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Control of Movement
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Abstract

It has been suggested that sensorimotor adaptation involves at least two processes (i.e., fast and slow) that differ in retention
and error sensitivity. Previous work has shown that repeated exposure to an abrupt force field perturbation results in greater
error sensitivity for both the fast and slow processes. Although this implies that the faster relearning is associated with increased
error sensitivity, it remains unclear what aspects of prior experience modulate error sensitivity. In the present study, we manipu-
lated the initial training using different perturbation schedules, thought to differentially affect fast and slow learning processes
based on error magnitude, and then observed what effect prior learning had on subsequent adaptation. During initial training of
a visuomotor rotation task, we exposed three groups of participants to either an abrupt, a gradual, or a random perturbation
schedule. During a testing session, all three groups were subsequently exposed to an abrupt perturbation schedule. Comparing
the two sessions of the control group who experienced repetition of the same perturbation, we found an increased error sensi-
tivity for both processes. We found that the error sensitivity was increased for both the fast and slow processes, with no reliable
changes in the retention, for both the gradual and structural learning groups when compared to the first session of the control
group. We discuss the findings in the context of how fast and slow learning processes respond to a history of errors.

NEW & NOTEWORTHY We investigated what aspects of prior experience modulate error sensitivity, within the framework of a
two-state model of short-term sensorimotor adaptation. We manipulated initial training on a visuomotor adaptation reaching task
using specific perturbation schedules that are thought to differentially affect fast and slow learning processes, and we tested
what effect these had on subsequent adaptation. We found that sensitivity to adaptation error was similarly modulated by abrupt,
gradual, and random perturbation schedules.

error sensitivity; human; motor learning; savings; two-state model

INTRODUCTION

Adaptation is often defined as an error-driven process, in
which the error experienced during a movement leads to a
corrective adjustment in the motor output on the following
movement (1–5). Behavioral measures of adaptation are well
characterized by state-space models (1, 4), which represent
trial-to-trial changes in movement as a function of how an
error on a given trial affects motor output on the subsequent

trial. The update from one trial to the next, or the change in
motor output, is based on two parameters: a retention pa-
rameter that determines what proportion of motor output is
retained from trial to trial and an error sensitivity parameter
that governs the proportion of error experienced on the cur-
rent trial that is corrected for on the subsequent trial.

Variations of the state-space model are built on the
assumption that adaptation is the product ofmultiple under-
lying processes with distinct timescales (3, 6–8). Researchers
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have begun to provide neural evidence to strengthen the
theory that sensorimotor learning is supported by multiple
processes (9, 10). An influential two-state model of short-
term motor adaptation was proposed by Smith et al. (3) that
proposed a fast process that learns quickly but has poor
retention and a slow process that learns more slowly, but has
strong retention.

The prevailing success of the two-state model continues to
be that it accounts for the learning phenomenon known as
savings, characterized as prior learning speeding up subse-
quent relearning (3, 11). Although Smith et al. (3) initially
argued that the reason for the fast relearning during a second
introduction of the same perturbation was due to the re-
sistance of the slow process to change, recent studies sug-
gest that learning rate can be modified depending on
factors such as the uncertainty of movement error (12, 13),
size of movement error (14), and a history of movement
errors (15–17).

The behavioral changes associated with savings suggest
that some component of memory from the initial training
must lead to the faster relearning, but what is remembered
and recalled remains unclear (15–22). One perspective argues
for the enhancement of an explicit strategy (18, 20, 23),
whereas the others suggest that faster relearning is driven by
the experience ofmotor errors (15–17, 24).

In support of the latter possibility, Herzfeld et al. (16) pro-
posed that a history of errors modulates the error sensitivity
on each trial, systematically controlling howmuch themotor
system learns from the current motor error. They suggested
that an error-based adaptation model that provides for expe-
rience-dependent error sensitivity modification could
account for savings. Furthermore, a study by Leow et al. (17)
demonstrated that it is a memory of errors, not previous
actions, that is necessary for savings.

Recent work has shown that repeated exposure to the
same force field perturbation results in greater error sensitiv-
ity of both the fast and slow processes (15). Although in a
study by Coltman et al. (15), the error sensitivity terms for
the fast and slow processes were held constant within a ses-
sion, we evaluated the theory of experience-dependent error
sensitivity modulation in the context of changes in error sen-
sitivity from one learning session to the next. Although these
results clearly indicate that the motor system stored some
component (i.e., memory) of prior training to speed up sub-
sequent learning, it remains unclear how the fast and slow
learning processes contribute to savings and what aspects of
prior experience modulate error sensitivity. In other words,
do both fast and slow processes access a single stored com-
ponent of prior training or do they store independent com-
ponents? If the fast and slow processes depend on separate
stored components of prior training, then it may be possible
to independently modulate characteristics of the fast and
slow processes (e.g., error sensitivity) by experimentally
manipulating aspects of prior learning.

