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Coltman SK, Gribble PL. Time course of changes in the long-
latency feedback response parallels the fast process of short-term
motor adaptation. J Neurophysiol 124: 388–399, 2020. First pub-
lished July 8, 2020; doi:10.1152/jn.00286.2020.—Adapting to novel
dynamics involves modifying both feedforward and feedback control.
We investigated whether the motor system alters feedback responses
during adaptation to a novel force field in a manner similar to
adjustments in feedforward control. We simultaneously tracked the
time course of both feedforward and feedback systems via indepen-
dent probes during a force field adaptation task. Participants (n � 35)
grasped the handle of a robotic manipulandum and performed reaches
to a visual target while the hand and arm were occluded. We
introduced an abrupt counterclockwise velocity-dependent force field
during a block of reaching trials. We measured movement kinematics
and shoulder and elbow muscle activity with surface EMG electrodes.
We tracked the feedback stretch response throughout the task. Using
force channel trials, we measured overall learning, which was later
decomposed into a fast and slow process. We found that the long-
latency feedback response (LLFR) was upregulated in the early stages
of learning and was correlated with the fast component of feedforward
adaptation. The change in feedback response was specific to the
long-latency epoch (50–100 ms after muscle stretch) and was ob-
served only in the triceps muscle, which was the muscle required to
counter the force field during adaptation. The similarity in time course
for the LLFR and the estimated time course of the fast process
suggests both are supported by common neural circuits. While some
propose that the fast process reflects an explicit strategy, we argue
instead that it may be a proxy for the feedback controller.

NEW & NOTEWORTHY We investigated whether changes in the
feedback stretch response were related to the proposed fast and slow
processes of motor adaptation. We found that the long-latency com-
ponent of the feedback stretch response was upregulated in the early
stages of learning and the time course was correlated with the fast
process. While some propose that the fast process reflects an explicit
strategy, we argue instead that it may be a proxy for the feedback
controller.

feedback controller; human; long-latency feedback response; short-
term motor adaptation, two-state model

INTRODUCTION

It has been proposed that the brain uses internal models to
predict the sensory consequences of a motor command (Des-
murget and Grafton 2000; Wolpert and Flanagan 2001; Wol-
pert and Miall 1996; Wolpert et al. 1998). The use of predicted
sensory consequences reduces movement instabilities arising
from delays in the actual sensory feedback (Wolpert and Miall
1996; Wolpert et al. 1998; Wolpert and Kawato 1998). The
driving force of motor adaptation is sensory prediction error,
which results from the mismatch between the predicted con-
sequences of a motor command and sensory feedback.

The ability to adapt our movements in response to changes
in both our body and the environment is critical for maintaining
accurate motor performance. When a movement being per-
formed results in an unexpected outcome, this generates an
error signal. Error-based models of motor learning have been
shown to fit trial to trial adaptation to perturbations extremely
well (Smith et al. 2006; Thoroughman and Shadmehr 2000).
The use of state-space models suggests that a portion of the
error experienced can be corrected for trial to trial, referred to
as the rate of learning, while the passage of time, in the absence
of error, leads to forgetting (Smith et al. 2006; Thoroughman
and Shadmehr 2000). Several recent studies have proposed
various novel methods to examine the simultaneous operation
and interaction of multiple learning processes (Cheng and
Sabes 2006; Kording et al. 2007; Smith et al. 2006).

A prominent model for error-based learning, proposed by
Smith et al. (2006), suggests that the experience of error
engages at least two independent processes, a fast and a slow
process, where overall learning during short-term adaptation
will be the sum of these two processes. Mathematically, both
the fast and slow processes have the same form, except that the
learning rate and retention parameters are different for each
process: the fast process learns much more quickly than the
slow process; however, the fast process forgets more rapidly
than the slow process.

Recent evidence provided an alternative decomposition of
overall learning during visuomotor rotation tasks into an ex-
plicit aiming strategy and an implicit process (Taylor et al.
2014). It has since been suggested that the rapid initial im-
provement is due to learning in the fast process that compares
to the explicit process, whereas the gradual learning thatCorrespondence: P. L. Gribble (pgribble@uwo.ca).
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follows is due to a slow process that compares to the implicit
process (McDougle et al. 2015). However, the use of an
explicit strategy during force field adaptation remains open to
debate.

At an early stage of learning novel dynamics, such as force
field learning, changes in muscle activity are mainly due to
corrective feedback responses (Thoroughman and Shadmehr
1999). When observing the visuomotor feedback gains over the
course of an adaptation task, Franklin et al. (2012) demon-
strated that both the introduction and the removal (after adap-
tation is complete) of a velocity-dependent force field modified
the magnitude of the gain of the feedback response. This
finding supports the understanding that feedback responses are
used to restore stability against unexpected movement out-
comes. These feedback contributions to the overall motor
command are then reduced as feedforward control is learned.

Franklin et al. (2012) suggested that there was a relationship
between error size and the visuomotor feedback response.
Previous research has shown that learning from larger errors
engages a different process than learning from smaller errors,
based on experimental data comparing abrupt versus gradual
perturbation schedules (Orban de Xivry et al. 2011; Schlerf et
al. 2012; Tseng et al. 2007). Within the framework of a
two-state model of adaptation, the output of the fast process
contributes significantly more than the slow process to overall
output during early learning of abrupt perturbations, when
errors are the largest. Moreover, the gradual shift from a
feedback-driven mode of control to more predictive, feedfor-
ward control, reported by Thoroughman and Shadmehr (2000),
in response to a novel force field perturbation could be seen as
the interaction of the fast and slow processes over the course of
learning. Crevecoeur et al. (2020a, 2020b) recently provided
support for adapting to error within a single reaching trial,
which leads to the question of whether reflexes are also
adapting.

