferent striatal neuron populations with a different subtype of dopamine re-
ceptors, called D1 and D2 receptors. Interestingly, D1-expressing neurons
in the striatum project predominantly to the GPi/SNr while D2-expressing
neurons project mainly to the GPe (see Figure 1a), with all these striatal
projections being inhibitory (Smith, Bevan, Shink, & Bolam, 1998; Erics-
son et al., 2013). The intrinsic circuitry of the GPe is rather complex. Sev-
eral subpopulations of neurons are contained within it (Mallet et al., 2012;
Sadek, Magill, & Bolam, 2007; Suryanarayana, Hellgren-Kotaleski, Grillner,
& Gurney, 2019), with each subpopulation sending self-inhibitory projec-
tions and local inhibitory projections to other subpopulations within the
GPe. They also send inhibitory projections outside the GPe to all other BG
nuclei (Sadek et al., 2007; Suryanarayana et al., 2019), except for the arky-
pallidal neurons that send (diffuse) inhibitory projections only to D1- and
D2-expressing striatal neurons without contacting the STN or the GPi/SNr
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1590 O. Codol, P. Gribble, and K. Gurney

Figure 1: An overview of the anatomical architecture of the BG. (a) Intrinsic
connectivity of the BG. (b) Extrinsic connectivity of the BG, showing the baso-
thalamo-cortical loops. Figure modified from Gurney et al. (2001a).

(Mallet et al., 2012). Finally, the STN sends diffuse excitatory projections to
all GPe subpopulations, as well as to the GPi/SNr (Shink, Bevan, Bolam, &
Smith, 1996; Parent & Hazrati, 1993).

The BG receive projections from nearly the whole cortex, as well as the
thalamus and limbic system (Nakano, Kayahara, Tsutsumi, & Ushiro, 2000;
Coizet et al., 2009; Feger, Bevan, & Crossman, 1994; Lanciego et al., 2004;
Sharpe et al., 2019; Monakow, Akert, & Kunzle, 1978), providing the re-
quired contextual information to properly define the relative value of each
action (e.g., prominence of the stimulus or immediate utility) to perform the
action selection computation. These various inputs enter the BG through
the striatum and the STN. The main output nuclei of the BG are the GPi
and SNr. The BG’s default output is a tonic inhibition from the GPi/SNr to
the thalamus (see Figures 1a and 1b). Actions are permitted in the BG by
selectively releasing this inhibition, allowing their expression (Chevalier &
Deniau, 1990).

1.2 The Basal Ganglia Architecture Supports the Action Selection
Hypothesis. This anatomy of the BG is well suited for action selection
(Bariselli, Fobbs, Creed, & Kravitz, 2019; Kwak & Jung, 2019). This was il-
lustrated by Gurney, Prescott, and Redgrave in a computational model of
the BG (Gurney et al., 2001a, 2001b; Suryanarayana et al., 2019), henceforth
referred to as the GPR model, that reproduces the functional architecture
in Figure 1a. A main assumption of the GPR model is that each action is
represented in the BG by a specific stream of sensory, cognitive, and emo-
tional information called a “channel,” which represents one possible action
to perform. Channels are organized in parallel, in line with physiological
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Differential Dopamine Receptor Sensitivity for Action Selection 1591

Figure 2: An illustration of a generic feedforward network that produces on-
center, off-surround competition. (a) Functional architecture of a four-channel
feedforward net implementing an off-center, on-surround computation. Only
the output from the second neuron of the projection layer is explicitly shown.
(b) Implementation of a three-channel feedforward net in the BG. Note that the
focused inhibitory and diffuse excitatory component of the projection layer are
split in two distinct neural populations—respectively, the striatum and the STN.
(c) At the same time, each neuron in the output layer also receives excitatory
input from all the neurons in the STN. Figure modified from (Gurney et al.,
2001a).

and histological evidence (Graybiel, Ragsdale, Yoneoka, & Elde, 1981;
Alexander, DeLong, & Strick, 1986). Those channels then compete with each
other through off-center/on-surround computation in the BG circuit, with
the “winning” channel eventually suppressing the other channels’ activity
to promote its own selection (Girard, Lienard, Gutierrez, Delord, & Doya,
2020).

A functional center/surround organization has been proposed in the BG
(Mink & Thach, 1993) as a result of diffuse excitatory drive from the STN
and focused inhibitory drive from the striatum to the GPi/SNr (see Fig-
ure 2a and 2b for a simplified illustration; Gurney et al., 2001a). In the GPR
model, if a channel receives a stronger input from the cortex, all channels
in the output layer will be more activated through that channel’s diffuse
STN→GPi/SNr projection (see Figure 2b), with only the more activated
channel receiving equally strong inhibition from the striatum. Therefore,
that channel’s output will be less than the other channels’ output, leading
to disinhibition of the action represented by that channel. Of note, the stria-
tum’s local circuitry includes lateral inhibition, which may also contribute
to the center/surround organization, although this is not included in the
GPR model.

1.3 Dopamine and Action Selection. Dopaminergic input in the BG
originates from the SNc, and one of its proposed functions is to modulate
the action selection computation (Groves, Linder, & Young, 1994). In the
GPR model, this translates into allowing the BG to switch between two se-
lection regimes (Gurney, Humphries, Wood, Prescott, & Redgrave, 2004): a
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1592 O. Codol, P. Gribble, and K. Gurney

so-called hard selection regime, which promotes selection of single actions,
and a soft selection regime, which allows multiple actions to be selected.
The latter may correspond in real life as a situation where competing ac-
tions are not mutually exclusive, such as picking up a fruit in each hand.