Recent findings demonstrate that participants do not
adapt linearly in response to different magnitudes of error
(13, 14, 25). In addition, Orban de Xivry and Lefevre (26) in
their study propose that different perturbation schedules
lead to distinct motor memories with different attributes
and neural representations (i.e., the amount of reorganiza-
tion of the motor cortex). We propose that perturbation

schedules that are designed to produce learning using errors
of different magnitudesmay have a differential effect on ses-
sion-to-session changes to the fast versus slow processes. In
the present study, wemanipulated initial training in a visuo-
motor adaptation task using perturbation schedules which
involved errors of different magnitudes, and we tested what
effect these different initial learning experiences had on sub-
sequent adaptation, and specifically on characteristics of the
fast versus slow adaptation processes.

We asked one group of participants to counter a gradual
perturbation schedule during initial training. When a pertur-
bation is gradually introduced, such that participants never
experience large errors, learning is believed to be more
implicit in nature (26). We predicted that when participants
in this group were later tested on an abrupt perturbation,
only the slow process would be affected by the initial train-
ing, compared to a control group who were initially trained
using an abrupt perturbation. For a second group of partici-
pants, initial training was based on a structural learning par-
adigm, involving a series of brief exposures to large, random
perturbations (27, 28). This perturbation schedule is thought
to be based on explicit learning mechanisms (20, 29). During
the original conception of the two-state model, Smith et al.
(3) designed a rebound paradigm to test the theorized char-
acteristics of each process. Much like the brief reversal used
in the rebound paradigm, which includes large errors and
limited exposure, the motor output during this phase of the
paradigm is believed to be dependent on the fast process (3).
For this group, we predicted that when later tested on an ab-
rupt perturbation, only the fast process would be affected by
the initial training, as compared to the control group.

We modeled perturbation-driven changes in movement
with the state-space equations proposed by Smith et al. (3)
and focused on changes in the retention and error sensitivity
parameters. The model estimates function as a tool for
understanding how the underlying processes of adaptation
were affected by the prior training. Substantiating the find-
ing of Coltman et al.’s study (15), we confirm that repetition
of the same visuomotor perturbation results in an increase
in error sensitivity for both processes, when comparing the
two sessions of the control group. By comparing the model
estimates of participants in the gradual and structural learn-
ing groups to the first session of the control, we expected to
see changes in error sensitivity that depended on the type of
prior training participants experienced. Interestingly, how-
ever, we found that error sensitivity of both the fast and slow
processes was increased for both groups. The findings are
discussed in the context of storing and accessing a history of
errors.

METHODS

Participants

A total of 60 healthy young adults (age range 21–35 yr;
mean age ± SD 27.9±4.2 yr) participated in a visuomotor
rotation experiment. Participants were recruited from the
online platform maintained by Prolific.co and received
£11.25 for their participation. As part of the Prolific platform,
participants responded to a series of questions related to age,
gender, health, and economic status. Based on this prescreen
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information, 24 participants identified as females and 36 as
males. Participants were recruited globally and reported being
located in 17 different countries (Estonia, Finland, France,
Greece, Hungary, Israel, Italy, Mexico, The Netherlands,
Poland, Portugal, Slovenia, South Africa, Spain, Sweden,
United Kingdom, and the United States). All participants self-
reported being right-handed and had normal or corrected-to-
normal vision. The protocol was approved by Western
University’s Research Ethics Board and all participants pro-
vided written informed consent electronically.

Apparatus

Participants were asked to use a standard computer
mouse and their own computer to access a webpage
hosted on a network computer located at Western Inter-
disciplinary Research Building. The task was written in
and controlled by JavaScript, running locally within the
participants’ web browser.

Participants were asked to use a standard computermouse
and a standard credit or debit card to complete a spatial cali-
bration procedure. Participants were initially instructed how
to turn off the acceleration for the mouse, based on their
operating system. Then, following an instruction video, par-
ticipants were asked to align the top of their mouse with the
top of the credit card. After a tone, they were instructed to
move the mouse in a smooth and straight path, aligning the
top of their mouse with the bottom of the card. Participants
were asked to hold still while waiting for a second tone, indi-
cating that they needed to realign the mouse with the top of
the card. This was repeated at two different speeds indicated
in the video. When the calibration procedure was success-
fully completed, participants watched an instructional video
about the experimental task.