While Franklin et al. (2012) focused on the visuomotor
response, error corrections during movement also arise from
muscle stretch responses. In recent work Scott (2004, 2012)
proposed that the majority of the sophistication embodied in
the feedback stretch response occurs during the long-latency
component and not the short latency component. Recently,
Ahmadi-Pajouh and colleagues (2012) measured the long-
latency feedback response (LLFR) before and after adaptation
to a velocity-dependent curl field and reported an increase in
LLFR post-adaptation. Subsequently, Cluff and Scott (2013)
measured the LLFR as participants adapted their reaching
movements to a velocity-dependent force that resisted elbow
motion. Similar to Ahmadi-Pajouh et al. (2012), they showed
an increase in LLFR over the course of learning. The results of
these two studies suggested that the time course of the LLFR
may relate to the slow process in a two-state model of motor
adaptation. This is in contrast to the results described above
that suggest that the time course of learning-related changes in
the visuomotor feedback response relates to the estimated fast
process.

In the present study we tracked the time course of the
feedback stretch response via randomly interspersed force
probe trials during a force field adaptation task in which
participants produced point-to-point reaching movements with
the upper limb. The goal was to characterize the time course of
changes in the LLFR and directly compare it to the time course

of the fast and slow processes of learning, estimated using a
two-state model (Coltman et al. 2019; Smith et al. 2006). We
found that the time course of the LLFR was highly correlated
with the time course of the estimated fast process. Our study
sheds light on the debate about the origins of the fast and slow
processes during adaptation. Our results demonstrate that the
fast process parallels the modulation in gain of the feedback
response over the course of learning. We are interested in the
question of how the internal estimate of the dynamics of the
environment is formed and used for control. We propose that
the fast process, estimated from overall learning during force
field tasks, may alternatively be an identification of the feed-
back controller, while the slow process is the recalibrated
forward model. Additionally, we discuss the ways in which the
LLFR and the fast component may be organized to support
motor adaptation by learning from errors.

MATERIALS AND METHODS

Participants. A total of 55 healthy young adults (18–34 yr of age;
36 women) participated in a force field adaptation experiment. All
participants were recruited from the research participation pool main-
tained by the Department of Psychology at Western University and
received either course credit or CAD$18.00 for participation. All
participants self-reported being right-handed and had normal or cor-
rected-to-normal vision. The protocol was approved by Western
University’s Research Ethics Board, and all participants signed a
written consent form.

Apparatus and experimental task. Participants were instructed to
make point-to-point reaching movements in a horizontal plane using
the KINARM end point robot (Kingston, Ontario, Canada). Visual
information was projected in a horizontal plane at the same level of
the hand, via a liquid crystal display monitor and a semisilvered
mirror. Direct vision of the upper limb was blocked using a physical
barrier. Participants’ right forearm was supported against gravity by a
lightweight sled. Air jets in the sled reduced friction between the sled
and the tabletop as participants moved their arm.

A circular cursor (6.5-mm radius) was displayed on the semisil-
vered mirror and was used to represent the position of the center of the
robot handle. Participants were presented with a circular start position
(6.5-mm diameter) and a circular target (10-mm diameter) located 15
cm away from the start position, 45° to the left of the participant’s
midline (Fig. 1A). When the cursor entered the start position, a 3.5-N
background force was applied in a direction that was 90° counter-
clockwise (CCW) to a line joining the start position and the target.
This corresponded to the direction of the CCW force field presented
in the adaptation block. The purpose of the background force was to
ensure that the premovement state of the triceps muscle remained
consistent across all phases of the experiment, so that changes in
feedback responses were comparable. The background force was
ramped up over 500 ms and remained on until participants arrived at
the target. Critically, the background force was active on all trials so
that participants could not predict the occurrence of feedback probe
trials.

After maintaining the cursor in the start position for 500 ms,
participants were presented with three auditory tones, each 100 ms in
duration, and each separated by 500 ms. Participants were instructed
to initiate their reach coincident with the third tone (Fig. 1C). When
the third tone was played, the target changed color from white to
green, representing a secondary “go” signal for participants to initiate
movement.

At the end of each movement, participants were provided with
feedback indicating the time taken to reach the target. Participants
were instructed to bring the center of the handle within 5 mm of the
target within 350–500 ms. Target color changed to reflect movement
speed: red for movements that were too fast (�350 ms) and blue for
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movements that were too slow (�500 ms). The target remained green
to indicate that the movement was within the desired timing window.
Feedback related to movement time was displayed on the screen for
1000 ms, while the background force was ramped off. The robotic arm
then returned the participant’s hand to the start position. Participants
were instructed to try to obtain the “good” feedback as often as
possible throughout the experiment.

Experiment 1. We collected data from 35 participants (18–34 yr of
age; 23 women). On a given trial, during the reaching movement the
manipulandum either applied no force, a CCW force field, a clockwise
(CW) force field, or a force channel. The force field was introduced
abruptly on trial 51 (see Fig. 1B) and was defined as:

�Fx

Fy � � b� 0 1

�1 0 ��vx

vy � (1)

where x and y are lateral and sagittal directions, Fx and Fy are robot
forces applied at the hand, vx and vy are hand velocities, and b is the
force field constant (�15 N·s·m�1). The sign of the force field
constant b determined the direction of the force field (positive � CW
and negative � CCW). The effect of the force field for linear move-
ments is to perturb the hand in a direction perpendicular to the
instantaneous direction of movement, with a force proportional to
movement speed (Fig. 1A).