As mentioned, striatal neurons are segregated into two distinct popula-
tions expressing either D1 or D2 receptors. D1 receptors increase cortico-
striatal transmission, whereas D2 receptors attenuate it (Surmeier et al.,
2007). They also display quantitatively different molecular affinities to
dopamine, with D2 receptors binding more easily to dopamine (90% of D2
receptors in high-affinity state against a selective agonist) than D1 receptor
(20% in a high-affinity state; Arbuthnott & Wickens, 2007; Richfield, Pen-
ney, & Young, 1989). However, these numbers have been challenged more
recently, and what mechanistically underlies binding affinities of D1 and D2
is still unclear (Cumming, 2011; Skinbjerg, Sibley, Javitch, & Abi-Dargham,
2012). Additionally, the intracellular activation pathways differ between D1
and D2. Therefore, the overall response to dopamine at either receptor type
will be the result of a complex cascade of influences, which may even work
in opposing directions to the difference in proportion of high-affinity states
expressed (Kenakin, 2013). It is not surprising, therefore, that attempts to
measure or simulate intracellular pathway amplification have given incon-
clusive and sometimes opposite results (Yapo et al., 2017; Marcott, Mama-
ligas, & Ford, 2014; Watts et al., 1998; Watts & Neve, 1996; Kim et al., 2004;
Dumartin et al., 2000). Therefore, it is currently unknown if the imbalance
in the proportion of high-affinity states really translates into an imbalance
in response to dopamine in D1 versus D2 receptors—and if it does, which
receptor actually shows a stronger response.

In this study, we take this problem from a top-down, functional approach
instead and ask, Assuming the function of the BG is to perform action se-
lection and that dopamine modulation allows for a switch between soft and
hard selection regime, what is the optimal relationship between D1 and
D2 sensitivity? By “sensitivity,” we encompass the amount of receptors ex-
pressed, binding affinity, and intracellular pathway amplification together
and refer to it as “functional weight.” To address this question, we added
the different D1 and D2 functional weight to the GPR model, resulting in
an augmented differential-weight model. We then varied the value of both
D1 and D2 weights independently and quantified the augmented model’s
performance for soft and hard selection given each combination of weights.
Our results supply a prediction for the overall functional sensitivity of each
of the D1 and D2 responses.

2 Model Construction

While the GPR model was first proposed in Gurney et al. (2001a, 2001b),
here we build up on a version of the same model described in Surya-
narayana et al. (2019), which incorporates a substantially more detailed GPe
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Differential Dopamine Receptor Sensitivity for Action Selection 1593

local circuitry and projections, based on more recently available anatomical
data. Therefore, we refer to the model in Suryanarayana et al. (2019) as the
“original model” here and use it as our control condition.

2.1 Model Code and Analysis Code Availability. The code for imple-
menting the model, running the simulations for this study, analyzing the
resulting data, and plotting the figures is freely available online at https:
//github.com/OlivierCodol/GPR-augmented-model.

2.2 Input to the Model. The GPR model focuses on the computations
intrinsic to the BG to implement action selection. Consequently, cortical and
thalamic structures are not represented in this model. Rather, it is assumed
that the information entering the BG has already been preprocessed into a
scalar termed “salience,” as it is expected to scale with how urgent or salient
a potential action may be given cognitive, sensory, and emotional evidence
processed at the cortical level (Gurney et al., 2001b; Humphries et al., 2006).
Here, each channel receives a specific, user-defined salience input that can
vary over time. Additionally, since no noise is introduced in the model, the
model is fully deterministic.

2.3 Implementation of the Differential Affinity of D1 and D2 Recep-
tors. In the original model, the ith channel receives the same salience drive,
ci at both D1- and D2-striatal modules, yielding module inputs uD1

i and uD2
i ,

respectively. This input is also modulated by the shared dopaminergic in-
put λ and multiplied by a shared corticostriatal weight wcortex

s according to
the following equations:

uD1
i = wcortex

s (1 + λ) ci + GPe, (2.1)

uD2
i = wcortex

s (1 − λ) ci + GPe, (2.2)

where uD1
i and uD2

i are the net, postsynaptic input to the D1- and D2-
expressing neural population in the striatum. The term GPe here refers to
the contribution from GPe projections that are not detailed here (see ap-
pendix A and see Figure 1a). Note that the dopaminergic modulation given
by λ facilitates input for the striatum D1 and attenuates it for the striatum
D2, in line with biological evidence (Surmeier, Ding, Day, Wang, & Shen,
2007). Also note that the formulation of dopaminergic modulation allows
for the model to keep processing cortical inputs even in the absence of any
dopaminergic drive, since for λ = 0, we have (1 ± λ) = 1.

Since the model alteration in this study is at the level of the dopaminergic
input λ, we focus in this section on equations 2.1 and 2.2. The full model’s
architecture is illustrated in Figure 1a, and the detailed mathematical for-
mulation of the model is available in appendix A. Briefly, each nucleus in
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1594 O. Codol, P. Gribble, and K. Gurney

the model contains a set of neural units, with each neural unit represent-
ing one channel. These channels receive a sum of weighted inputs, which is
then passed through a saturating nonlinear output function (see equation
A.2 in appendix A) to bound the output range.

To introduce the differential sensitivity to dopamine at D1 and D2
synapses, we added connectivity weights wD1,wD2, which combine with
λ to produce receptor-type dependent modulation. Thus, in the augmented
model, equations 2.1 and 2.2 become

uD1
i = wcortex

s (1 + wD1λ) ci + GPe, (2.3)

uD2
i = wcortex

s (1 − wD2λ) ci + GPe. (2.4)

Our experiments seek to assess the effects of these modulating factors
on model selection. However, it is first necessary to define more precisely
what we mean by “selection” so that we have a quantitative measure of this
function that can be evaluated for different values of wD1,wD2.

3 Quantifying Selection Performance

3.1 Defining Selection. This section follows the method described in
Gurney et al. (2004). Since the BG select via disinhibition, selection occurs on
channel i if there is sufficient reduction in that channel’s GPi/SNr output Yi,
compared to its tonic valueY0. The tonic valueY0 is the same for all channels
(channel-independent) and is the output of the GPi/SNr in the absence of
any input (see Figure 3). To quantify this reduction from the tonic value, we
define a selection threshold θ , where Y0 > θ ≥ 0, and consider that selection
has occurred if Yi ≤ θ . Specifically, in this instantiation of the model, we
observe Y0 = 0.1032 for the parameter values specified in Table 2, and we
used θ = 0. Finally, we consider a “distortion” threshold θd, with Y0 > θd >

θ . If we have θd > Yi > θ , the outcome is not a clear selection of channel i but
a distorted selection, which may lead to intereference with other selected
channels, as detailed below. In this study, we used θd = 0.1 × Y0.