The size and position of the stimuli were scaled based on a
mouse calibration procedure. Real-time position of the
mouse was used to control the visual display and to provide
online visual feedback. The mouse speed was adjusted such
that the distance from start position to target was exactly
6 cm based on the calibration. Although the physical target
distance was always 6cm, this translated to 300 pixels on
screen. Therefore, the straight reach trajectory was 300 pix-
els, however a participant’s view of this was potentially com-
pressed or expanded relative to the target value of 6 cm,
depending on their monitor as well their viewing distance
from themonitor.

Paradigm

At the start of each trial, participants were instructed to
click their mouse to begin. A circular cursor (10 pixels ra-
dius) was displayed on the participant’s computer monitor
and was used to represent the position of the mouse on
screen. The position of the mouse at the start of the trial,
represented the start position on screen. A small square
(20 pixels by 20 pixels) represented the target. The radial
distance of the target from the start position was 300 pix-
els. The target appeared at either 45�, 90�, or 135�, relative
to the start position (where 6 cm directly to the right of the
start position represented 0�). The location of the target
was randomized per trial, per participant, such that each
participant saw a different order of targets with an equal

number of presentations of each target over the course of a
session.

Participants were instructed to make a straight movement
from the start position to the target, within a narrow tempo-
ral window. At the beginning of each trial, the target
appeared in white. Participants were required to hold still at
the start position for 500ms, at which time the target
changed color to green, representing a “go” signal for partici-
pants to initiate a movement to the target. In addition to the
color change of the target, a tone was used as a secondary
“go” signal. Participants were instructed to reach for the tar-
get and bring the center of a red cursor representing the posi-
tion of their computer mouse within 10 pixels of the center
of the target within 600–900ms. If a participant’s movement
time was less than 600ms, the target turned red to indicate
that the movement was “too fast.” If the participant’s move-
ment time was within 600–900ms, the target remained
green to indicate that the movement was “good.” If the par-
ticipant’s movement time was greater than 900ms, the target
turned blue to indicate “too slow.” Feedback related to move-
ment time was displayed on the screen for 1,000ms before
the screen went blank andwritten instructions on screen indi-
cated that the participant should return the mouse to a com-
fortable starting position within their workspace. Participants
were instructed to try to obtain the “good” feedback as often
as possible throughout the experiment.

To assist with making straight movements between the
start position and the target using a computer mouse, the
first 20 trials of the first session were a practice session for
participants. In these trials, a purple rectangle (50 pixels
by 300 pixels), with two white lines on either side was
shown on screen, highlighting a straight path to the target.
Participants were instructed to keep the red cursor on the
path, between the lines, toward the target. If the cursor
moved outside the path, the background color changed
from black to pink.

Participants were randomly assigned to one of three
groups. Each group completed two sessions (initial training
and testing), separated by a 5-min break (Fig. 1).

Each session included a total of 450 reaching movements,
with a 1-min midsession break halfway. The experimental
paradigm for each session consisted of four epochs. The first
epoch (baseline) consisted of 70 trials in which participants
were provided with veridical feedback of the cursor position.
The second epoch (adaptation) consisted of 300 trials in
which a visuomotor rotation was applied to the cursor feed-
back: an angular rotation was imposed on the cursor, such
that a hand movement aimed directly at a target produced a
cursor movement that was rotated radially about the start
position and participants saw that their movement had gen-
erated an error. Participants had to learn to counter the rota-
tion by moving their hand in an equal and opposite
direction. With practice, participants adjusted their move-
ments in such a manner that the visual feedback produced
straight trajectories from start position to the target. In the
third epoch (error-clamp; consisting of 30 trials) the task
error was clamped to zero. During the clamp trials, the angu-
lar position of the cursor relative to the start position was
clamped to a straight line connecting the start position to
the target, while participants maintained control of the
radial distance of the cursor from the start position. Finally,
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in the fourth epoch (washout; consisting of 50 trials), partici-
pants were provided again with veridical feedback to bring
performance back to baseline.