During force channel trials the robot motors were used to constrain
movements to a straight path connecting the start position and target
(Scheidt et al. 2000; Smith et al. 2006). The channel was ~1-mm wide,
and the stiffness of the walls was 6,000 N/m with a damping
coefficient of 50 N·s·m�1. The use of force channels allowed for the
removal of kinematic movement errors by effectively preventing any
motion perpendicular to the target direction. Without this error signal
to drive corrective responses, we assume the output during a force
channel is a proxy for the descending motor commands being gener-
ated according to the plan desired kinematics and predicted dynamics.
Therefore, force channel trials allowed us to probe the feedforward
system during learning by measuring the lateral forces exerted on the
channel walls.

The experimental session included 315 trials and was divided into
4 blocks: baseline trials, force field adaptation, brief force field
reversal, and finally a series of force channel trials (Coltman et al.
2019; Smith et al. 2006). The first 50 trials were baseline trials during
which the robot applied no forces other than the constant background
load (see above). On trials 51–250 participants adapted to a CCW
force field, followed by a brief force field reversal for trials 251–265.
On trials 266–315, a force channel was introduced. In addition the
force channel was present for 2 baseline trials (trials 45, 49) and 24
adaptation trials (trials 45, 49, 53, 57, 67, 75, 83, 89, 99, 107, 115,
121, 131, 139, 149, 155, 165, 171, 179, 185, 193, 201, 211, 217, 227,
and 235).

We probed the feedback response via a 100-ms duration, 3.5-N
force pulse aligned with the direction of the CW field (shown in
yellow; Fig. 1, A and C) or a 7-N force pulse aligned with the direction
of the CCW field (shown in purple; Fig. 1, A and C). Feedback probes
were applied during 100 of the 315 trials in the task (50 for each force
pulse direction). Feedback probes were designed to excite or inhibit
the triceps lateral head during the preparatory period before reach
onset, at 350 ms before the third tone (Ahmadi-Pajouh et al. 2012).
Feedback probes alternated between excitation or inhibition of the
triceps and occurred every two or four trials (see Fig. 1B). The force
field and force channels were present only during the reach and not in
the preparatory period. This meant that the pulses were delivered
under identical conditions, regardless of the trial type.

The force pulses displaced the participant’s hand outside the start
position. Participants were instructed to try to bring the cursor back to
the start position. They were told that whether they were in the start
position or not, they should initiate movement to the reach target
coincident with the third tone. The order of feedback probe trials,
force channel trials, and reaching trials was pseudo randomized so that
each participant saw the same order of trials, but a given trial type was
not predictable. Additionally, a force channel or force pulse never
occurred on the same trial.

Kinematic data analysis. Position, velocity, and force at the handle
of the robotic arm were sampled at 1,000 Hz. The data were low-pass
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Fig. 1. Experiment 1. A: participants held the handle of a robotic manipulandum and performed reaching movements to a visual target (shown in green). Yellow
and purple arrows represent the strength and direction of the force pulse used to probe the feedback response. B: force channel trials (gray bars) were used to
track the progression of feedforward control. Force channel trials were randomly distributed during baseline and adaptation blocks and throughout the last block
in each session. Force probes (yellow and purple bars) were used to track the change in the feedback response. Force probes were randomly distributed during
all phases of testing. C: on each trial, participants heard 3 tones (100 ms in duration, separated by 500 ms) and were instructed to initiate their reach with the
3rd tone. On each trial the background force was applied, ramped up over 500 ms. The background force remained on until participants successfully arrived at
the target. The background force was ramped down over 1,000 ms. On random trials, we probed the feedback response using a 100-ms duration, 3.5-N clockwise
(CW) force pulse (shown in yellow), or a 7-N counterclockwise (CCW) (shown in purple) force pulse. Nonprobe trials are shown in black.
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filtered at 15 Hz. We performed data analysis using custom MATLAB
(r2018b, MathWorks) scripts.

For each reaching trial we computed the perpendicular deviation at
peak velocity of the hand path relative to a straight line between the
start position and target. We then analyzed the lateral forces that
participants generated throughout movements in the force channel
trials. As a measure of the degree of adaptation in force channel trials,
we computed an adaptation index by estimating the slope of the
relationship between the measured lateral force profile produced by
the hand (while velocity exceeded 2 cm/s) and the ideal force profile.
A linear model with zero intercept was used to estimate the adaptation
index on each force channel trial. The ideal force profile was calcu-
lated as the force profile that would have to be generated to fully
compensate for the force field throughout the movement had the force
field been applied (see Smith et al. 2006 for more details). If these
force profiles were uncorrelated, the adaptation index was zero; if
these force profiles were identical to one another, the adaptation index
was one.

