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2020.—Effort-based decision making is often modeled using subjec-
tive value, a function of reward discounted by effort. We asked
whether EEG event-related potential (ERP) correlates of reward
processing are also modulated by physical effort. Human participants
performed a task in which they were required to accurately produce
target levels of muscle activation to receive rewards. Quadriceps
muscle activation was recorded with electromyography (EMG) during
isometric knee extension. On a given trial, the target muscle activation
required either low or high effort. The effort was determined proba-
bilistically according to a binary choice, such that the responses were
associated with 20% and 80% probability of high effort. This contin-
gency could only be learned through experience, and it reversed
periodically. Binary reinforcement feedback depended on accurately
producing the target muscle activity. Participants adaptively avoided
effort by switching responses more frequently after choices that
resulted in hard effort. Feedback after participants’ choices that
revealed the resulting effort requirement did not elicit modulation of
the feedback-related negativity/reward positivity (FRN/RP). How-
ever, the neural response to reinforcement outcome after effort
production was increased by preceding physical effort. Source
decomposition revealed separable early and late positive deflec-
tions contributing to the ERP. The main effect of reward outcome,
characteristic of the FRN/RP, loaded onto the earlier component,
whereas the reward � effort interaction was observed only in the
later positivity, which resembled the P300. Thus, retrospective
effort modulates reward processing. This may explain paradoxical
behavioral findings whereby rewards requiring more effort to
obtain can become more powerful reinforcers.

NEW & NOTEWORTHY Choices probabilistically determined the
physical effort requirements for a subsequent task, and reward de-
pended on task performance. Feedback revealing whether choices
resulted in easy or hard effort did not elicit reinforcement learning
signals. However, the neural responses to reinforcement were modu-
lated by preceding effort. Thus, effort itself was not treated as loss or
punishment, but it affected the responses to subsequent reinforcement
outcomes. This may explain how effort can enhance the motivational
effect of reward.

effort; feedback-related negativity; human; reinforcement; reward

INTRODUCTION

Humans and other animals tend to make decisions that lead
to more rewarding and less physically effortful outcomes
(Hartmann et al. 2013; Kennerley et al. 2009; Morel et al.
2017; Rangel and Hare 2010; Selinger et al. 2015; Shadmehr et
al. 2016; Walton et al. 2006). During decision making dopa-
minergic, prefrontal, and striatal structures are implicated in
motivating effortful behavior to obtain reward and in integrat-
ing reward and effort cost to make value-based choices (Denk
et al. 2005; Hosking et al. 2015; Kurniawan et al. 2010, 2011;
Rudebeck et al. 2008; Salamone et al. 2003, 2007; Schweimer
et al. 2005; Walton et al. 2003). After decisions are made and
actions are produced, midbrain dopaminergic neurons signal
the difference between expected and obtained reward to the
ventral striatum and prefrontal regions (Bayer and Glimcher
2005; Gläscher et al. 2010; Graybiel 2008; Holroyd and Coles
2002; Pessiglione et al. 2006; Puig and Miller 2012; Schultz
2006). This reward prediction error signal is thought to drive
reinforcement learning by updating reward expectations, al-
lowing for adaptive behavior in uncertain or changing envi-
ronments. Although reward-processing areas have been shown
to process effort costs during decision making before action
selection, we know relatively little about whether motor costs
associated with effort also modulate reward processing after an
action is completed, in response to feedback about success or
failure.

During decision making the anterior cingulate cortex (ACC)
is known to encode prospective reward and effort cost and to
integrate both into a unitary subjective utility signal character-
ized by effort-discounted reward (Croxson et al. 2009; Ken-
nerley et al. 2011; Klein-Flügge et al. 2016; Porter et al. 2019;
Prévost et al. 2010; Rudebeck et al. 2006). During outcome
evaluation the ACC encodes reward prediction error and sup-
ports reinforcement learning (Amiez et al. 2005; Ito et al. 2003;
Kennerley et al. 2011; Seo and Lee 2007; Walsh and Anderson
2012; Williams et al. 2004), but it remains to be shown whether
reward learning signals in the ACC also integrate motor effort
costs. Contrary to this idea, fMRI studies have argued that
separate neural systems underlie reward and effort learning,
with ACC activity reflecting prediction errors for effort but not
reward (Hauser et al. 2017; Skvortsova et al. 2014). However,
an event-related potential (ERP) measured by EEG called theCorrespondence: P. L. Gribble (pgribble@uwo.ca).
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feedback-related negativity, or alternatively the reward posi-
tivity (FRN/RP), is a reliable neural correlate of reward pre-
diction error and is consistently localized to the ACC (Becker
et al. 2014; Cohen and Ranganath 2007; Emeric et al. 2008;
Gehring and Willoughby 2002; Hauser et al. 2014; Holroyd
and Coles 2002; Mathewson et al. 2008; Miltner et al. 1997;
Nieuwenhuis et al. 2005; Vezoli and Procyk 2009; Walsh and
Anderson 2012; Warren et al. 2015). We sought to test whether
the FRN/RP not only acts as a learning signal for reward
outcomes but also integrates physical effort requirements dur-
ing learning. Because other ERP components have also been
implicated in outcome processing, we tested for effects in a
broad temporal range (Glazer et al. 2018). In particular, the
P300 is affected by various properties of motivationally rele-
vant feedback including valence, magnitude, likelihood, and
other high-level variables (Ma et al. 2014; San Martín 2012;
Sato et al. 2005; Wang et al. 2014; Wu and Zhou 2009; Yeung
and Sanfey 2004).