During the adaptation epoch of the first session, par-
ticipants experienced one of three conditions: 1) a con-
trol learning group (n = 20) experienced an abrupt 30�

clockwise (CW) rotation for all 300 trials during this
phase (Fig. 1; top), 2) a gradual learning group, (n = 20) in
which a rotation was increased linearly from 0� to 30�

CW over 250 trials and then held at a fixed 30� CW for
another 50 trials (Fig. 1; middle), or 3) a structural learn-
ing group (n = 20) in which participants encountered ran-
dom rotations, ranging from 60� counter-clockwise
(CCW) to 60� CW in blocks of six trials with the same rota-
tion (27, 28, 29; Fig. 1; bottom). In this group, we deliber-
ately set the average over all angles to zero, to prevent
any accumulative learning. We also excluded rotation
sizes within 10� of the test rotation (30� CW) and its
inverse (30� CCW). We furthermore set the change in rotation
angle to be equal to or greater than 15� to ensure the errors
were always large, which characteristically has the greatest
influence on the fast process (3, 29). During the second ses-
sion, all three groups experienced an abrupt 30� CW rotation
during the adaptation epoch.

Data Analysis

The position of the cursor in both x (lateral) and y (sagit-
tal), were sampled in pixels at the refresh rate of their
computer monitor (typically 60Hz). Missed samples were
interpolated during analysis (less than 1% of samples on av-
erage). In cases where data were acquired at higher sampling
rates (e.g., because a participant’s computer monitor refresh
rate exceeded 60Hz), the data were down sampled to 60Hz.
Data were digitally smoothed using a second-order low-pass
Butterworth filter with a cut-off frequency of 15Hz. All data
were stored for offline analysis using custom MATLAB
R2020a (TheMathWorks) scripts.

Movement trajectories were selected using an algorithm
in which movement initiation was defined as the time at
which the tangential velocity of the mouse first exceeded
0.5 cm/s and movement end was defined as the first time af-
ter peak velocity that tangential velocity fell below 0.5 cm/s,
where peak velocity was defined as the fastest participants
ever moved during the reach movement. For each trial, we
computed the angle between the line connecting the start
position and the cursor position at peak velocity, and the
line connecting the start position to the target. We deter-
mined the average reach angle, per subject during the last 50
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Figure 1. Experimental design and perturbation schedule. The experiment was divided into two sessions, separated by a 5-min session break. Each ses-
sion consisted of four blocks: 1) a baseline period of no rotation trials, 2) an adaptation period, 3) an error clamp period, and 4) a washout period.
Participants were randomly assigned to one of three groups which differed in session one during the adaptation period: abrupt control group, gradual
learning group, or structural learning group.
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trials of the baseline epoch and we subtracted this quantity
from the reach anglemeasured on each trial.

Model Fitting

Smith et al. (3) outlined a method for mathematically
modeling an iterative update of the states of the two pro-
posed processes of short-term sensorimotor adaptation. The
model involves fitting four parameters: an error sensitivity
and a retention parameter for both a fast and a slow process.
The first parameter weighs the relative importance of recall-
ing previous motor commands, which is interpreted as the
retention factor. The second parameter is the sensitivity to
error, which relates to the proportion of error that is cor-
rected for trial-to-trial (1, 3, 4, 30). The two important
assumptions in this model are that the error sensitivity is
higher for the fast process compared with the slow process
and that retention is stronger for the slow process compared
with the fast process (3). Adaptation can be decomposed into
a fast (Eq. 1) and a slow (Eq. 2) process, knowing that each
state follows different learning dynamics. The two processes
are summed together to produce the overall output x (Eq. 3).
Error, denoted by e(n), arises on each trial n as the difference
between the overall output xnet and the task parameter r (i.e.,
the degree of the rotation; Eq. 4).

xf n þ 1ð Þ ¼ Af x nð Þ þ Bf e nð Þ ð1Þ

xs n þ 1ð Þ ¼ Asx nð Þ þ Bse nð Þ ð2Þ

xnet nð Þ ¼ xf nð Þ þ xs nð Þ ð3Þ

e nð Þ ¼ r nð Þ � xnet nð Þ ð4Þ

Linear inequality constraints were defined to apply to
standard two-state model dynamics (31):

Af � As þ 0:001; ð5Þ

Bf � Bs þ 0:001: ð6Þ
To approximate the four parameters (i.e., Af, As, Bf, and

Bs), we fit the model to the behavioral data (using the func-
tion fmincon in MATLAB r2020a) by minimizing the squared
difference between the estimated net output (xnet) of the
model and the average participant reach angle, measured on

each trial. According to the methods described in a study by
Albert and Shadmehr (31), we also included a mathematical
formalization of visual error clamp trials and set breaks.