Model fitting. Smith et al. (2006) described a two-state model of
motor adaptation in which overall learning can be decomposed into
two separate processes: a fast process xf that learns quickly but has
poor retention (Eq. 2) and a slow process xs that has better retention
but learns more slowly (Eq. 3). Retention is characterized by the
parameters Af and As, for the fast and slow processes respectively.
Learning rate is characterized by Bf and Bs. The two processes are
combined to produce net motor output xnet (Eq. 4). Error e arises on
each trial n when there is a difference between the net output xnet and
the task parameter f (e.g., the strength of the force field) (Eq. 5).

xf�n � 1� � Af · x�n� � Bf · e�n� (2)

xs�n � 1� � As · x�n� � Bs · e�n� (3)

xnet�n� � xf�n� � xs�n� (4)

e�n� � f�n� � xnet�n� (5)

To estimate the retention parameters Af and As and learning rates Bf

and Bs we fit the model to the experimental data (using the function
fmincon in MATLAB r2018b) by minimizing the squared difference
between the model predicted net output (xnet) and average participant
adaptation index, measured on force channel trials. A constrained
parameter space was defined by linear inequality constraints and
upper/lower bounds (Albert and Shadmehr 2018). Linear inequality
constraints were specified to enforce traditional two-state model
dynamics according to:

As � Af � 0.001 (6)

Bf � Bs � 0.001 (7)

Electromyographic recordings and analysis. Muscle activity from
upper limb muscles was recorded using bipolar surface electrodes
(Delsys Bagnoli-8 system with DE-2.1 sensors). EMG signals were
amplified (gain � 103) and sampled at 1,000 Hz from biceps brachii,
lateral head of the triceps, pectoralis major, and posterior deltoid.
Before electrode placement we cleaned the skin with rubbing alcohol,
and electrode contacts were coated with conductive gel. Electrodes
were attached to the skin using double-sided adhesive stickers. A
ground electrode was placed over the participant’s left clavicle.

On feedback probe trials EMG data were aligned to the initiation of
the force pulse, and on reaching trials EMG data were aligned 300 ms
before movement onset (defined when tangential velocity �0.5 cm/s)
(Cluff and Scott 2013). The data were then bandpass filtered between
20 Hz and 450 Hz (second-order, dual pass Butterworth filter),
full-wave rectified, and normalized. Participants were required to hold
the cursor within the start position for 500 ms to initiate the three
tones and simultaneously the trial. On each trial, EMG was normal-
ized (per muscle, per participant) to the average EMG activity be-
tween 400 ms and 100 ms before the first tone. EMG over the whole

trial was divided by this value such that a value of 1 represents the
mean activity of a given muscle when countering a constant 3.5-N
CCW force (Maeda et al. 2018; Pruszynski et al. 2008).

To test for changes in the short and long-latency components of the
stretch response of the triceps lateral muscle during adaptation, we
computed mean EMG over previously defined epochs (Pruszynski et
al. 2008); we calculated mean EMG during a prepulse epoch (PRE:
�50–0 ms), short-latency epoch (SLFR: 25–50 ms), and long-latency
epoch (LLFR: 50–100 ms). To obtain a single measure of the LLFR
and to track this over the course of learning we subtracted EMG
measured during inhibition from EMG measured during excitation.
The two types of force pulses (excitation vs inhibition) alternated
throughout the task (see Fig. 1B), so the difference was taken between
each pair of probes. We then averaged this difference signal between
the window of 50–100 ms to generate a single value, termed the delta
LLFR. The values of delta LLFR were then aligned with the feedback
probes trials that excited the triceps. The use of delta LLFR versus the
LLFR recorded on the trials where we only excite the triceps allows
us to infer that the response is directionally independent.

Control experiment. Here we leverage a technique in which we
introduce a force field perturbation gradually over many trials to
further test the idea that modulation of the LLFR is dependent on
experiencing large movement errors. Previous research suggests that
learning from smaller errors engages a different process than learning
from large errors that occur during abrupt perturbations schedules
(Criscimagna-Hemminger et al. 2010; Izawa et al. 2012; Schlerf et al.
2012; Tseng et al. 2007). We collected data from 20 participants
(18–22 yr of age; 13 women). All features of the task remained the
same, with the exception that the force field was introduced gradually.
The strength of the field was increased linearly over 200 trials and
then held at a fixed strength, the same strength as the force field
introduced abruptly in experiment 1 (15 N·s·m�1), for another 15
trials (see Fig. 9A). By introducing the perturbation gradually partic-
ipants reached in the same environment after the perturbation was
fully ramped on, while only experiencing small errors from trial to
trial during adaptation.

Statistical analysis. To test differences between means we used
within-subject ANOVAs. We used linear regression to quantify the
relationship between the changes in the LLFR and the estimated fast
process of feedforward adaptation. Pairwise comparisons were per-
formed with paired t tests. For statistical analyses that require multiple
comparisons, we used the Holm-Bonferroni correction (Holm, 1979).
Statistical analyses were performed using MATLAB (r2018b, Math-
Works). Statistical tests were considered significant at P � 0.05. For
all reported values we report the means � SE.

RESULTS

Guided by a two-state model of short-term motor adaptation,
we investigated whether the time course of changes in the
feedback stretch response would resemble the fast process of
the feedforward component of adaptation, or the slow process,
or neither. In experiment 1, we incorporated probe trials with
force pulses to measure the time course of the feedback stretch
response during short-term learning. We used force-channel
trials to probe the time course of the feedforward system.

Participants reached to a target 45° left of their midline. We
introduced an abrupt CCW velocity-dependent force field during
an adaptation block (200 trials). Figure 2A shows adaptation index
for all force channel trials, averaged across participants. The
adaptation index represents the proportion of compensation for the
experienced force field. To assess performance after adaptation to
the CCW force field we compared the mean adaptation index
averaged across participants in the last four adaptation trials to the
mean adaptation index in the two force channel trials in the
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baseline period before the introduction of the force field. There
was a reliable increase in the mean adaptation index at the end
of adaptation (0.9026 � 0.0133) compared with baseline [0 �
0.0105; t(34) � 49.0160, P � 1.9713e-33], thus demonstrating
that participants reliably adapted to the CCW force field.