Economic theories assert that effort is a cost that devalues
reward and thus predict a diminished neural response to rein-
forcement for more costly rewards (Botvinick et al. 2009;
Hartmann et al. 2013; Hauser et al. 2017; Shadmehr et al.
2016). Paradoxically, it has been found in humans and animals
that effort can enhance the reinforcing quality of rewards
(Clement et al. 2000; Inzlicht et al. 2018; Lydall et al. 2010;
Zentall 2010). It may be that prospective effort devalues
reward, while retrospective effort amplifies reinforcement. For
example, when given a choice between responses requiring
high and low effort, participants choose to produce less effort
in the immediate future. However, when given a choice be-
tween conditioned reinforcers that follow either low or high
effort, humans and other animals tend to prefer the reinforcer
that followed greater effort in the past (Alessandri et al. 2008;
Clement et al. 2000; Hernandez Lallement et al. 2014; Zentall
2010). Like many real-world situations, uncertain reward was
obtained only after effort expenditure in the present study.

Previous EEG experiments have investigated interactions
between effort and reward processing. In Gheza et al. (2018),
participants were sometimes permitted to redo gambles that
resulted in no reward by paying an effort cost. In trials with the
opportunity to redo, reward resulted in a larger neural reward
positivity signal. In this case, reward outcomes also meant that
participants avoided a potential prospective effort cost, which
could serve to increase the valuation of the reward. However,
the effort manipulation also required additional time to com-
plete, which delayed task progress, and the effects of effort cost
vs. temporal cost could not be dissociated. In tasks that provide
reinforcement feedback after performance of cognitive tasks
with varying attentional or mental demands, increased effort
has been shown to enhance the FRN/reward positivity (Ma et
al. 2014; Schevernels et al. 2014; Wang et al. 2017). This is
consistent with the notion that preceding effort enhances re-
ward signals. However, increased effort in cognitive tasks is
almost invariably associated with higher difficulty and thus
lower probability of success. In this case, it is difficult to
determine whether enhanced reward signals are due to in-
creased effort or lower reward expectations, which would
result in larger reward prediction error.

In the present study, physical effort is manipulated by
changing the magnitude of muscle contractions required to
complete the task, but the probabilities of reward and success

are equated across the different effort conditions. This allows
us to assess the effects of effort in terms of motor cost without
confounds related to reward expectation. Furthermore, unlike
previous EEG experiments that varied cognitive effort ran-
domly, physical effort requirements in the present study were
affected by participants’ choice behavior. It has been shown
that the FRN/RP and other neural correlates of outcome pro-
cessing are typically more sensitive when outcomes are attrib-
utable to agents’ actions (Hassall et al. 2019; Martin and Potts
2011; Sambrook and Goslin 2015; Walsh and Anderson 2012;
Yeung et al. 2005; Zink et al. 2004).

Participants first made binary choices, and then they re-
ceived feedback about the resulting effort requirements, which
were probabilistic and uncertain. Subsequently, they performed
an effortful electromyographic (EMG) production task for
which they received variable reward that was dependent on
precisely producing a target level of EMG activity. This trial
sequence allowed us to test the hypothesis that effort informa-
tion is maintained during the course of an action and that this
information is integrated retrospectively with reward feedback.
According to this hypothesis, feedback indicating effort re-
quirements in the present study would not elicit neural rein-
forcement signals such as the FRN/RP, whereas the neural
response to reward feedback at the end of each trial would be
modulated by both reinforcement outcome and the preceding
effort. Alternatively, if effort is treated simply as an aversive
stimulus or an economic loss by a standard temporal difference
learning process, then feedback that predicts the upcoming
effort but not the reward outcome should elicit neural rein-
forcement signals (Mulligan and Hajcak 2018).

MATERIALS AND METHODS

Participants

A total of n � 18 healthy participants were included in our study
(mean age: 22.12 yr, SD: 3.66; 9 men, 9 women). Four participants
underwent the experimental procedure but were excluded because of
excessive EEG artifacts caused by sweat or movement associated with
the task. Participants provided written informed consent to experi-
mental procedures approved by the Research Ethics Board at The
University of Western Ontario.

Experimental Setup

To allow for isometric contractions of the quadriceps muscles,
participants were restrained to a chair by straps on their shoulders and
waists. Participants’ ankles were strapped to a rack fixed at the base
of the chair, with the knees bent at ~90°. Participants were seated in
front of a CRT monitor with their hands resting on a table positioned
to make button presses on a response box.

EMG and EEG Recording

Unreferenced EEG activity was recorded at 512 Hz with a 64-
channel Biosemi ActiveTwo system (Biosemi). Electrodes were
mounted in an elastic cap and distributed according to the extended
10-20 system with electrode Cz placed over the vertex. Instead of the
typical ground electrode, Biosemi forms a feedback loop between an
active Common Mode Sense electrode and a passive Driven Right
Leg electrode. The Common Mode Sense electrode was located in the
center of the area between P1, Pz, PO3, and POz. The Driven Right
Leg electrode was located in the center of the area between Pz, P2,
PO3, and PO4. Electrooculogram (EOG) was recorded with elec-
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trodes placed above and below each eye and the outer canthus of each
eye. Additional electrodes were placed on each mastoid.

EMG activity was recorded at 2,400 Hz bilaterally from the rectus
lateralis muscles of the quadriceps with an active electrode system and
amplifier (g.USBamp; g.tec Medical Engineering). Two electrodes
were placed on each muscle belly for bipolar recordings, and a ground
electrode was placed on the left shin. EMG signals were filtered at the
time of recording with a 5- to 500-Hz band-pass filter and a 60-Hz
notch filter.

Visual Feedback of EMG

The EMG signal used to provide online visual feedback of quad-
riceps muscle activity was first rectified, low-pass filtered with a
10-Hz cutoff frequency, and then downsampled to 120 Hz. At the
beginning of each block, participants performed isometric knee ex-
tensions with maximum effort continuously for 4 s. All samples
greater than the median value recorded during maximum effort were
averaged to determine the value of maximum voluntary contraction
(MVC) used throughout the block. Subsequently, participants were
cued to remain completely still and keep their legs relaxed for 4 s. The
mean EMG signal during this period was used as a baseline value
throughout the block.