Statistical Design

Pairwise comparisons were performed with nonpara-
metric bootstrap hypothesis tests, as well as paired and
unpaired t tests. For statistical analyses that require multi-
ple comparisons, we used the Holm–Bonferroni correction
(32). Statistical tests were considered significant at P <
0.05. For all reported and depicted values, we report the
means and SE.

RESULTS
Figure 2 shows the hand paths from one representative

participant in the control group during both sessions one
and two, as well as one representative participant per group
in session two of the structural and gradual learning groups.
During the baseline epoch (left), these paths are relatively
straight to the target. The representative participants were
all adapting to an abrupt 30� CW rotation. During the early
adaptation epoch (middle) these movements were initially
deviated in the CW direction, with a corrective movement at
the end of the trajectory to bring the cursor to the target. In
all three groups, participants adapted to the 30� CW rotation
by the late adaptation epoch (right), reducing their move-
ment errors and resuming relatively straight hand paths to
the target.

We used a kinematic behavioral measure to assess
changes in performance. The primary outcome measure for
the study was reach angle at peak velocity, which was meas-
ured as the angle between the straight line connecting the
start position and the cursor position at peak velocity and
the straight line connecting the start position to the target.
The control group of participants adapted their movements
to an abrupt 30� CW visuomotor rotation in both the first
and second session. Figure 3A shows the angle at peak veloc-
ity for all trials in each session, averaged across participants
in the control group. In both sessions, participants exhibited
learning during the adaptation epoch, decay during the vis-
ual error clamp epoch, and a return toward baseline per-
formance during the washout epoch. During the adaptation
epoch, we examined the learning at two different time

Baseline Early Adaptation

Control S1
Control S2
Structual S2
Gradual S2

Late Adaptation

Figure 2.Hand trajectories from a representative participant in the control group during both session one (light blue) and two (dark blue), and one repre-
sentative participant per group in session two of the structural (purple) and gradual (pink) learning groups. Baseline reaches were from the last three tri-
als (from trial 68 to trial 70) during the baseline epoch. Early and late adaptation reaches were from the first (from trial 71 to trial 73) and last (from trial
368 to trial 370) three trials of the adaptation epoch, respectively. Participants saw a random ordering of the three possible targets (represented by the
squares).
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points: early (first 50 trials during adaptation) and late (last
50 trials during adaptation; Fig. 3B). The mean angle in the
early learning phase of the second session (M=23.7,
SD=3.15) was reliably greater than in the first session
[M= 19.9, SD=4.6; paired t test, t(19) = �6.2, P = 3.0e-06],
indicating savings. We did not detect a reliable difference
(P = 0.08) between sessions during late learning.

A second group of participants was exposed to a gradual
perturbation schedule during initial training. Figure 4A
shows the angle at peak velocity for all trials in each session,
averaged across participants in the gradual learning group.
Participants exhibited learning during the adaptation epoch,
decay during the visual error clamp epoch, and a return to-
ward baseline performance during the washout epoch. A
final group of participants was exposed to a series of brief
exposures to large, random perturbations. Each participant
in this group experienced a different set of randomly varying
rotations. Figure 4B illustrates the angle at peak velocity for
all trials in session one for four representative individual par-
ticipants from the structural learning group. We observed
two participants who demonstrated learning within each

block of six trials, but who also appeared to have maintained
a fraction of error throughout the adaptation epoch (Fig. 4B,
S2 and S8). In addition to a participant who adapted quickly
to the randomly changing perturbation (Fig. 4B, S18), we
observed a participant who showed greater reduction of
error in the latter half of the adaptation epoch, compared to
the early half (Fig. 4B, S20).

Figure 5A shows the angle at peak velocity averaged
across participants for all trials in session one of the con-
trol group and session two of the structural and gradual
learning groups. When comparing the model estimates of
participants in the gradual and structural learning groups
during the second session to the first session of the control
group, we expected to see changes in error sensitivity that
depended on the type of prior training participants experi-
enced. To compare the changes in angle between the con-
trol, structural and gradual learning groups, we examined
learning during the adaptation epoch at two different time
points: early (first 50 trials during adaptation) and late (last 50
trials during adaptation; Fig. 5B). A one-way ANOVA revealed
a significant effect of training schedule on mean angle
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Figure 3. Control group. A: the average angle at peak velocity for all trials in session 1 (light blue) and session 2 (dark blue). The shaded region
denotes ± SE. B: comparisons between session 1 and session 2 (dark blue) for the mean angle for the first 50 (early) and last 50 (late) trials of the
adaptation epoch. Circles represent data for individual participants.
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between the control, structural and gradual learning groups
during early learning [F(2,57) = 14.4, P = 8.8 e-06].