The EMG data from reaching trials were aligned to 300 ms
before movement onset, which was defined as the time at
which tangential velocity exceeded 0.5 cm/s. Figure 2B shows
a summary of triceps EMG activity during baseline trials (32
nonprobe trials) and the last half of the adaptation block (56
nonprobe trials). Figure 2B shows the across-participant mean
EMG (�SEM) of the triceps lateral head for reaching trials in
the absence of force pulses or force channels. Because the data
have been normalized to the background load applied in the
start position, the values of EMG start at 1. Note that the
background load remained on throughout the movement, until
participants arrived at the target, and this presumably influ-
enced muscle activity in the triceps even in the absence of the
force field. We observed an increase in triceps EMG activity
beginning near movement onset, after participants adapted to
the CCW force field, compared with EMG activity in baseline
trials. This shows that to compensate for the force field and
move straight to the target, participants increased the activation
of triceps. Thus in the analyses below we focus on changes in
the feedback stretch response of triceps, as this was the muscle
primarily involved in producing compensatory force when
participants adapted to the CCW force field.

Feedback probes were designed to inhibit or excite the
triceps during the preparatory period before reach onset, and
were delivered at 350 ms before the third tone (Ahmadi-Pajouh
et al. 2012). Figure 3A summarizes the feedback stretch re-
sponse of triceps resulting from excitation (purple line) or
inhibition (yellow line). Figure 3A shows the across-participant
average EMG (�SE) of the triceps lateral head, averaged
across all force pulse trials in the experiment. Because the data
have all been normalized to the background load applied in the
start position, the values of EMG start at 1. The triceps shows
both a classic short latency stretch response (25–50 ms) as well
as a long-latency feedback response (50–100 ms). Figure 3B
summarizes the feedback stretch response of triceps during
four defined phases of learning: the last four force pulse trials
during baseline, the first and last four force pulse trials during
adaptation (early adaptation and late adaptation, respectively),
and the first four force pulse trials in washout. This qualita-
tively demonstrates a fluctuation in the feedback response over
the course of learning.

The major role of reflexes is to respond when there is an
unexpected perturbation. In recent work Scott (2004, 2012)
proposed that the majority of the sophistication embodied in
the feedback stretch response occurs during the long-latency

component and not the short latency component. To assess
whether the change in response of the triceps muscle as
participants adapt to novel FF perturbations is specific to the
long-latency component of the stretch response, we calculated
the mean triceps EMG within three time windows relative to
the onset of the force pulse, �50–0 ms (PRE), 20–45 ms
(SLFR), and 50–100 ms (LLFR). These measures were com-
puted for baseline trials, early adaptation, late adaptation, and
washout trials. Using a two-way repeated-measures ANOVA,
we compared the mean triceps EMG as a function of force
pulse epoch (PRE, SLFR, and LLFR) and phase of learning
(baseline, early adaptation, late adaptation, and washout). We
observed a main effect of force pulse epoch [F(1,34) � 619.63,
P � 2.08e-23], a main effect of phase of learning [F(1,34) �
1051.9, P � 3.68e-27], and a force pulse epoch by phase of
learning interaction [F(1,34) � 638.06, P � 1.30e-23]. Figure
4 qualitatively demonstrates that there was no difference in
mean triceps EMG between baseline, early adaptation, late
adaptation, or washout in the PRE or SLFR epochs. A post hoc
analysis showed that during the LLFR epoch, mean EMG
increased in early adaptation (2.82 � 0.10) relative to the
baseline (2.06 � 0.04) phase of learning [t(34) � �7.10, P �
9.9299e-08, paired t test]. The effect size for the analysis
(d � 1.2006) was found to exceed Cohen’s (1988) convention
for a very large effect (d � 1.2). There was no reliable differ-
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ence in mean triceps EMG activity during the LLFR epoch
during late adaptation or washout, relative to baseline. This
further demonstrates that the change in feedback response
during force field learning is specific to the LLFR epoch.

To obtain a single measure of the LLFR and track changes
over the course of learning, for every pair of excitatory and
inhibitory force pulse trials we computed the difference be-
tween the EMG signals when we applied a 3.5-N CW force
pulse (triceps inhibition) and EMG when a 7-N CCW force
pulse was applied (triceps excitation). We then averaged this
difference signal within the window of 50–100 ms to generate
a single value, termed the delta LLFR. Figure 5 shows the time
course of the delta LLFR, averaged across participants. When
the force field was abruptly turned on, we observed a transient
rise in the LLFR that quickly returned to baseline.

Figure 6A shows a summary of EMG activity during base-
line trials (32 nonprobe trials) and the last half of the adaptation
block (56 nonprobe trials) for the biceps, posterior deltoid, and
pectoralis. Figure 6A shows the across-participant mean EMG
(�SE) of each muscle, respectively, for reaching trials in the
absence of force pulses or force channels. While the force pulse
trials were specifically designed to inhibit or excite the triceps
muscle, a response was also observed in the other three muscles
recorded in this experiment (i.e., biceps brachii, pectoralis major,
and posterior deltoid).