If two channels have nonzero salience input, they are effectively compet-
ing. To evaluate the outcome of this scenario, we run the following experi-
mental protocol (see Figure 3). At t = 0, no input is presented to the model
for a time sufficient to let tonic outputs to be expressed and reach equilib-
rium. Then, at t = 1, one channel receives an input of salience c1. Because of
interchannel interactions, we can observe that the input to the first channel
alters the activity of the second channel despite c2 remaining constant. At
t = 2, the output of both channelsYt=2

1 andYt=2
2 has already reached equilib-

rium, and the second channel receives an input c2. The simulation finishes
at t = 3, when both the first and second channel outputs Yt=3

1 and Yt=3
2 have

reached equilibrium again. At this point there are six possible outcomes.
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Figure 3: Salience input from the cortex to the model and dynamics of the
model’s GPi/SNr layer output. Note that the change in salience input in chan-
nel 1 at t = 1 leads to a change in output value for channel 2, and vice versa at
t = 2. The tonic output (i.e., for no input at all in any channel) can be seen from
t = 0 to t = 1.

1. No selection. Neither channel output has reached the selection thresh-
old so no action is selected:

Yt=2
1 > θ and Yt=3

1 > θ and Yt=3
2 > θ. (3.1)

2. Single-channel selection. Only one channel is selected:

Yt=2
1 ≤ θ and Yt=3

1 ≤ θ and Yt=3
2 > θ and Yt=3

2 > θd (3.2)

or Yt=2
1 > θ and Yt=3

1 > θ and Yt=3
2 ≤ θ and Yt=3

1 > θd. (3.3)

3. Dual-channel selection. Both channels are selected:

Yt=2
1 ≤ θ and Yt=3

1 ≤ θ and Yt=3
2 ≤ θ. (3.4)

4. Interference. Channel 1 is selected at first, but channel 2 forces dese-
lection of channel 1 and is not selected in return:

Yt=2
1 ≤ θ and Yt=3

1 > θ and Yt=3
2 > θ. (3.5)

5. Channel switching. Channel 1 is selected at first, but channel 2
forces deselection of channel 1 and is selected in return without
interference:

Yt=2
1 ≤ θ and Yt=3

1 > θ and Yt=3
2 ≤ θ and Yt=3

1 > θd. (3.6)
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Figure 4: Templates for hard and soft selection regimes. (a, b) Simulation out-
comes with two competing channels and the original model, with dopamine
level λ = 0.294 (a) and λ = 0.818 (b). (c, d) Optimal outcomes for hard (c) and
soft (d) action selection regimes as defined in the text.

6. Distortion. A single channel may be selected or switching may occur,
but the losing channel is not clearly deselected:

Yt=2
1 ≤ θ and Yt=3

1 ≤ θ and Yt=3
2 > θ and Yt=3

2 ≤ θd (3.7)

or Yt=2
1 > θ and Yt=3

1 > θ and Yt=3
2 ≤ θ and Yt=3

1 ≤ θd (3.8)

or Yt=2
1 ≤ θ and Yt=3

1 > θ and Yt=3
2 ≤ θ and Yt=3

1 ≤ θd. (3.9)

To discover the properties of selection more generally for a given set of
model parameters, we repeat this experiment for all combinations of c1 and
c2 between 0 and 1 with a step of 0.1. The outcome of this set of 121 sim-
ulations is reported on a 2D grid, with axes for c1 and c2 and a symbol at
each grid point denoting which of the six possible outcomes occurred (as
defined above; see Figure 4). Panels a and b show such results for typical
low and high dopamine levels in the original model.
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3.2 Dopamine-Driven Switch between Hard and Soft Selection. To
quantify selection performance, it is necessary to reduce the grid of 121 ex-
perimental outcomes obtained in the previous section to a simpler set of nu-
meric quantities and in turn characterize how these quantities change with
dopamine modulation. To that end, we follow here the method given in
Gurney et al. (2004) and Suryanarayana et al. (2019), which depends on the
notions of hard and soft selection introduced in section 1.3. In the original
model with low dopamine drive (see Figure 4a), most of the experiments
produced either no selection, single-channel selection, or a channel selec-
tion switch; only a handful produced dual-channel selection when compe-
tition is strong at very high salience. This general pattern would therefore
match hard selection more than soft selection due to the lower occurrence
of dual selection. Thus, to characterize the archetypal variant of hard selec-
tion, we take this outcome to a limiting case shown in Figure 4c. Here there
are no instances of dual selection, and the number of no-selection case is
minimized (there have to be some, as disinhibition beyond threshold can-
not occur for very small inputs). We refer to the outcome in Figure 4c as
the hard selection template. Conversely, with high dopamine (see Figure
4b), most of experiments produced dual-channel selection, which is typi-
cal of a soft-selection regime. This is idealized in the soft selection template
shown in Figure 4d. Note that these templates are optimized by hand rather
than algorithmically and are identical to those used in previous iterations
of the model to enable meaningful comparisons (Gurney et al., 2004; Surya-
narayana et al., 2019).

We can now use these templates to characterize the outcome of a com-
plete set of 121 experiments by its degree of similarity with each of the tem-
plates. Thus, for each experimentally obtained grid, let Nh be the number of
grid points with the same outcome as the hard selection template and put
Ph = 100 × Nh/121. In a similar way, we define Ps as the degree of similarity
with the soft selection template.