Post hoc comparisons using Tukey honestly significant
difference (HSD) tests indicated that the mean angle for the
structural learning group (M=24.9, SD=2.9, P = 2.9 e-05) and
the gradual learning group (M=24.5, SD=2.9, P = 1.4 e-04)
were reliably higher than the mean angle for the control
group (M= 19.9, SD=4.6). However, there was no reliable dif-
ference detected between the structural and gradual learning
groups (P = 0.9). During late learning, we did not detect a
reliable difference in mean angle among the groups (P = 0.2).
Therefore, the structural and gradual learning groups dem-
onstrated fast learning when countering an abrupt 30� CW
rotation, as compared with session one of the control group.
Although the control group represented naive learners, the
prior experience from session one for the structural and
gradual learning groups is suggested to have facilitated the
improved learning. Likewise, this was observed in the con-
trol group, in which participants experienced a repetition of
an abrupt rotation and demonstrated savings during the sec-
ond session.

Recent work suggests that error sensitivity in sensorimo-
tor adaptation is likely not constant, but rather can vary
depending on prior experience (13, 14, 16, 33). We modeled
movement angle across each session with the state-space
equations proposed by Smith et al. (3), and focused on
changes in the retention and error sensitivity parameters.
The main objective of this study was to compare the model
parameters across groups learning to counter the abrupt 30�

CW rotation. To do this, we used the bootstrap procedure
previously reported by Coltman et al.’ study (15). In thisman-
ner, we always fit the model to averaged group data for each
resampled population (15, 31). The estimated posterior distri-
butions of each of the four two-state model parameter values
are depicted in Fig. 6 for sessions one and two of the control
group and session two of the gradual and structural learning
groups. To determine whether the difference between the
mean of each distribution was statistically reliable, we calcu-
lated the distribution of the differences in individual sam-
ples. The insets in Fig. 6 show the distribution of differences
found. Table 1 shows the mean and standard deviation for
each of the two-state parameters for each group.

A

B

Figure 4. Gradual and structural learning groups. A: the average angle at peak velocity for all trials in session 1 of the gradual learning group. The shaded
region denotes ± SE. B: the data from four representative individual participants (S2, top left, S8, top right, S18, bottom left, S20, bottom right).
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We first compared parameter estimates from session one
and session two for the control group (Fig. 6A). Across all
comparisons made between groups, we did not observe a
reliable difference in the retention parameters for either the
fast or slow process. When participants experienced repeti-
tion of the same abrupt rotation, we found a statistically reli-
able increase in the error sensitivity parameter for both the
fast (Bf, P = 0.007) and the slow (Bs, P = 0.003) processes.
Importantly, this comparison allowed us to demonstrate
that our previous finding from a force field adaptation task
(15) was replicated in a visuomotor rotation task. Therefore,
this result suggests that both the fast and slow processes are
responsive to a history of error and both contribute to
savings.

Next, we compared parameter estimates from session one
of the control group with session two of the structural learn-
ing group (Fig. 6B). Based on the theory of structural learn-
ing, thought to be essential to capturing the initial rapid
phase of learning, Braun et al. (27) demonstrated that the
benefit of knowing the underlying structure of a task is that
it leads to facilitated adaptation. For this group, we predicted

that when later tested on an abrupt perturbation, only the
fast process would be affected by the initial training, as
compared with the control group. When overall learning is
decomposed into a fast and slow state, the initial rapid
phase of learning is dominated by the output of the fast
process. Therefore, we assumed that such practice would
influence the fast process. In addition to a statistically reli-
able increase in the error sensitivity parameter for the fast
process (Bf, P < 0.001), we also found a statistically reliable
increase in the slow process error sensitivity (Bs, P =
0.002).

Learning is believed to be more implicit in nature when a
perturbation is gradually applied using small undetectable
increases, so that participants never encounter large sensory
prediction errors (22, 26, 34). By exposing a group of partici-
pants to a gradual perturbation schedule during initial train-
ing, we predicted that only the slow process would be
influenced. When we compared the parameter estimates
from session one of the control group with session two of the
gradual learning group (Fig. 6C), we found the gradual learn-
ing group showed a statistically reliable increase in the error
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sensitivity parameter for both the fast (Bf, P = 0.009) and the
slow (Bs, P = 2 e-04) processes.