During each trial, an animation of a thermometer was displayed to
participants. The fluid level of the thermometer increased in real time
(monitor refresh rate: 60 Hz) as a linear function of the processed
EMG signal. In “hard” effort trials, the top of the thermometer
corresponded to 85% of MVC and the bottom of the thermometer
corresponded to the baseline measure. In “easy” effort trials, the top
of the thermometer corresponded to 15% of MVC. Because easy trials
required only a small amount of muscle activity to reach the target, the
gain of the visual feedback relative to the EMG was high. To reduce
the gain and provide smooth feedback, the baseline measure (resting
EMG) was made to correspond to the point halfway up the thermom-
eter for the easy condition, so that the temperature moved half the
distance on the display. The fluid level was calculated separately for
each leg based on their respective MVC and baseline measures, and
the average was used to display feedback. A running average of fluid
level for the previous 60 samples was drawn to the screen to provide
smooth feedback. During each trial, the maximum fluid level for that
trial was continuously displayed such that the fluid level only in-
creased, and if the participant relaxed their quadriceps muscles the
feedback would remain at the same level. This allowed for smooth,
ballistic isometric contractions. It also made it so that participants
were not required to hold the fluid level constant without visual
feedback, which often resulted in the fluid level fluctuating or drifting
away from the target during pilot experiments.

Experimental Task

Participants first performed a block of 28 practice trials (see
below). Participants then performed four blocks of 74 trials with
self-paced rest periods between blocks. Each block consisted of 12
control condition trials, followed by 50 experimental condition trials
and finally 12 additional control condition trials. At the end of each
block, participants were verbally surveyed as to how physically
effortful the easy and hard effort trials were with a scale of 1 to 5, with
5 corresponding to maximum effort.

Experimental condition. During each trial, participants made a
binary choice that probabilistically determined whether the trial would
require easy or hard physical effort. The effort contingencies had to be
learned through experience. Participants then performed isometric
knee extensions to control visual EMG feedback on a screen. Partic-
ipants were instructed to exceed a minimum level of muscle activation
indicated by a visual target while remaining as close as possible to the
target. Binary reinforcement feedback was provided at the end of each

trial to indicate success or failure, which corresponded to a small
monetary reward.

Visual stimuli are shown in Fig. 1. An animated thermometer was
drawn on the screen throughout the task. A cross was drawn at the top
of the thermometer to serve as a target for EMG feedback. Letters “A”
and “B” drawn to the left and right of the thermometer represented the
options for binary choices made in each trial. Participants initiated
each trial by pressing either a left or right button on a response box
with their left or right index finger, respectively. Immediately on each
button press, the choice was indicated by a box appearing around the
letter “A” or “B” for the left and right response buttons, respectively.
The box remained throughout the trial.

Effort feedback. One second after the button press participants
received feedback indicating the effort that they would be required to
exert on the present trial. The word “easy” or “hard” replaced the
target cross for 700 ms to indicate upcoming required effort. The
effort condition was determined probabilistically by the participants’
response, and the effort contingencies had to be learned through
experience. One of the responses led to a hard effort trial with a
probability of 0.8 and an easy effort trial with a probability of 0.2. The
other response led to a hard effort trial with a probability of 0.2 and
an easy effort trial with a probability of 0.8. Unannounced to partic-
ipants, the effort contingencies periodically reversed. Reversals oc-
curred after the response more likely to produce easy effort was
chosen a cumulative number of times, which was randomly selected
to be between 5 and 9 for each reversal. Participants were instructed
that their responses would affect the effort requirements in some way
but were not informed of the specific nature of the task. Participants
were not instructed to respond in any particular way other than to
sample both choices.

After the effort feedback was removed from the display, the target
cross reappeared for 800 ms. Subsequently, the effort production
phase of the trial began. During this phase, the fluid level of the
thermometer was drawn continuously to provide EMG feedback (see
Visual Feedback of EMG). The fluid level increased with increasing
EMG signal but represented the maximum signal for the trial, and thus
never decreased. A purple circle was drawn under the target to cue the
beginning of the effort production phase, and participants were in-
structed to keep their legs relaxed until they saw this cue. The circle
shrank continuously during the course of the trial, disappearing in
2,500 ms to signal the end of the effort production phase, at which
point EMG feedback disappeared. Participants were instructed that to
complete the task successfully the final fluid level must exceed the
target represented by the center of the cross. The target corresponded
to 15% and 85% of MVC in the easy effort and hard effort conditions,
respectively. Furthermore, participants were instructed to keep the
fluid level as close as possible to the target; thus their goal was to
always overshoot the target but to minimize the extent of overshoot.
Participants were instructed to relax their legs as soon as possible after
reaching the target, as the fluid level did not decrease during a trial.
EMG feedback was withheld above the target by a mask drawn on the
top of the thermometer. This prevented participants from seeing the
extent of their overshoot errors.

Reinforcement feedback. Feedback about performance was pro-
vided at the end of the trial with binary reinforcement. At the end of
the effort production phase, the EMG feedback and the mask disap-
peared. After 1,500 ms of fixation, the target cross was replaced with
either “$$$” or “XXX” to indicate a rewarded or failed trial, with a
reward being indicated if the fluid level exceeded the target while
remaining sufficiently close to it. Participants were instructed that they
could earn up to an additional 10 CAD throughout the task according
to the number of trials in which they received feedback indicating
success. The error threshold for overshoot was adjusted with a
1-up-1-down adaptive staircase separately for the two effort condi-
tions to ensure a 50% reinforcement rate overall for both conditions.

Control condition. Each block began and ended with 12 control
trials, during which the task was the same as the experimental
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condition except no reinforcement feedback was provided and the
effort condition was deterministic and independent of participants’
responses. Both runs of 12 control trials consisted of 6 easy effort
trials and 6 hard effort trials, with the trials of each effort condition
occurring consecutively. The text “easy effort” or “hard effort” was
displayed at the top of the screen continuously to cue the effort
condition for all control trials. Participants were instructed to make a
button press to initiate each trial but were instructed that the choice was
arbitrary and that the effort condition would always correspond to the cue
at the top of the screen. In the first 12 control trials of each block, there
was no mask drawn on the top of the thermometer, so participants could
see their overshoot errors in order to practice the task more effectively. In
the final 12 control trials of each block, the mask was drawn for each trial
as in the experimental condition. The orders of easy and hard condition
runs during the control trials were randomized and balanced across the
four blocks for each participant.