Figure 6B summarizes the EMG of these muscles in re-
sponse to force pulses that excited (purple line) or inhibited
(yellow line) the triceps lateral head. Figure 6B shows the
across-participant average EMG (�SE), averaged across all
force pulse trials in the experiment. Because the data have all
been normalized to the background load applied in the start
position, the values of EMG start at 1. While the force pulse
trials elicited a response in each of the other three muscles,
these responses did not show the same pattern of change during
adaptation as for the triceps.

Figure 6C shows the time course of the delta EMG for the
other three muscles recorded in this experiment, averaged over
the same LLFR time window as shown for triceps in Fig. 5.
Given that the force pulse trials were specifically designed to
inhibit or excite the triceps muscle, the time course shown for
the delta EMG in the biceps, pectoralis, and deltoid is only a
measure of the response generated in each respective muscle

during the LLFR epoch. Here the delta EMG measure repre-
sents the difference between trials in which the triceps was
excited and inhibited. Qualitatively, in all three muscles, the
time course is relatively flat. When we compare the average
delta EMG during baseline (last 4 force pulse trials) and early
adaptation (first 4 pulse trials), there is no reliable change for
the biceps (P � 0.1252), pectoralis (P � 0.2298), and deltoid
(P � 0.1547, paired t test). At the beginning of learning,
participants experienced large errors, and one possible strategy of
the motor system could be to upregulate the feedback gain of all
arm muscles as a mode of robust control. However, the lack of
change across these three muscles demonstrates that the change in
the LLFR during learning is specific to the muscle involved in
countering the environmental perturbation (i.e., the triceps lateral
head).

To rule out the possibility that the observed differences in
triceps LLFR may be due to the muscle being stretched to a
different degree in different phases of learning, we tested for
differences in hand displacement during the LLFR time win-
dow (50–100 ms post force pulse). To test for differences in
hand displacement during the LLFR epoch we performed a
one-way repeated measures ANOVA, which indicated no re-
liable difference in mean hand displacement across phase of
learning (P � 0.3307, Fig. 6D). This rules out the possibility
that observed changes in LLFR may be due to differences in
muscle stretch.

We used a two-state model (Smith et al. 2006) to decompose
the measured adaptation indices into a fast and a slow learning
process. We used a procedure previously described in Coltman
et al. (2019) to fit the model to data averaged across partici-
pants. The four model parameter estimates are fast retention
(Af � 0.2943), fast learning rate (Bf � 0.2075), slow retention
(As � 0.9992), and slow learning rate (Bs � 0.0291). Figure 7A
shows simulated learning curves generated using the model
parameter estimates. The model explains 89% of the variance
in the across participant average adaptation index values over
the course of learning (R2 � 0.89, P � 2.3143e-31). When we
examine the time course of the triceps LLFR, it closely resem-
bles the fast component of the feedforward system. To assess
the similarity of the LLFR time course during the adaptation
phase of learning (trials 51–250) and that of the fast process,
we used linear regression. During the adaptation phase we have
38 data points for the delta LLFR (38 probe trials that stretched
triceps and 38 probe trials that inhibited triceps). We found the
corresponding value of the simulated time course for the fast
process for each data point of the LLFR (i.e., value of esti-
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mated fast process at the trials at which we obtained LLFR
measures), and in Fig. 7B we show these independent probes of
feedforward and feedback components together. Each data
point represents one trial during adaptation, averaged over
participants. Results of the Spearman correlation indicate that
there was a reliable positive association between the measures
of the feedforward and feedback systems: Rs

2 � 0.88, P �
3.53 e-21. Note that while there appear to be three points most
significantly contributing to this relationship, they should not
be considered outliers, rather they correspond to the rise in the
time course of both measures early in force field adaptation.
Figure 7C shows the time course of the fast process (estimated
from force channel data), overlaid on the time course of the
measured triceps delta LLFR, demonstrating their remarkable
similarity. We also examined the relationship between delta
LLFR time course and the overall learning curve from the
model output. The Spearman correlation coefficient was sta-
tistically reliable but smaller in magnitude than that for the
LLFR and the fast process (Rs

2 � �0.65, P � 7.32 e-05).
Figure 8A shows perpendicular deviation for all reaching

(nonprobe) trials, averaged across participants. To assess per-
formance and learning during adaptation to the CCW force
field, we computed the across participant mean absolute per-
pendicular deviation over the first four trials or last four trials

during each phase of learning (Fig. 8B). For the adaptation
phase, the mean absolute perpendicular deviation in the early
adaptation (first 4 trials; 1.95 � 0.08) epoch was larger than in
the late adaptation (last 4 trials; 0.57 � 0.05) epoch [t(34) �
12.66, P � 2.0040e-14, paired t test]. Characteristically the fast
process allows the motor system to respond to large changes in
the environment (Smith et al. 2006). To assess whether the
LLFR is similarly sensitive to large errors, we regressed the
values of the LLFR (the last 2 values in baseline and first 12 in
adaptation), with the values of the perpendicular deviation on
the nearest reaching trial (Fig. 8C). This chosen window
allowed us to evaluate whether the LLFR was modulated by
recent errors. Each data point is the average value of each
measure, at a particular trial, averaged across participants.
Perpendicular deviation and delta LLFR were significantly
correlated (Rs

2 � �0.41, P � 0.0124). Again, it is important to
note that while two data points appear to drive this relationship,
they should not be considered outliers, rather they represent the
first two measures taken during early force field adaptation.
This suggests that LLFR is modulated by recently experienced
error.