The values Ph, Ps will depend on the level of dopamine (as exempli-
fied in Figure 4). The GPR model assumes this transition from hard to
soft selection to be a feature of dopamine control of basal ganglia function
(Blanco & Sloutsky, 2021; Costa, 2007; Costa et al., 2006; Wickens, Horvitz,
Costa, & Killcross, 2007; Gizer, Ficks, & Waldman, 2009; Bogacz, 2020). If
the basal ganglia supports such a mechanism, then values of the parame-
ters wD1,wD2, which will optimize this transitional control, will reflect the
relative biological dopamine sensitivity these parameters aim to capture. To
proceed, we now require a quantitative measure of the transitional control
from hard to soft selection.

3.3 Quantifying Dopamine-Dependent Selection Control. We first ob-
tain the similarity measures Ph, Ps for each level of dopamine. Dopamine is
represented as a scalar λ in the model, but a quantity which is perhaps easier
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1598 O. Codol, P. Gribble, and K. Gurney

Figure 5: Cartoon representing the variables used to define the template fitting
functions’ main features. Hard and soft selection templates Ph and Ps are rep-
resented in solid and dashed lines, respectively. Figure modified from (Gurney
et al., 2004).

to relate to cortico-striatal modulation is the ratio, Rw, of signal amplifica-
tion/attenuation in the original model

Rw = 1 + λ

1 − λ
. (3.10)

Note that Rw is bounded below by 1 since λ is bounded below by 0, but
it has no theoretical upper bound as λ approaches 1 (see section A.4 in
appendix A for more details). Then, for a given dopaminergic ratio, Rw, we
run a grid set of experiments and obtain Ph(Rw ) and Ps(Rw ). We can then
plot these functions as shown in Figure 5.

In an ideal system that allows control of the hard/soft selection via the
parameter Rw, we might expect the following characteristics. First, there
will be well-defined regimes for hard and soft selection, separated by some
crossover point at Rw = wx. For 1 ≤ Rw < wx, hard selection will dominate,
and so we have Ph(Rw ) > Ps(Rw ); for wx < Rw, soft selection prevails, and so
we have Ph(Rw ) < Ps(Rw ) (see Figure 5). Notice that the observed behavior
of the original model (see Figure 6a) complies with this description. The
degree to which the two regimes are well defined and contrasted may be
captured in any number of ways, but we adopt a feature-based approach as
shown in the figure. The features are the maximum value of Ph in the hard
selection regime, Hmax; the corresponding maximum for soft selection, Smax;
the mean value �Fh of the difference Ph − Ps for hard selection; and the mean
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Figure 6: Sample of representative template fitting functions for different ver-
sions of the model. The weights of each version are indicated in Table 1. (a) The
original model (Q = 0). (b) A failed model (Q undefined). (c) The best model
obtained across all experiments (Q = 0.18). (d) A model that evaluated worse
than the original model (Q = −1.15). The solid and dashed lines represent Ph

and Ps, respectively.

value �Fs of Ps − Ph up to a practical maximum value of Rw = 10. While
this maximum value is somewhat arbitrary, we expect that physiological
constraints will also limit any biological correlate of this ratio.

Ideally, we would expect all these features to have as large a value as pos-
sible. In addition, we might expect the transition point wx to be significantly
larger than 1; otherwise, there is little room for adopting the hard selection
regime under noisy control of the parameter Rw. We therefore consider wx

as a member of the feature set describing selection.
To facilitate comparison with the original model, we used the ratio of

the feature values for any new model with respect to those for the original
model. Thus, if f is one of the five features {wx,�Fh,�Fs, Hmax, Smax} we de-
fine r = f/ f G where f G is the original model value. We also log-transform,
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defining f̃ = log(r)—for example, �F̃h = log(�Fh/�FG
h ), where �FG

h is the
value for the GPR model. Then f̃ > 0 implies a feature value larger than
that of the GPR model, which, by dint of the way the features were defined,
means a better switch between hard and soft selection performance.

The features can then be used to define a metric, Q, which measures
the quality of the transitional control between the two regimes. Thus, let
f̃i be the (log-transformed) ith feature (1 ≤ i ≤ 5 since there are five fea-
tures). Then assuming all features are well defined and that no ri = 0, we
can define Q = ∑

i f̃i. From all the definitions above, the GPR model there-
fore yields Q = 0, and positive/negative values of Q imply a better/worse
performance than the baseline of GPR. If, however, any model feature is
not defined or zero, then Q is also not defined. This indicates a failure of
the model to display sensible hard or soft selection behavior. More details
about the rationale behind these features and their definition are in Gurney
et al. (2004).

4 Results

A series of experiments was done by sampling wD1,wD2 on a grid over their
respective ranges of values. Note that we must have wD2 · λ ≤ 1 since val-
ues larger than this can allow for and overall change the sign of the cortico-
striatal input in equation 2.4, which is biologically implausible. Since we ran
our simulations with Rw ≤ 10, rearranging equation 3.10 gives us λ ≤ 9/11,
and so we must have wD2 ≤ 11/9. Conversely, wD1 is not bounded as such,
but performance peaked at values well under wD1 = 10, which therefore
was a practical upper bound for our simulations. Thus, we varied wD1,wD2

so that 0 ≤ wD1 ≤ 10 and 0 ≤ wD2 ≤ 11/9. We ran the experiments with 401
and 50 sampling points for parameters wD1 and wD2, respectively, to ensure
at least a sampling point every 0.0250 step. This resulted in 20,050 complete
evaluations of the model, each yielding a set of features and Q value indi-
cating its performance relative to the original model.

4.1 The Sensitivity Weightings Significantly Alter Switching Perfor-
mance. Some representative template fitting functions, obtained from our
grid sampling of wD1,wD2, are given in Figure 6 and Table 1, with results for
the original model shown in panel a. Panel b shows an instance where there
is no hard-soft transition within the domain explored and so the Q metric is
undefined. In contrast, panels c and d show two cases of successful models
with Q > 0 and Q < 0, indicating better and worse performance than the
original model, respectively (in fact, the result in panel c was for the best
model obtained).