Last, we compared parameter estimates between the
structural and gradual learning groups during session two
(Fig. 6D). Our goal was to use two different adaptation sched-
ules thought to differentially affect fast and slow learning
processes and test the idea that error sensitivity for each pro-
cess would be independently modulated. We expected that
the error sensitivity parameter for the fast process would be

greater in the structural learning group compared to the
gradual learning group, whereas the error sensitivity param-
eter for the slow process would be greater in the gradual
learning group compared with the structural learning group.
The only statistically reliable difference was in the error sen-
sitivity parameter for the fast process that was larger for the
structural learning group (Bf, P = 0.02).

From the bootstrap distributions, we calculated the mean
value for each parameter for session one and session two of

Figure 6. Probability distribution of the model parameters given the data. Light blue and dark blue represent session 1 and session 2 of the control
group, respectively. Purple represents session 2 of the structural learning group and pink represents session 2 of the gradual learning group. Insets rep-
resents the distribution of pairwise differences. The four model parameters of the two-state model are fast retention (Af), slow retention (As), fast learning
rate (Bf), and slow learning rate (Bs).

Table 1. Two-state model parameters calculated from probability distribution

Fast Process Slow Process

A (Means ± SD) B (Means ± SD) A (Means ± SD) B (Means ± SD)

Control Session 1 0.86 (0.02) 0.17 (0.02) 0.996 (7e-04) 0.05 (0.006)
Control Session 2 0.87 (0.03) 0.28 (0.04) 0.994 (0.001) 0.07 (0.01)
Structural Session 2 0.80 (0.05) 0.40 (0.03) 0.993 (0.002) 0.10 (0.02)
Gradual Session 2 0.87 (0.02) 0.27 (0.04) 0.994 (0.001) 0.10 (0.02)
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the control group, and session two of the structural and grad-
ual learning groups separately. Using these mean estimated
parameter values, we used the two-state model to simulate
our experimental paradigm and generate simulated learning
curves to visualize the time course of the estimated fast and
slow processes, as well as the simulated overall output.
Figure 7 demonstrates that the simulated learning curves are
qualitatively in good agreement with the measured behav-
ioral data. The models explains 98%–99% of the variance in
angle over the course of learning (control session 1: R2 = 0.98,
P = 2.2 e-04; control session 2: R2 = 0.99, P = 1.2 e-04; struc-
tural session 2: R2 = 0.98, P = 2.3 e-04; gradual session 2: R2 =
0.99, P = 1.6 e-04) . The model effectively captures the initial
improvement in learning during the adaptation epoch, the
decay during the visual error clamp epoch, and the subse-
quent return toward baseline performance during the wash-
out epoch.

DISCUSSION
The integration of different perturbation schedules and

two-state modeling of measured behavioral data allowed us
to test the role of prior experience on error sensitivity modu-
lation during subsequent adaptation. The modeling of the
data in turn describes adaptation as an interaction between
error-sensitivity and retention. It has previously been shown
in the context of force field learning that repetition of the

same perturbation results in increased error sensitivity for
both the fast and slow processes of adaptation (15). We sub-
stantiated this here by demonstrating that sensitivity to
errors is similarly increased for both the fast and slow proc-
esses during the second session of a visuomotor rotation
task. We found no reliable differences in the retention pa-
rameter across conditions and sessions.

The behavioral changes associated with savings suggest
that some component of memory from the initial training
must lead to the faster relearning, but what is remembered
and recalled remains unclear. In the context of the present
study, how the fast and slow processes individually con-
tribute to savings, is not well known. To address this point,
we used different perturbation schedules that relied on
errors of different magnitudes to determine whether the
underlying processes of adaptation could be independ-
ently manipulated, and whether an independent memory
would subsequently be formed. We expected to see differ-
ences in error sensitivity depending on the type of prior
training participants had received and we therefore com-
pared the model parameter estimates of participants in
the gradual and structural learning groups to the first ses-
sion of the control group. We found that error sensitivity
of both the fast and slow processes was increased for both
groups. Such a result might suggest that sensitivity to error
during visuomotor adaptation is modulated by abrupt,
gradual, and random perturbation schedules.