By linking the LLFR to the fast process, we predict that the
LLFR would be unchanged by slower changes in the environ-
ment: changes that involve small errors and thus would not
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engage the fast process. To test this idea, we performed a
control experiment in which the perturbation was introduced
according to a gradual adaptation schedule (Fig. 9A). In this
way, we could train participants to reach in the same environ-
ment after the perturbation is fully ramped on; however,
participants would only experience small errors trial-to-trial.
Qualitatively, the time course of the delta LLFR in the triceps
muscle is relatively flat (Fig. 9B). When we compare the
average response of the triceps LLFR across the epochs of
learning (baseline, early adaptation, late adaptation, and wash-
out), there is no reliable difference (P � 0.986; Fig. 9C). In

Fig. 9D, we compared the mean perpendicular displacement
produced by the force pulses as a function of the phase of
learning (baseline, early adaptation, late adaptation, and wash-
out) and found no reliable differences (P � 0.249). Impor-
tantly, in Fig. 9E, we show that the degree of adaptation at the
end of learning was not different when the force field was
introduced abruptly (experiment 1) or gradually in the control
experiment (P � 0.931). By having participants learn to adapt
to the same force field as in experiment 1, only this time using
a gradual perturbation schedule, we show that this form of
learning was not associated with changes in the LLFR. This
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finding supports previous research suggesting that learning
from smaller errors engages a different process than learning
from large errors that occur during abrupt perturbation sched-
ules (Criscimagna-Hemminger et al. 2010; Schlerf et al. 2012;
Tseng et al. 2007).

DISCUSSION

We compared changes in feedback responses to changes in
feedforward control during the adaptation of reaching move-
ments to a velocity-dependent force field. We used the time
course of changes in the LLFR as a characterization of how the
feedback response changes during adaptation. Feedback re-
sponses were upregulated early in adaptation and returned to
baseline levels once movement errors were reduced and reach-
ing performance reached asymptotic levels. The observed
change in feedback gain was specific to the long-latency epoch
and was observed only in the triceps muscle: the muscle that
was required to counter the force field during adaptation. We
used a two-state model of short-term motor adaptation to
decompose learning into independent fast and slow processes.
Overall, our findings show that feedback responses are depen-
dent on task dynamics, they are increased in the early stages of
learning, and they are reliably correlated with the fast compo-
nent of feedforward adaptation.

Force field learning is a standard and often utilized experi-
mental model of error-based motor learning (Shadmehr and
Mussa-Ivaldi 1994). The fastest changes in reaching behavior
occur in the earliest stages of learning, when large errors are
reduced. This initial process happens on a fast time scale, and
the results of the present study show that changes in LLFR
occur on a similarly rapid time scale. This may be contrasted
with the literature on visuomotor rotation learning, in which a

link has recently been proposed between model-based adapta-
tion processes operating on a fast time scale and experimental
probes of explicit cognitive strategies for learning (McDougle
et al. 2015; Taylor et al. 2014). Visuomotor learning is driven
by errors signaled by visual inputs, while errors in force field
learning involve perturbations to the limb, muscle stretch and
associated afferent inputs. It may be that the upregulation of
feedback gains on these proprioceptive and somatosensory
inputs contribute to rapid reduction of movement errors in the
earliest stages of force field learning, rather than explicit
cognitive strategies, which may be responsible for reducing
errors on a fast time scale in visuomotor adaptation.

Additionally, we recognize that there is evidence in other
forms of motor adaptation that feedback changes can occur
over a slower timescale. For instance, recent work by Maeda et
al. (2018) tracked the LLFR in a shoulder muscle in response
to force pulses that created pure elbow motion while partici-
pants performed single-joint elbow movements, with the shoul-
der either free to rotate or mechanically fixed. In this case the
LLFR was modulated on a much slower timescale than that
observed in the present study. It is worth noting that in the
present study the experimental task was designed to probe
kinematic error-based learning, while in Maeda et al. (2018)
the shoulder fixation task presumably involves a very different
kind of adaptation driven not by kinematic error signals but
perhaps by energetic considerations.

Many design features of the present study are based on
Ahmadi-Pajouh et al. (2012), but one salient difference is the
use of a background load in the present study to control for the
state of the muscle across the task. This enables us to attribute
perturbation-related changes in EMG to learning-related
changes in feedback gain, rather than changes that may be due
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to differences in the state of the muscle before movement
onset. The design of the present study is considerably different
from the experimental task used by Cluff and Scott (2013). In
their experiment, adaptation to a velocity-dependent resistance
to a single joint (the elbow) occurs at one target, while the
force pulse used to probe for changes in feedback responses
occurs for movements to a different target location. It is
possible that this separation between the movement used for
adaptation and the (different) movement used for probing
feedback influenced the pattern of feedback changes observed
over the course of adaptation.

The results of the present study, taken together with previous
studies, demonstrate that feedback responses can be modulated
according to task demands (Ahmadi-Pajouh et al. 2012; Cluff
and Scott 2013; Franklin et al. 2012; Maeda et al. 2018). In the
present study, changes in feedback gains over the course of
learning provide insight into how the internal estimate of the
dynamics of the environment is formed and used for control.
By comparison, the work by Maeda et al. (2018) and Cluff and
Scott (2013), both using a robotic exoskeleton, perturbing
isolated joints, may provide insight into how the internal
estimate of the limb, rather than the environment, is formed
during learning. Studying how feedback changes differ across
a range of experimental paradigms could provide valuable
insights into the organization of feedforward and feedback
control for motor learning.