Practice trials. Participants first performed a practice block to learn
how to control the EMG feedback. As in the control trials, no
reinforcement feedback was provided and the effort condition was
cued to participants before each trial and independent of participants’
responses. The practice block began with seven easy effort trials
followed by seven hard effort trials without the mask drawn at the top
of the thermometer. Participants then performed seven easy effort
trials followed by seven hard effort trials with the mask.

Behavioral analysis. The effect of effort and reinforcement out-
comes on behavioral choice was analyzed with logistic regression
performed with the Glmnet package in R. The dependent variable was
whether the participants’ choice on trial n corresponded to staying or
switching from the choice on trial n � 1, coded as 0 or 1. The

independent variables were determined by the effort and reinforce-
ment outcomes on trial n � 1:

Effort: �1 for easy effort, 1 for hard effort
Reward: �1 for nonreward, 1 for reward
Effort/Reward interaction: Effort � Reward
Switch: 1 for all trials
Logistic regression was calculated separately for each participant.

Regularization was applied with an L2-norm penalty. The penalty
constant, �, was selected by leave-out cross-validation. A value of
0.04297 was chosen as it is the largest value that minimizes the
cross-validated misclassification error, averaged across subjects. The
coefficients for Effort, Reward, and the interaction term were each
submitted to one-sample t tests against zero.

EEG Preprocessing and Denoising

EEG data were preprocessed with the EEGLAB toolbox (see
Delorme and Makeig 2004 for details), except for filtering, which was
performed with the MATLAB filtfilt function. Data, initially refer-
enced to linked mastoids, were band-pass filtered with a second-order
Butterworth filter with a passband of 0.1–45 Hz. Channels with poor
recording quality or excessive artifacts were identified with visual
inspection and interpolated with spherical interpolation. EEG data
were then rereferenced to the average scalp potential, and interpolated
electrodes were subsequently removed from the data before indepen-
dent component analysis (ICA). Two epochs were extracted for each
trial corresponding to effort condition feedback following the button
press response and reinforcement feedback following the effort pro-
duction phase. Continuous data were segmented into 2.5-s epochs
time-locked to stimulus onset at 0 ms (time range: �1,000 to �1,500

$$$

Reward feedback 

(1000 ms) 

Fixation (1500 ms)

Effort production 

(2500 ms) 

Fixation (800 ms)

Effort feedback 

(700 ms)

Choice indicated 

(1000 ms) 

Response latency

hard

Fig. 1. Stimuli. Participants initiated each trial by indicating a binary decision through button press. A box immediately appeared around either the letter “A”
or “B,” corresponding to the choice options. After 1,000 ms, feedback appeared to inform participants that their choice resulted in either easy or hard physical
effort requirements for the upcoming electromyographic (EMG) production task. A purple circle appeared over the target cross to cue the onset of the EMG
production phase, during which participants performed isometric knee extension and the fluid level of a thermometer indicated quadriceps muscle activation. The
circle shrank continuously, disappearing in 2.5 s to cue the end of the EMG production phase. Participants attempted to bring the fluid level above the target,
represented by a cross, while remaining as close as possible to the target. However, a mask drawn above the target prevented participants from seeing the extent
of errors that they made in overshooting the target. Instead, binary reinforcement feedback was provided 1.5 s after the EMG production phase ended, indicating
whether or not participants had successfully exceeded the target while remaining sufficiently close.
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ms). Data epochs containing artifacts other than blinks were removed
by visual inspection. Subsequently, extended infomax ICA was per-
formed on each participant’s data (Delorme and Makeig 2004).
Components reflecting eye movements and blink artifacts were iden-
tified by visual inspection and subtracted by projection of the remain-
ing components back to the voltage time series.

Event-Related Potential Analysis

Trial averaging. We computed event-related potentials (ERPs) on
an individual participant basis by trial-averaging EEG time series
epochs recorded from electrode FCz after artifact removal. ERPs were
analyzed after time-locking signals to two points in time: effort
feedback and reinforcement (performance) feedback. The FRN/RP is
typically maximal at electrode FCz, and this selection is consistent
with previous work including our own (Holroyd and Krigolson 2007;
Miltner et al. 1997; Palidis et al. 2019; Pfabigan et al. 2011). We
selected trials corresponding to various feedback conditions in each
task.

For ERPs time locked to reinforcement feedback, we computed
ERPs corresponding to “easy nonreward” (45.4 � 6.9 trials) “easy
reward” (46.3 � 6.2 trials), “hard nonreward” (37.9 � 8.4 trials), and
“hard reward” (45.6 � 7.7 trials) conditions. In the control condition,
participants performed the effort production task but did not receive
any reinforcement feedback. We computed ERPs for the “control
easy” (41.5 � 5.9 trials) and “control hard” (38.5 � 5.5 trials) condi-
tions time locked to the moment when reinforcement feedback would
have been delivered in the experimental condition. For ERPs corre-
sponding to reinforcement feedback and the control condition, we
excluded all trials in which the visual EMG feedback did not reach the
target, as in this case a nonreward outcome was evident before the
reinforcement feedback was delivered.

We also extracted ERPs time locked to the effort condition feed-
back, which indicated the upcoming effort requirements after each
button press but before the participant performed the EMG production
task (“easy feedback” 94.9 � 10.2 trials and “hard feedback”
92.4 � 13.5 trials). All ERPs were baseline corrected by subtracting
the average voltage in the 100-ms period immediately before stimulus
onset. Finally, ERPs were low-pass filtered with a cutoff frequency of
30 Hz.