The better performance of the model in panel c is due to greater fit to the
optimal soft template displayed in Figure 4d (Smax in Table 1), while the fit
to hard selection Hmax is similar to the original model (although marginally
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Differential Dopamine Receptor Sensitivity for Action Selection 1601

Table 1: Feature Set, Merit Q, and Parameter Values of Each Model from
Figure 6.

Model Original Failed Best Worst
Fig. 6 Panel Panel a Panel b Panel c Panel d

wD1 1.00 0.57 0.28 0.55
wD2 1.00 0.00 1.07 0.07
Hmax 74.38 77.69 73.55 78.51
Smax 86.78 62.81 100.00 70.25
�Fh 14.29 16.36 13.75 15.02
�Fs 47.86 undefined 49.83 4.18
wx 1.66 undefined 2.22 1.51
Q 0.00 undefined 0.18 − 1.15

lower). The difference between hard and soft selection (�Fh and �Fs) is simi-
lar to that of the original model. Finally, wx is greater than the original model
(from 1.66 to 2.22), illustrating that the hard selection regime is more ex-
pressed along the dopaminergic axis.

4.2 Model Switching Performance Improves for Different Rather
Than Equal wD1,wD2 Weights. Next, we assessed the dependence of each
feature on wD1,wD2 (see Figure 7). Note that in this section, we discuss
the features as a function of the original model (w̃x instead of wx) to al-
low for better comparison, as mentioned in section 3.3. Thus, a feature
value above/below 0 indicates better/worse performance than the origi-
nal model for the corresponding wD1,wD2 pair.

A first observation is that wD1 < 0.2 and wD2 < 0.2 lead to a failed model
(signaled by white in Figure 7), and that this is not due to a specific feature
failing but rather to all features failing similarly (see Figures 7a, 7b, 7e, and
7f, bottom left corners), with the exception of H̃max and S̃max (see Figures 7c
and 7d). Some features even fail for wD2 < 0.5 values, such as �F̃s and w̃x

(see Figures 7b and 7e). Overall, small wD1 and wD2 values effectively shrink
the effect of dopamine on the cortico-striatal input, eventually forcing the
model to behave as it does when λ is always close to 0 (see equations 2.3
and 2.4). This hinders the model’s ability to switch to soft selection at high
λ values, leading to models behaving similarly to what we observe in Figure
6b, although to a more exteme case.

The opposite occurs as wD1 and wD2 take very large values. The λ mod-
ulation on cortico-striatal input is magnified, forcing the model to quickly
transition to a soft selection mode. This can be seen by looking at �F̃h in
Figure 7a, which quickly reaches a (positive) peak value at low wD1 val-
ues and then drops and stabilizes around 0 as wD1 keeps increasing. Simi-
larly, we see that w̃x initially takes high, positive values and then drops to
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1602 O. Codol, P. Gribble, and K. Gurney

Figure 7: Variation of (a) �F̃h, (b) �F̃s, (c) H̃max, (d) S̃max, (e) w̃x, and (f) Q as a
function of wD1 and wD2 for the different versions of the augmented model. Blue
and red represent low and high values, respectively. Empty (white) values mean
that the variable is undefined. The black square mark on each panel indicates
the location of the best Q value. The solid black line in panel f surrounds the
region for which the augmented model is better than the control model (Q > 0).
Note that the parameter value to color space mapping is nonlinear and centered
on 0.

negative values as wD1 increases as well, indicating that the transition oc-
curs for lower Rw values than in the original model (see Figure 7e).

�F̃s shows the opposite pattern: the larger wD1 and wD2, the better this
feature performs. However, the improvement from the original model is
very marginal, meaning that this feature did not drive up the Q value in
that region (see Figure 7f) and was therefore not particularly relevant for
improving the model’s switching capabilities. Finally, the remaining two
features H̃max and S̃max both displayed a sweet spot: for wD1 around 1.5
and wD2 around 0.2 (H̃max) and for wD1 around 0.3 and wD2 around 1.0
(S̃max).

Thus, the overall Q metric has two reasonably distinct regions where
Q > 0, corresponding to the improvement in H̃max and S̃max. However, the
improvement in S̃max is quantitatively greater than that of H̃max, which is
why we clearly observe our best model in the region matching better S̃max

performance, with Q = 0.18 (see Table 1 and Figure 6c).
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Differential Dopamine Receptor Sensitivity for Action Selection 1603

Figure 8: Distribution of the best model’s wD1 (left) and wD2 (right) values for
each of a thousand altered-connectivity models. The red vertical dashed lines
indicate the median of the distribution.

4.3 The Optimal wD1,wD2 Weight Values Are Robust to Random
Changes in the Model Connectivity. The presence of two regions with
improved model performance suggests that slightly different models may
lean toward one region or another. In other words, is the GPR model’s ob-
served preference for low wD1 and high wD2 values robust? To answer this
question, we repeated the experiment, giving rise to Figure 7a thousand
times while randomly varying the value of each connectivity weight in the
model within ±10% of its original value. We excluded from these varia-
tions wD1,wD2, and the cortico-striatal and cortico-STN input weight wcortex

s
and wcortex

stn , which were fixed at their default value to ensure the input to
the model was identical across simulations (see appendix A and Table 2 for
detail). All remaining 24 weights were redrawn independently from each
other for each simulation run using a uniform distribution. From this, we
can see the distributions of the best wD1,wD2 weight values are centered on
low wD1 and high wD2 similar to the unaltered model (Figure 8), indicat-
ing that the result we observe is robust to marginal random changes in the
model’s connectivity.