Franklin et al. (2012) recently demonstrated that the magni-
tude of a rapid visuomotor feedback response is increased by
both the introduction and the removal (after adaptation is
complete) of a velocity-dependent force field. Furthermore,
they related the size of the visuomotor feedback response to the
size of perpendicular error in the reach trajectory. In the
present study, by linking perpendicular error and the change in
the LLFR, our results from experiment 1 are consistent with the
idea that the change in the LLFR is modulated by recently
experienced error.

To test the idea that changes in the gain of the LLFR during
adaptation are dependent upon experiencing large movement
errors, we conducted a second experiment using a gradual
perturbation schedule. Previous research suggests that learning
from small, even imperceptible, errors during a gradual per-
turbation schedule engages a different neural process than
learning from large errors that occur in abrupt perturbations
schedules, such as in experiment 1 (Izawa et al. 2012; Orban de
Xivry et al. 2011; Schlerf et al. 2012). We modified the
schedule of the velocity-dependent curl field to test whether
feedback responses change when errors are very small. Results
from the control experiment showed no reliable change in the
LLFR, even though participants adapted fully to the curl field
by the end of the gradual schedule. This further supports the
idea that changes in the gain of the LLFR are specific to large
movement errors.

In recent years, researchers have increasingly asked whether
feedback responses adapt when we learn new motor skills
(Ahmadi-Pajouh et al. 2012; Cluff and Scott 2013; Franklin et
al. 2012; Maeda et al. 2018; Wagner and Smith 2008; Yousif
and Diedrichsen 2012). Although these studies have shown
that feedback responses can be modified with learning by
increasing sensory feedback gains, how this adaptation takes
place and what other features of learning feedback changes are
linked to have been largely unexplored. In the present exper-

iment by probing feedback and feedforward components of
adaptation throughout learning, we were able to examine the
time course of each. The time course of changes in the LLFR
was strikingly similar to the time course of the fast component
of feedforward adaptation. This is highly suggestive of the idea
that feedforward and feedback control processes may be sup-
ported by similar learning mechanisms and neural circuits.

Orban de Xivry and colleagues (2011) have shown that
primary motor cortex (M1) may play a significant role in
adapting to an abrupt, but not a gradual, schedule of perturba-
tion. Shadmehr and Krakauer (2008) propose that M1 is
responsible for regulating feedback gains used to update an
internal model. Pruszynski et al. (2011) have shown that M1
responds to proprioceptive feedback and that the timing of this
response is consistent with the idea that it contributes to the
long-latency component of the feedback stretch response.
Taken together, these findings suggest that the motor system
can generate task-specific feedback starting as early as 50 ms
following the onset of a perturbation. Feedback responses
during this long-latency epoch are thought to involve cortical,
brainstem, cerebellar, and spinal circuits (Cluff et al. 2015;
Marsden et al. 1976; Pruszynski and Scott 2012; Scott 2012).

Recently Sarwary et al. (2018) probed the excitability of M1
during force field adaptation by measuring motor-evoked po-
tentials (MEPs) in response to single-pulse trans-cranial mag-
netic stimulation (TMS). Their results demonstrated that the
modulation of MEPs over the course of learning was correlated
with the fast learning process. There is convincing evidence
that the cerebellum is involved in the adaptation of predictive
feedforward commands based on sensory prediction errors
(Criscimagna-Hemminger et al. 2010; Schlerf et al. 2012;
Smith and Shadmehr 2005; Tseng et al. 2007). Moreover,
Schlerf et al. (2012) suggested that during the rapid early phase
of learning, when an abrupt perturbation is first introduced, the
contribution of the cerebellum to adaptation is greatest. Taken
together with the present results, these findings are consistent
with the idea that during force field adaptation, the cerebellum
and M1 regulate both the fast component of feedforward
control, as well as the gain of the long-latency feedback stretch
response.

Optimal feedback control provides a framework for us to
understand how the motor system should handle performance
errors caused by noise or environmental perturbation (Creve-
coeur et al. 2014). Our results provide strong support for the
task dependency of feedback within the framework of optimal
feedback control theory. In line with previous findings, we
show that there is a link between feedforward and feedback
control. This supports the idea that a key feature of adaptation
is to adjust feedback responses according to task demands
(Ahmadi-Pajouh et al. 2012; Diedrichsen et al. 2010; Franklin
et al. 2012; Wagner and Smith 2008).

Recently, Diedrichsen et al. (2010) suggested that feedfor-
ward and feedback control are not separate processes, but
rather lie on a continuum. Similarly, Thoroughman and Shad-
mehr (2000) found that error-driven feedback produced in
response to a novel force field perturbation gradually shifted
over the course of learning from a feedback-driven mode of
control to more predictive, feedforward control. Comparably, it
has been proposed that a simple feedback control policy can be
formed by modifying feedforward control with a feedback
component that cancels out movement errors, thereby aiming

397TIME COURSE OF CHANGES IN LONG-LATENCY FEEDBACK

J Neurophysiol • doi:10.1152/jn.00286.2020 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ Western Ontario (129.100.058.076) on August 1, 2020.



to keep the movement as close as possible to the planned
trajectory (Haith and Krakauer 2013; Kawato and Gomi 1992).
The transient rise and fall of the LLFR time course observed in
the present study suggests that as participants became faster
and more accurate as a function of practice, they subsequently
became less reliant on feedback control.
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