Statistical analysis. We performed statistical tests on each sample
between 100 and 600 ms after feedback onset. We selected this time
window as it is wide enough to capture effects outside of the FRN/RP
yet constrained to a range during which ERPs are likely to be affected
by feedback processing (Glazer et al. 2018). We corrected signifi-
cance values for multiple comparisons across time with the Benja-
mini–Hochberg procedure for estimating the false discovery rate
(FDR), implemented by the MATLAB mafdr function.

To analyze the neural response to reinforcement feedback, we
performed 2 � 2 repeated-measures ANOVA with the MATLAB
ranova function. The factors were reward outcome (levels: nonre-
ward, reward) and effort condition (levels: easy, hard). We used
one-sample t tests against zero on the difference waves computed
between easy feedback and hard feedback ERPs, aligned to feedback
indicating effort condition after each button press but before the EMG
production phase. To test for artifacts related to the isometric leg
extension, we used one-sample t tests against zero on the difference
waves computed between easy control and hard control ERPs. These
ERPs were aligned to the moment when reinforcement feedback
would have been delivered in the experimental condition, but instead
the target cross simply disappeared briefly. Participants were told that
they would not receive feedback in this condition and thus did not
expect a possible reward.

Scalp distributions. Scalp distributions were plotted with the
EEGLAB topoplot function using the mean amplitude of difference
waves within specified time windows, averaged across subjects.

Source Separation

Because of volume conduction, potential differences between
any particular scalp electrodes contain mixed contributions from
nearly all active neural sources and artifacts. Measurements of any
event-related potential (ERP) component using scalp regions of
interest, such as the measurements of the FRN/RP described above,
are thus prone to contamination by other ERP components with
distinct neural sources. Independent component analysis (ICA) can
be used to produce spatial filters that isolate activity measured
from separate cortical sources (Onton and Makeig 2006). Each
component returned by ICA is a linear weighting of all electrodes,
computed to produce signals with maximal temporal independence
(Delorme and Makeig 2004).

Because ICA decomposition of neural activity sources can be
particularly sensitive to signal properties and noise, we preprocessed
the data using a modified procedure to produce ICA weightings for
source separation. Except for the differences described below, we
followed the same preprocessing used for the ERP analysis, including
rejection of the same channels and epochs for artifact removal, as
described in EEG Preprocessing and Denoising. EEG data were
downsampled to 256 Hz and high-pass filtered with a second-order
Butterworth filter with a cutoff of 0.25 Hz instead of 0.1 Hz. Aggres-
sive high-pass cutoff frequencies of 1–2 Hz have been shown to
improve ICA decomposition (Winkler et al. 2015). However, high-
pass filtering at or above 0.3 Hz has been shown to attenuate and
distort long-latency ERP components, and 0.1-Hz cutoff is generally
recommended for ERP analysis (Acunzo et al. 2012; Bougrain et al.
2012; Holinger et al. 2000; Tanner et al. 2015). We chose to compute
ICA weights with data high-pass filtered with a 0.25-Hz cutoff as a
suitable compromise. Sixty-hertz power line noise was removed with
the CleanLine EEGLAB plugin (Mullen 2012). Data were selected
with the time range �100 to �600 ms centered around effort feed-
back and reinforcement feedback, instead of �1,000 to �1500, so that
the ICA would primarily account for variance in the time window of
interest. The same epochs previously identified to contain artifacts, as
described in EEG Preprocessing and Denoising, were rejected before
extended infomax ICA was performed on each participant’s data.
Subsequently, the time series of the independent components’ activ-
ities were visually inspected, and additional epochs containing arti-
facts were flagged and removed before recomputing the ICA weights.
According to the tutorial wiki maintained by the developers of
EEGLAB, ICA can “concentrate” artifacts for easier rejection, and
recomputing ICA after such a rejection “may improve the quality of
the ICA decomposition, revealing more independent components
accounting for neural, as opposed to mixed artifactual activity” (see
https://sccn.ucsd.edu/wiki/Chapter_01:_Rejecting_Artifacts).

To analyze the contribution of individual independent compo-
nents (ICs) to the ERPs (IC-ERPs), the ICA weights computed for
each participants’ data were then applied to the data originally
preprocessed for ERP analysis as described in EEG Preprocessing
and Denoising. Thus, identical preprocessed data were used for
traditional ERP analysis and the IC-ERP analysis, along with
identical procedures described above in Trial averaging and Sta-
tistical analysis. The only difference was that the traditional ERP
analysis used mixed data recorded from electrode FCz, whereas the
IC-ERP analysis used activity from selected ICs back-projected
onto electrode FCz. ICs corresponding to brain activity as opposed
to artifacts were identified by stereotyped properties including
scalp topographies resembling dipolar projections and spectral
peaks at frequencies typical of EEG activity. The traditional ERP
analysis revealed multiple ERP components peaking at different
latencies. ICs corresponding to particular ERP components were
identified by the presence of maximal peaks in the IC-ERPs in
corresponding time windows (see IC-ERP Results).
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RESULTS

Behavioral Results

Participants made binary decisions that probabilistically de-
termined the effort requirements for each trial. Participants
underwent the hard effort condition in 49.6% (SD: 4.8%) of
trials. Reward was delivered if EMG feedback exceeded a
target level while staying sufficiently close to the target.
Participants received reward in 49.4% (SD: 0.01%) of trials.
We performed logistic regression for each subject to predict
switching of responses between trials n � 1 and n, with the
effort condition and reward outcome on trial n � 1 as the
predictors. Figure 2B shows the coefficients estimated for each
subject, and Fig. 2A shows the proportion of trials after which
participants switched responses for the different reward and
effort outcomes. We found that the coefficients for the effect of
effort on switching were significantly greater than zero [1-
sample t test; t(17) � 2.263, P � 0.037]. The coefficients for
the effect of reward were not reliably different from zero
[t(17) � �0.871, P � 0.3959], nor were the coefficients for the
interaction term [t(17) � 0.252, P � 0.8043].