4.4 The D1/D2 Weight Ratio Does Not Define Model Performance.
We next assessed how our models performed as a function of the weight
ratio wD1/wD2 rather than the absolute value of each weight independently.
We do observe that the best merit values occur with a ratio lower than 0.6
for the augmented model compared to the original model (Q > 0; see Figure
9a). This was also true in the set of altered-connectivity models, where the
best model for each run always displayed a ratio lower than 0.6 (see Figure
9b). However, this ratio alone was not sufficient for a model to perform
better, as many models with a ratio under 0.6 still performed poorly, and
even performed worse than many models with a larger ratio (see Figure 9a).
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1604 O. Codol, P. Gribble, and K. Gurney

Figure 9: (a) Model merit Q as a function of wD1/wD2 ratio. Note that the axes
are in a logarithm base 10 scale. The red horizontal line indicates Q = 0. The red
vertical line indicates a ratio of 0.6 (see text). (b) Distribution of the wD1/wD2 ratio
for each of the best altered-connectivity models. The red dashed line indicates
the median of the distribution.

Therefore, it appears that a ratio lower than 0.6 is required for better model
performance, but that one such ratio does not guarantee a well-performing
model in itself. Another striking result is that while the most performant
models all have a ratio lower than 0.6, models with different ratios within
that region can perform similarly well compared to each other (e.g., a ratio
of 0.4 versus a ratio of 0.5), indicating that there is no optimum ratio value.

5 Discussion

From the behavior of the model as we varied wD1,wD2, we observe that both
wD1 ≈ 0.2 with wD2 ≈ 1.0 and wD1 ≈ 1.5 with wD2 ≈ 0.2 lead to an improved
switch between action selection regimes compared to the original model.
However, the former combination resulted in greater improvement com-
pared to the latter, yielding the largest merit value in this study. To assess
the robustness of this result, we performed a thousand random alterations
of the model connectivity and observed that the best wD1,wD2 weight value
pairs for each run remained in a similar range to that of the unaltered model.
This indicates that differential, rather than equal, sensitivity to dopamine is
a benefit to this model of the BG to perform a switch between hard and soft
selection regimes. Finally, we observe that this improved performance is
only weakly related to the relative wD1/wD2 ratio, as it also depended on the
absolute value these weights take. In particular, the models that performed
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Differential Dopamine Receptor Sensitivity for Action Selection 1605

best (with or without altered connectivity) always showed a wD1/wD2 ratio
lower than about 0.6, but this ratio constraint was not a sufficient condition
for improved performance.

How do the optimal weights wD1 and wD2 observed here compare to
physiological observations? Two approaches can be used in order to exper-
imentally determinate the functional connectivity between neurons. First,
one can record the electrophysiological response of the postsynaptic neuron
following artificial stimulation of the presynaptic neuron (Chuhma, Tanaka,
Hen, & Rayport, 2011). However, such an approach is technically challeng-
ing, and the dopamine effect on striatal neurons depends on the overall state
of the network (Surmeier et al., 2007). For instance, striatal neurons may be
up-state or down-state, or the drive of cortical input may vary. Therefore,
there is to our knowledge no study that directly assesses the functional con-
nectivity of dopaminergic neurons in the striatum.

The second approach consists in quantitatively determining the func-
tional contribution of each of the steps involved in synaptic transmission
that contribute to the complete response. There are three such contributions:
the proportion of D1 and D2 receptors expressed, their binding affinity, and
amplification of intracellular signal transduction following receptor activa-
tion. Generally, quantifying D1 and D2 sensitivity has proved a challeng-
ing question, and the answer likely differs depending on the timescale and
temporal profile of the dopaminergic signal and state of the postsynaptic
neuron (Yapo et al., 2017; Richfield et al., 1989; Cumming, 2011; Skinbjerg
et al., 2012; Kenakin, 2013; Marcott et al., 2014). Here we briefly review, in
the context of the current model, some of the data pertaining to each of the
three possible mechanisms underlying dopamine sensitivity.

Perhaps the least challenging contribution to estimate is that of the pro-
portion of D1 and D2 receptors expressed. D1 receptors are estimated to
be three to five times more common than D2 receptors in the striatum (Liu,
Goel, & Kaeser, 2021), thereby enhancing relative sensitivity in the D1 path-
way. Regarding binding affinity, previous work evaluated 20% and 90% the
proportion of D1 and D2 receptors in a high-affinity state against a selec-
tive agonist (Richfield et al., 1989). However, these estimates can suffer from
methodological limitations (see Cumming, 2011; Skinbjerg et al., 2012 for re-
views). Therefore, while the reported results on affinity states appear con-
sistent with our result, their full interpretation remains unclear.

Concerning intracellular signal transduction, the D1 and D2 pathways
respectively lead to a phosphorylation and dephosphorylation of DARPP-
32, a molecule that is sometimes considered as the final effector of D1 and
D2 intracellular pathways (Svenningsson et al., 2004; Lindskog, Kim, Wik-
ström, Blackwell, & Kotaleski, 2006; Surmeier et al., 2007; Nishi, Snyder,
& Greengard, 1997; Nishi et al., 2000). The opposite effect of D1 and D2
signaling pathways on DARPP-32 is in line with the functionally opposite
effect of D1 and D2. Critically, an increase of six-fold in DARPP-32 phos-
phorylation can be observed for D1 activation, while a two-fold decrease
is observed following D2 activation (Nishi et al., 1997, 2000). However,
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1606 O. Codol, P. Gribble, and K. Gurney

measurements of intracellular signaling have sometimes provided conflict-
ing accounts, adding to the uncertainty on the D1 and D2 functional weights
(Yapo et al., 2017; Marcott et al., 2014; Watts et al., 1998; Watts & Neve, 1996;
Kim et al., 2004; Dumartin et al., 2000).

Taken together, the larger number of D1 receptors expressed and the
stronger intracellular amplification they produce could result in greater D1
sensitivity, while the larger proportion of high affinity-state D2 receptors
suggests the opposite. Our model prediction, based on the action selection
hypothesis extended to include dopaminergic control of selection regime,
is that there is an overall increased sensitivity to dopamine in the control
(D2) pathway compared to that in the selection (D1) pathway. Given the
discussion above, this is not inconsistent with the current state of physio-
logical knowledge. Testing our prediction requires an integrated interpre-
tation of this knowledge in terms of functional sensitivity. This, in turn, will
require a direct experimental means of assessing functional dopamine sen-
sitivity at cortico-striatal synapses. In lieu of this, our prediction could be
tested against those from a detailed, low-level model of the relevant synap-
tic mechanisms.