Figure 7.Model simulations. Parameter estimates for each session were based on the mean values from the bootstrap distributions shown in Fig. 6. The
four parameters of the model are fast retention (Af), fast learning rate (Bf), slow retention (As), and slow learning rate (Bs).
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As an alternative account, savings has previously been
explained by the retrieval of previous successful actions,
reflecting the use of an explicit strategy (18–20, 23). Within
the framework of a two-state model, this theory suggests
that savings is driven only by the fast process, without con-
sideration of the contributions from the slow process (35).
Several researchers have argued that explicit cognitive strat-
egies can account for a significant amount of learning, par-
ticularly during the early phase of learning and relearning
(36–38). The dissociation of learning into implicit and
explicit learning processes often relies on the use of verbal
aiming reports before reaching (18, 20, 23, 38). Recent find-
ings, however, indicate that verbal aiming reports could lead
to an overestimated explicit contribution to adaptation (21,
39). In fact, Leow et al. (21) demonstrated that the use of
shortened preparation time, designed to prevent strategic
reaiming, resulted in the estimated implicit learning being
larger than that which was obtained from verbal reports.
Furthermore, Yin and Wei (22) provide supporting evidence
that savings of motor adaptation is possible without forming
or recalling a cognitive strategy with the use of a gradually
introduced visuomotor rotation during initial learning. If
savings is possible, with and without an explicit strategy
being formed during initial learning and predominant
measures of implicit and explicit processes may be con-
founding their mode of measurement, how reliable are the
findings suggesting savings is driven exclusively by an
explicit process?

The debate about the contributions of explicit/implicit
and fast/slow processes to savings stems from a recent pro-
posal that fast and slow processes reflect explicit and implicit
learning mechanisms, respectively (35). Motor memory de-
velopment is thought to be based on two components: recall,
which involves retrieving past motor movements, and faster
relearning, which involves increased sensitivity to errors (3,
40). By using the framework of a two-state model, we
focused on the dominant component of adaptation, which is
sensory prediction error, and found that motor memory was
associated with an increase in error sensitivity. In addition
to sensory prediction error, there are other possible teaching
cues that might drive adaptation. When researchers are
focused on the more cognitive aspects of learning, exploring
the use of an explicit strategy, the dominant component of
adaptation may likely be the reinforcement of successful
actions. Future research may shed light on this debate by
probing both proposed methods of dual processing simulta-
neously during learning, and by assessingmore directly their
shared features.

Another long-standing question is how quickly implicit
changes in learning emerge. Huberdeau et al. (20) demon-
strated that learning of an abrupt perturbation with only a
few trials is sufficient to cause savings via the explicit pro-
cess, based on the belief that the fast learning is too short for
implicit learning to take its full effect. Ruttle et al. (41) how-
ever recently confronted the long-standing notion that
implicit learning is slowly developing, typically unfolding
over tens of trials. By observing changes in both internal
models and state estimates of limb position as a characteri-
zation of implicit learning, they found that after only one to
three perturbed training trials participants had changes in
both reach aftereffects and a shift in hand localization.

Taking this into account, it seems possible that the six-trial
repetition used in the structural learning task, aiming to influ-
ence the fast process, may have simultaneously influenced
the slow process. For that reason, it is possible that a common
component of all three perturbation schedules used during
initial training was that the slow process accounted for a sig-
nificant portion of the error reduction.

Albert et al. (33) recently investigated the persistence of re-
sidual errors during motor adaptation in the context of
implicit and explicit learning systems. Of importance to the
present study, they propose that it is the implicit learning
systemwhichmaintains a history for prior errors. Our results
are consistent with this hypothesis that it is the implicit pro-
cess that stored some component of prior training. Given the
suggestion that the history of errors is stored by only one of
the two proposed underlying processes, this finding would
be lost if learning behavior was represented using a single-
state model. Nevertheless, one may ask whether a two-state
model was necessary to represent learning in the behavioral
tasks tested in the present study. To address this, we calcu-
lated AIC values for both single- and two-state models fits to
the behavioral data. We used the data associated with the four
sessions of abrupt rotations (i.e., the first and second sessions
of the control group, and the second session of the gradual
and structural learning groups) and for each we estimated the
overall output based on a single-state model and separately
using a two-state model. Based on the model with the lowest
AIC value, in all four cases the best-fit model describing the
measured behavioral data was the two-state model. As a fol-
low-up to our initial question, we would further suggest that
the stored memory is accessible to both processes during sub-
sequent learning. As it pertains to our findings, we would
argue that although the fast process may not maintain a his-
tory or errors, it does have access to this information in subse-
quent learning as evident by the increased error-sensitivity
for the fast process during testing in all groups.

Alternatively, although the experimental design and two-
state model, used in the present study, account well for the
results of savings, recent work looking at evoked recovery
(42) posits that memory formation is related to the storing of
information about the dynamical and sensory features of the
environment is related to the context with which it is associ-
ated. Understanding how contextual inference can be related
to and accessed by each process of the two-state model can
shed light on future discussions about multiple processes
underlyingmotor learning.
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