ERP Results

Figure 3A shows the ERPs elicited by reinforcement feed-
back. We analyzed the neural response to reinforcement feed-
back by performing 2 � 2 repeated-measures ANOVA for
each individual time point 100–600 ms after feedback onset. P
values are corrected for multiple comparisons across time
points with FDR. In response to reinforcement feedback, that
ERP amplitude was larger in response to reward compared
with nonreward between 184 and 336 ms after feedback onset
(Fig. 3B; reward main effect, ranges for significant time points:
F � [7.99 52.99], P � [0.045 0.0001], uncorrected P � [0.012
�0.0001]). We also found that voltage was lower in the hard
effort condition than in the easy effort condition 238–254 ms
after feedback onset (Fig. 3C; main effect effort, ranges for
significant time points: F � [13.74 14.45], P � [0.050 0.050],
uncorrected P � [0.0018 0.0011]). We found effort/reward
interaction effects starting 250 ms after feedback onset and up
to 600 ms, the end of our time window for statistical testing
(Fig. 3D; ranges for significant time points: F � [5.73 38.94],
P � [0.048 0.0008], uncorrected P � [0.028 �0.0001]).

In the control condition, participants performed the EMG
production task, but the effort condition was predetermined
and no reinforcement feedback was provided. We found no
reliable differences between the control easy and control hard
ERPs (ranges for all time points between 100 and 600 ms: t �
[�1.56 1.42], uncorrected P � [1.00 0.139]).

After participants produced binary decisions by button press,
feedback was provided to indicate the resulting effort condition
for the current trial. Figure 4A shows the ERPs elicited on each
trial by feedback indicating the effort condition. We found
significant differences between the easy feedback and hard
feedback ERPs between 373 and 522 ms after effort feedback
(Fig. 4B; ranges for significant time points: t � [�4.31 �2.81],
P � [0.049 0.015], uncorrected P � [0.012 0.0005]). Although
we only performed statistical testing up to 600 ms to avoid
sacrificing statistical power, we observed that the easy feed-
back � hard feedback difference wave remains at least 1
standard error below zero until 1,018 ms after feedback.

IC-ERP Results

The ERP responses to reinforcement feedback at electrode
FCz clearly contained multiple components (Fig. 3), with the
most obvious contributions being from a relatively early pos-
itive deflection peaking between 164 and 172 ms after feed-
back onset depending on the feedback condition and a later
positive deflection peaking between 334 and 359 ms. Indepen-
dent component analysis applied to individual participants’
data consistently outputted ICs corresponding to these ERP
components. We identified ICs that resembled neural EEG
activity and computed the average ERPs of IC activity pro-
jected onto electrode FCz. For each participant, we identified
the early ERP component by selecting the IC with the largest
maximal positive peak occurring before 200 ms. We identified
the later component by selecting the IC with the largest
maximal positive peak after 200 ms. We identified neural ICs
containing maximal peaks in the early time window for 16/18
participants and in the late time window for 17/18 participants.

Early ERP component. Figure 5A shows the IC-ERPs elic-
ited by reinforcement feedback for the early ERP components.
We performed 2 � 2 repeated-measures ANOVA on IC-ERP
amplitude at each individual time point 100–600 ms after
feedback onset. P values are corrected for multiple compari-
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Fig. 2. Participants switch responses more frequently after
hard physical effort than easy effort. A: the proportion of trials
on which participants switched responses between trial n � 1
and trial n for the different reward outcomes and effort
conditions on trial n � 1 (error bars: �SE). B: coefficients
estimated by using logistic regression to predict response
switching for each participant (bars indicate mean � 1 SE).
Predictors were reward outcome, effort condition, and reward/
effort interaction. The effort term was significantly greater
than 0 (P � 0.037), indicating that participants were more
likely to switch responses after hard effort than easy effort.
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sons across time points with FDR. We found reliable main
effects of reward outcome between 164 and 342 ms after
feedback, with larger IC-ERP amplitude for reward compared
with nonreward (Fig. 5C; ranges for significant time points:
F � [8.10 34.86], P � [0.047 0.0011], uncorrected P � [0.012
�0.0001]). We found no reliable main effects of effort on the
response to reinforcement feedback (Fig. 5E; ranges for all
time points 100–600 ms: F � [0.00 4.97], uncorrected P �
[1.00 0.0416]). We also found no reliable interaction effects
between effort and reward (Fig. 5G; ranges for all time points
100–600 ms: F � [0.00 5.58], uncorrected P � [0.99 0.032]).
Figure 6A shows the IC-ERPs elicited by effort feedback for
the early ERP components. We observed no difference be-
tween the response to easy effort and hard effort feedback (Fig.
6C; ranges for all time points between 100 and 600 ms: t �
[�0.94 1.67], uncorrected P � [1.00 0.12]). We observed no
differences between the control easy and control hard IC-ERPs
(ranges for all time points between 100 and 600 ms: t �
[�1.38 2.46], uncorrected P � [ 0.027 0.99]).

Late ERP component. Figure 5B shows the IC-ERPs elicited
by reinforcement feedback for the late ERP components. We
found no reliable main effects of reward outcome on the
response to reinforcement feedback (Fig. 5D; ranges for all
time points 100–600 ms: F � [0.00 16.40], uncorrected P �
[1.00 0.001]). We also found no reliable main effects of effort
on the response to reinforcement feedback (Fig. 5F; ranges for
all time points 100–600 ms: F � [0.00 4.70], uncorrected P �
[0.99 0.046]). We did observe an interaction effect between
effort and reward, with significant time points between 242 and
549 ms (Fig. 5H; ranges for significant time points: F � [5.78
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24.06], P � [0.0492 0.010], uncorrected P � [0.0287 0.0002]).
Figure 6B shows the IC-ERPs elicited by effort feedback for
the late ERP components. We observed no difference between
the response to easy effort and hard effort feedback (Fig. 6D;
ranges for all time points between 100 and 600 ms: t � [�2.89
1.29], uncorrected P � [1.00 0.011]). We observed no differ-
ences between the control easy and control hard IC-ERPs
(ranges for all time points between 100 and 600 ms: t �
[�0.27 2.01], uncorrected P � [0.97 0.06]).