Our model, like all others, presents several limitations. One assumption
in our model is that selection occurs via a BG-wide, off-center on-surround
network (see Figure 2). However, we know that the striatum (as well as
other BG nuclei) contains a complex GABAergic microcircuitry (Burke, Rot-
stein, & Alvarez, 2017) that may contribute to a selection function, a possi-
bility that several computational models have explored (Bariselli et al., 2019;
Tomkins, Vasilaki, Beste, Gurney, & Humphries, 2014). This additional stri-
atal function does not preclude our mechanisms but should work synergis-
tically to enhance it. It remains the subject of future work to see precisely
how this might take place. Second, we have focused on the role of dopamine
that enables switching between hard and soft selection regimes. However,
a large body of evidence shows that dopamine performs a plethora of other
functions in the BG (Lerner, Holloway, & Seiler, 2021). For instance, it has
been hypothesized to propagate information about belief states (Gershman
& Uchida, 2019), statistical properties of reward (distributional encoding;
Lowet, Zheng, Matias, Drugowitsch, & Uchida, 2010), novelty (Redgrave
& Gurney, 2006), or to contribute to timing of movement onset (Howe &
Dombeck, 2016; da Silva, Tecuapetla, Paixão, & Costa, 2018). It remains to
be shown that the weighting factors we predict here are consistent with
optimal performance of these other functions of dopamine. Dopaminergic
modulation is also considered constant here, while in vivo dopamine re-
lease shows high temporal variability (Liu et al., 2021), with the presence
of phasic and tonic release (Wang, Toyoshima, Kunimatsu, Yamada, & Mat-
sumoto, 2021) or dopamine ramps (Berke, 2018) that are not included in
the GPR model. The spatial organization of individual channels might also
have an impact on the role of dopaminergic diffusion and therefore channel-
dependent changes in dopamine levels (Liu et al., 2021; Bariselli et al., 2019).
Furthermore, the architecture of the BG in the GPR model is a simplification
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of biological reality. For instance, recent work clearly demonstrates a
complex local striatal circuitry (Burke et al., 2017), with GABA-ergic in-
terneurons, collateral transmission between medium spiny neurons, or
cholinergic modulation that may work in synergy with dopaminergic mod-
ulation (Howe et al., 2019; Burke et al., 2017). Striatal neurons also express
up- and down-states that alter their physiological response (Arbuthnott &
Wickens, 2007). While the exact purpose of this local circuitry is not yet fully
understood, it cannot be ruled out that it may alter the effect dopaminergic
modulation has on BG function.

The “original” GPR model we used here corresponds to an updated
version of the first proposed GPR model (Gurney et al., 2001a, 2001b) that
includes more recently characterized anatomical features of the GPe (Surya-
narayana et al., 2019). Interestingly, performing the same set of simulations
with the GPR model proposed in Gurney et al. (2001a, 2001b) yields a re-
sult opposite to that of the GPR model based on Suryanarayana et al. (2019).
Specifically, we observe that wD1 = 1.95 and wD2 = 0.82 are functionally op-
timal. The full set of simulation results is available in a previous version
of this study, available online (Codol, Gribble, & Gurney, 2020). Consider-
ing that the Suryanarayana et al. (2019) model contains a more exhaustive
architecture matching physiological reality, we give greater weight to the
findings it yields than to those of the previous version of the GPR model.
However, it is critical to assess whether this change in simulation result is in-
deed due to the model’s updated architecture and not just because the GPR
model is inherently oversensitive to small changes. This motivated the sim-
ulations and analyses presented in section 4.3, where random perturbations
to each connectivity weights were performed to assess the overall robust-
ness of the GPR model. The main results remained identical to that of the
unperturbed model, suggesting that the changes in results we see with the
Suryanarayana et al. (2019) model compared to the Gurney et al. (2001a,
2001b) model are likely due to the inclusion of the GPe intrinsic connectiv-
ity rather than an inherent lack of robustness in the GPR model.

Dopamine sensitivity at the level of striatum is physiologically grounded
in many complex and interacting mechanisms whose overall effect is in-
tractable just now. In this study, we used a high-level computational model
to predict the optimal sensitivity of the D1 and D2 receptors for the purpose
of switching between hard and soft selection regimes. We have shown that
selection should benefit from differential rather than identical sensitivity
therein and that this benefit would be with D2-favorable emphasis in such
sensitivity.

Appendix A: Model Formulation

A.1 General Structure. Each nucleus was connected to the other nuclei
according to the architecture in Figure 1a. Any projection from a source nu-
cleus to a target nucleus was associated with a fixed connectivity weight
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wsource
target , which determined the contribution of the source nucleus’s output

ysource
i into the target nucleus input ui for a given channel i. The input for the

target nucleus ui was then used to define an activity function ai over time
using an ordinary differential equation:

dai

dt
= −k(ai − ui), (A.1)

where k = 25 is a decay constant and t is time. Since at equilibrium dai/dt =
0, the equation converges to ai = ui for a fixed input value over time. The
activity ai is then passed through a piece-wise output function to avoid run-
away activity, giving the nucleus’s output yi:

yi =

⎧⎪⎨
⎪⎩

0 if ai < ε

(ai − ε) if ε ≤ ai ≤ 1 + ε

1 if ai > 1 + ε

(A.2)

where ε is a constant threshold whose value depends on the nucleus.
The parameter values employed for each connectivity weight and constant
threshold ε are listed in Table 2. A rationale of most parameters of the origi-
nal model can be found in Gurney et al. (2001a, 2001b), and Suryanarayana
et al. (2019).