To directly compare the IC-ERP responses of the early and
late components, we also analyzed both components with a
single statistical model. We performed three-way repeated-
measures ANOVA at each time point between 100 and 600 ms,
with factors reward outcome, effort, and IC (early vs. late ERP
component). We included the 15 participants for whom both
early and late components were identified. P values are cor-

rected for multiple comparisons across time points with FDR.
We found reliable main effects of reward outcome between
170 and 342 ms (ranges for significant time points: F � [7.39
29.87], P � [0.0451 0.0030], uncorrected P � [0.0167
0.0001]). We found reliable interaction effects between effort
and reward between 238 and 535 ms (ranges for significant
time points: F � [6.071 14.13], P � [0.0494 0.0425], uncor-
rected P � [0.0273 0.0021]). We found reliable three-way
interaction effects between reward, effort, and IC between 299
and 325 ms (ranges for significant time points: F � [13.75
22.24], P � [0.0429 0.0192], uncorrected P � [0.0023
0.0003]). The three-way interaction reflects a larger interaction
between reward and effort in the late component IC-ERP than
the early component IC-ERP. Separate analyses revealed a
reliable effect of reward in the early component but not the late
component. This was reflected in a trend toward interaction
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effects between IC and reward outcome, although these effects
were not reliable after correction for multiple comparisons
across time (ranges for significant time points uncorrected:
time � [172 221 ms], F � [4.65 10.65], uncorrected P �
[0.0489 0.0057]).

DISCUSSION

Participants were more likely to switch responses after
choices that led to hard effort than easy effort, suggesting that
they adapted behavior to reduce physical effort in response to
uncertain outcomes. At the end of each trial, binary reinforce-
ment feedback indicated whether participants achieved a mon-
etary reward, which depended on precisely producing a target
level of EMG activity. Unsurprisingly, reinforcement feedback
elicited a robust feedback related negativity/reward positivity
(FRN/RP) response, measured as a relative positivity in the
ERPs elicited by reward compared to those elicited by nonre-
ward feedback over the medial frontal scalp.

Samplewise analysis revealed interesting temporal dynamics
of effort and reward processing in the midfrontal EEG during
outcome evaluation. After reinforcement feedback was deliv-
ered, an effect of reward outcome first emerged with a latency
of 184 ms, which remained significant while an additional
main effect of preceding effort emerged at 238 ms. Finally, a
sustained interaction between reward and effort first occurred
around 250 ms after feedback onset. These dynamics suggest a
process whereby upon receiving reward feedback the brain first
encodes the immediate reward outcome and subsequently in-
tegrates signals related to the preceding effort. This process
culminates in an interaction whereby the effect of reward
outcome depends on the preceding effort.

The main effect of reward outcome, which is generally the
definitive feature of the FRN/RP, occurred with a typical
spatial and temporal distribution. The interaction effect showed
similar medial frontal scalp topography and substantially over-
lapping temporal properties, suggesting that it may originate in
the same neural generator. However, the interaction effect

persisted upwards of 600 ms. Although the FRN/RP is not
typically measured beyond 400 ms, meta-analysis has shown
sensitivity in medial frontal ERPs to reward prediction error
upwards of 500 ms (Sambrook and Goslin 2015). These
long-latency effects may be attributed to the P300, which is
modulated by various features of reinforcement processing and
can overlap with the FRN/RP (Glazer et al. 2018). We used
independent component analysis to separate the contributions
of various neural sources to the scalp ERP. We found that the
main effect of reward and the interaction between effort and
reward reliably load onto separate sets of independent compo-
nents. We take this as evidence that these effects arise in
distinct neural sources, as a single source cannot produce
multiple effects with separable scalp projections. However, we
do not claim that the early and late IC-ERPs necessarily
represent purely isolated single ERP components, as our ICA
procedure could fail to separate distinct sources. Although ICA
should ameliorate issues due to component overlap, they can-
not be verifiably ruled out. Nonetheless, the reward � effort
interaction effect showed latencies and IC loadings consistent
with P300 effects.

Although the FRN/RP is reliably sensitive to outcome va-
lence and likelihood aspects of reward prediction error, reward
magnitude seems to be coded independently in the P300
(Sambrook and Goslin 2015; Sato et al. 2005; Walsh and
Anderson 2012; Wu and Zhou 2009; Yeung and Sanfey 2004).
Thus, physical effort may modulate the subjective magnitude
of reinforcement outcomes. The P300 elicited by outcome
processing has also been shown to be affected by various
high-level properties such as motivational salience, temporal
waiting cost, and cognitive effort (Glazer et al. 2018; Ma et al.
2014; San Martín 2012; Wang et al. 2014). Multiple variants of
the P300 have been reported with medial frontal or posterior
scalp distributions, and widespread cortical association net-
works are implicated including parietal, temporal, and prefron-
tal regions (Polich 2007; Soltani and Knight 2000).
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Although these results show a clear effect of the physical
effort associated with an action on the neural processing of
subsequent reinforcement outcomes, specific interpretation of
the effects depends on the theoretical understanding of the
underlying components. An early and influential theory of the
FRN/RP described it as a cortical neural correlate of negative
reward prediction error (worse-than-expected outcomes), func-
tioning to deter unsuccessful actions (Holroyd et al. 2003;
Holroyd and Coles 2002; Miltner et al. 1997; Yasuda et al.
2004). However, multiple converging lines of evidence suggest
that some or all of the variance described by the FRN/RP is
actually generated by a positive ERP deflection in response to
positive reward prediction error (better-than-expected out-
comes), functioning to reinforce valuable actions (Becker et al.
2014; Carlson et al. 2011; Eppinger et al. 2008; Foti et al. 2011,
2015; Holroyd et al. 2008; Proudfit 2015; Sambrook and
Goslin 2016). These findings resulted in the more recent term
“reward positivity” (RP).

It is also possible that the FRN/RP is a bidirectional response
to positive and negative outcomes, as are canonical signed
reward prediction error signals in midbrain dopamine neurons
(Walsh and Anderson 2012). The FRN/RP clearly discrimi-
nates outcome valence (good vs. bad). The most fundamental
evidence for encoding reward prediction error is an interaction
effect of outcome valence and frequency whereby the effect of
valence is larger for unexpected outcomes. However, because
of the possibility of overlapping ERP components sensitive
purely to expectancy, analysis of simple effects cannot disam-
biguate encoding of positive, negative, or bidirectional reward
prediction errors (Sambrook and Goslin 2016). Similarly, the
prominent interaction effect of effort and reward observed in
the present study shows that effort increases the neural re-
sponse to reinforcement outcomes; however, the directionality
and valence of the effect are ambiguous. An fMRI study by
Hernandez Lallement et al. (2014) found that cognitive effort
increased neural sensitivity to both reward and loss, with
reward sensitivity being modulated in the anterior cingulate
and nucleus accumbens and loss sensitivity being increased in
the anterior insula.

An increased neural response to nonreward is consistent
with economic theories whereby a motor cost would further
devalue a nonreward outcome, leading to a larger negative
reward prediction error. Although normative economic models
of behavior predict that effort costs should devalue reward, it
has often been reported in humans and other species that
rewards produce stronger reinforcement when they require
more effort to obtain (Clement et al. 2000; Inzlicht et al. 2018;
Lydall et al. 2010; Zentall 2010). Unfortunately, we were not
able to assess such a behavioral interaction in the present study
as there was no effect of reward outcome on the binary
decisions that participants made on each trial. This was not
surprising, as reward outcome was not determined by these
decisions but rather by performance on the EMG production
task. The binary decisions only determined the effort required,
and the reinforcement threshold was controlled to produce
approximately equal reward rate in both effort conditions.

After participants produced binary responses, feedback in-
dicated the resulting physical effort condition for the subse-
quent EMG production portion of the trial. In line with theo-
retical accounts of the FRN/RP as a temporal difference learn-
ing prediction error signal, stimuli that predict aversive

outcomes or economic loss typically elicit FRN/RP responses
(Mulligan and Hajcak 2018). Thus, we predicted that effort
feedback might elicit an FRN/RP component as a learning
signal for effort minimization. However, we observed no
FRN/RP modulation when comparing the ERP responses to
feedback indicating easy or hard effort trials. Rather, effort
modulated the response to reinforcement feedback at the end of
the trial. This suggests that physical effort is not immediately
treated by the reinforcement learning system as a loss or a
punishing stimulus. Rather, effort information can be main-
tained during the course of an action and incorporated with
reward information at the time of outcome evaluation.

We often undertake protracted tasks for which the effort
requirements and ultimate payoffs are uncertain. It may not be
efficient to punish the value representation of a task every time
an unexpected effort is encountered, as the eventual payoff
may be well worth the effort. Instead, it may be more efficient
to integrate effort over the entire course of an undertaking and
evaluate the cost and benefit simultaneously when the final
outcome is observed. This process can also support interactions
in which the effect of effort depends on reward that is only
delivered later. Alternatively, some work suggests that we
learn about effort requirements and reward separately and
integrate them at the time of decision making (Hauser et al.
2017; Skvortsova et al. 2014). It is likely that economic
decision making and learning involves distributed hierarchical
computations and that it is possible to observe a distribution of
signals with varying dependencies on effort, reward, and inte-
grated utility throughout the brain (Hunt and Hayden 2017).

Some limitations of this study should be noted. Participants
adapted their behavior to reduce physical effort, but the behav-
ioral effect of effort was variable and relatively weak. Partic-
ipants were more likely to switch responses after choices that
led to hard effort than easy effort. However, participants often
switched responses after easy trials or stayed with responses
that produced hard effort: on average, participants switched
responses after 46.5% of easy trials and 60% of hard trials.
Furthermore, negative coefficients for the effect of effort on
switching were estimated for several participants. The rela-
tively weak and highly variable effects of effort are consistent
with the notion that although effort is generally treated as a cost
that is minimized, in many cases people are undeterred by
effort or even purposefully select more effortful options
(Eisenberger 1992; Inzlicht et al. 2018). These effects are often
attributed to state-dependent learning in which reinforcement
outcomes are evaluated relative to the value of the current
state. In the present study, variable reinforcement outcomes
were only evaluated after effort production and thus may have
been more valuable when received after a costly, high-effort
action. Other details of the task may have affected effort-
related choice. Unlike some previous studies of effort minimi-
zation, participants were not instructed to avoid effort. Further-
more, success in the task was not dependent on exerting effort
that exceeded an unknown criterion. These features may en-
hance effort minimization, but they could also conflate effort
prediction errors with errors relative to the goals of the task at
hand, which are also strongly represented in the ACC (Fu et al.
2019; Krigolson and Holroyd 2007; Swick and Turken 2002;
Ullsperger et al. 2014).

Although the excellent temporal resolution offered by EEG
proved instrumental in uncovering the dynamics of effort and
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reward processing in the brain, it invariably measures a mix-
ture of signals from neurons with different response properties.
Kennerley et al. (2011) identified diverse tuning to economic
value across ACC, orbitofrontal cortex, and lateral prefrontal
cortex, such that many neurons that are selective to value with
opposite tunings will cancel out at the population level mea-
sured by EEG of fMRI. We report effects with midfrontal scalp
topographies. However, EEG measured at the scalp is difficult
to localize and can represent mixtures of activity from entirely
separate brain regions. Although the FRN/RP is a well-char-
acterized response and convergent lines of evidence suggest a
source in the ACC, we did not attempt any source localization.
The spatial localization of the measured signals remains spec-
ulative.
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