A.2 Striatum. Although the mathematical implementation of the stria-
tum has been detailed, it is repeated here for convenience. In the origi-
nal model (Suryanarayana et al., 2019), the striatum D1 and striatum D2
receive the same salience input ci from the cortex, which is then modu-
lated by the dopaminergic input λ and weighted by a shared striatal weight
wcortex

s . All three GPe neural populations also send inhibitory projections,
with yark

i , yout
i , yinn

i the projection of the GPe’s arkypallidal, outer, and in-
ner neural population to the striatum, respectively. Their input weights are
wark

D1,w
out
D1 ,w

inn
D1 , for the striatum D1 and wark

D2,w
out
D2 ,w

inn
D2 for the striatum D2:

uD1
i = wcortex

s (1 + λ) ci + wout
D1 yout

i + winn
D1 yinn

i + wark
D1

∑
i

yark
i , (A.3)

uD2
i = wcortex

s (1 − λ) ci + wout
D2 yout

i + winn
D2 yinn

i + wark
D2

∑
i

yark
i . (A.4)

The output of the striatum D1 and striatum D2 is denoted yD1
i and yD2

i ,
respectively, after applying equations A.1 and A.2. They share the same acti-
vation threshold εs for A.2. Note that for λ = 0 (no dopamine), the dopamin-
ergic modulation (1 ± λ) reduces to 1. Also note the sum over all channels
for the yark

i projection, indicating a diffuse projection from the arkypallidal
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Table 2: Parameter Values for the GPR Model.

Parameter Value Description

wcortex
s 1 cortex → striatum weight (both D1 and D2)

wcortex
stn 1 cortex → STN weight

wark
D1 − 0.25 arkypallidal GPe → striatum D1 weight

wout
D1 0.5 outer GPe → striatum D1 weight

winn
D1 0.25 inner GPe → striatum D1 weight

wark
D2 − 0.25 arkypallidal GPe → striatum D2 weight

wout
D2 0.5 outer GPe → striatum D2 weight

winn
D2 0.25 inner GPe → striatum D2 weight

wout
stn − 0.8 outer GPe → STN weight

winn
stn − 0.8 inner GPe → STN weight

wD2
ark − .9 striatum D2 → arkypallidal GPe weight

wstn
ark 0.8 STN → arkypallidal GPe weight

wark
ark − 0.75 arkypallidal GPe → arkypallidal GPe weight

wout
ark − 0.75 outer GPe → arkypallidal GPe weight

winn
ark − 0.75 inner GPe → arkypallidal GPe weight

wD2
out − .9 striatum D2 → outer GPe weight

wstn
out 0.8 STN → outer GPe weight

wout
out − 0.75 outer GPe → outer GPe weight

wD2
inn − .9 striatum D2 → inner GPe weight

wstn
inn 0.8 STN → inner GPe weight

wout
inn − 0.3 outer GPe → inner GPe weight

winn
inn − 0.75 inner GPe → inner GPe weight

wD1
GPi − 1 striatum D1 → GPi/SNr weight

wstn
GPi 0.9 STN → GPi/SNr weight

wout
GPi − 1 outer GPe → GPi/SNr weight

winn
GPi − 0.2 inner GPe → GPi/SNr weight

θ 0 Selection threshold
θd 0.01032 Distortion threshold
εs 0.2 Output threshold for striatum D1 and D2
εstn − 0.25 Output threshold for STN
εGPe − 0.2 Output threshold for all GPe subpopulations
εGPi − 0.2 Output threshold for GPi/SNr

neurons (see Figure 1a). Finally, equations A.3 and A.4 are altered in the
augmented model, as indicated in equations 2.3 and 2.4.

A.3 Other Nuclei. Equations A.5 to A.9 define the input to the STN,
arkypallidal GPe, outer GPe, inner GPe, and GPi/SNr, in that order:

ustn
i = wcortex

stn ci + wout
stn yout

i + winn
stn yinn

i , (A.5)

uark
i = wD2

ark yD2
i + wout

ark yout
i + winn

ark yinn
i + wark

ark yark
i + wstn

ark

∑
i

ystn
i , (A.6)
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uout
i = wD2

out yD2
i + wout

out y
out
i + wstn

out

∑
i

ystn
i , (A.7)

uinn
i = wD2

inn yD2
i + wout

inn yout
i + winn

inn yinn
i + wstn

inn

∑
i

ystn
i , (A.8)

uGPi
i = wD1

GPi yD1
i + wout

GPi yout
i + winn

GPi yinn
i + wstn

GPi

∑
i

ystn
i . (A.9)

Their outputs are denoted ystn
i , yark

i , yout
i , yinn

i , and Yi. Their output function
thresholds are denoted εstn for the STN, εGPe for all three GPe subpopula-
tions and εGPi for the GPi/SNr. Importantly, Yi is also the final output of the
model for channel i.

A.4 Parameter Values. All the models, including the original one, con-
tain N = 6 channels. However, in the simulations, only two of them receive
salience input, that is, we always have c3−6 = 0. This allows keeping the set
of potential outcomes simple while still exposing the effect of channel-to-
channel competition. The role of the remaining four channels is to model the
tonic inhibition from quiescent channels via the diffuse projections of the
STN. Previous work on the GRP model also contains four quiescent chan-
nels for the same reason (Gurney et al., 2004; Suryanarayana et al., 2019).

The parameter Rw ranges from 1 to 10 because when λ = 0, we have
Rw = 1, and spanning this parameter to 10 allows varying dopamine lev-
els enough for the model to fully and efficiently express both hard and
soft selection regimes (Gurney et al., 2004). Moreover, since the dopamin-
ergic modulation of the striatum D2 is formalized as (1 − λ), we want to
avoid λ > 1 because it would shut down the control pathway. Since we
have λ = (Rw − 1)/(Rw + 1), Rw = 10 gives us λ = 9/11 at maximum. Criti-
cally, this implies that one of the new parameters added to the augmented
model, wD2, cannot evaluate at 11/9 or more, because when dopamine mod-
ulation reaches its maximum value during simulations (Rw = 10), the con-
trol pathway would be shut down, or even inverted, which is biologically
implausible.
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