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Palidis DJ, Cashaback JG, Gribble PL. Neural signatures of
reward and sensory error feedback processing in motor learning. J
Neurophysiol 121: 1561–1574, 2019. First published February 27,
2019; doi:10.1152/jn.00792.2018.—At least two distinct processes
have been identified by which motor commands are adapted according
to movement-related feedback: reward-based learning and sensory
error-based learning. In sensory error-based learning, mappings be-
tween sensory targets and motor commands are recalibrated according
to sensory error feedback. In reward-based learning, motor commands
are associated with subjective value, such that successful actions are
reinforced. We designed two tasks to isolate reward- and sensory
error-based motor adaptation, and we used electroencephalography in
humans to identify and dissociate the neural correlates of reward and
sensory error feedback processing. We designed a visuomotor rotation
task to isolate sensory error-based learning that was induced by
altered visual feedback of hand position. In a reward learning task, we
isolated reward-based learning induced by binary reward feedback
that was decoupled from the visual target. A fronto-central event-
related potential called the feedback-related negativity (FRN) was
elicited specifically by binary reward feedback but not sensory error
feedback. A more posterior component called the P300 was evoked by
feedback in both tasks. In the visuomotor rotation task, P300 ampli-
tude was increased by sensory error induced by perturbed visual
feedback and was correlated with learning rate. In the reward learning
task, P300 amplitude was increased by reward relative to nonreward
and by surprise regardless of feedback valence. We propose that
during motor adaptation the FRN specifically reflects a reward-based
learning signal whereas the P300 reflects feedback processing that is
related to adaptation more generally.

NEW & NOTEWORTHY We studied the event-related potentials
evoked by feedback stimuli during motor adaptation tasks that isolate
reward- and sensory error-based learning mechanisms. We found that
the feedback-related negativity was specifically elicited by binary
reward feedback, whereas the P300 was observed in both tasks. These
results reveal neural processes associated with different learning
mechanisms and elucidate which classes of errors, from a computa-
tional standpoint, elicit the feedback-related negativity and P300.

feedback-related negativity; human; motor adaptation; P300; reward

INTRODUCTION

It is thought that at least two distinct learning processes can
simultaneously contribute to sensorimotor adaptation, sensory
error-based learning and reward-based learning (Galea et al.
2015; Huang et al. 2011; Izawa and Shadmehr 2011; Nikooyan
and Ahmed 2015; Shmuelof et al. 2012). Electroencephalog-
raphy (EEG) has been used to identify neural signatures of
error processing in various motor learning and movement
execution tasks, but it remains unclear how these neural re-
sponses relate to distinct reward- and sensory error-based
motor learning mechanisms (Krigolson et al. 2008; MacLean et
al. 2015; Torrecillos et al. 2014). Here we identified neural
signatures of processing sensory error and reward feedback in
separate motor adaptation paradigms that produce comparable
changes in behavior.

In theories of motor adaptation, sensory error-based learning
occurs when sensory feedback indicates a state of the motor
system that differs from the intended or predicted consequence
of a motor command. Sensory error-based learning is thought
to occur in visuomotor rotation (VMR) paradigms in which
visual feedback of hand position is rotated relative to the actual
angle of reach. Adaptation, in which motor output is adjusted
to compensate for perturbations, is thought to be driven largely
by sensory prediction error in these tasks (Izawa and Shadmehr
2011; Marko et al. 2012). Sensory error feedback activates
brain regions including primary sensory motor areas, posterior
parietal cortex, and cerebellum (Bédard and Sanes 2014;
Diedrichsen et al. 2005; Inoue et al. 2000, 2016; Krakauer et al.
2004). Tanaka et al. (2009) propose that sensory prediction
errors computed by the cerebellum produce adaptation via
changes in synaptic weighting between the posterior parietal
cortex and motor cortex. Furthermore, strategic aiming also
contributes to behavioral compensation for VMRs in a manner
that is largely independent from the automatic visuomotor
recalibration that is driven by cerebellar circuits (Benson et al.
2011; Mazzoni and Krakauer 2006; McDougle et al. 2016;
Taylor et al. 2014).

Recent research suggests that a reinforcement- or reward-
based learning process can also contribute to motor adaptation
in parallel to a sensory error-based learning system and that
reward feedback can drive motor learning even in the absence
of sensory error feedback (Holland et al. 2018; Izawa and
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Shadmehr 2011; Therrien et al. 2016). Reward-based learning
has been isolated experimentally by providing participants with
only binary reward feedback, indicating success or failure,
without visual feedback of hand position. Reward-based motor
learning has been modeled as computational reinforcement
learning, which maps actions to abstract representations of
reward or success rather than to the sensory consequences of
action. Phasic dopaminergic release in the ventral tegmental
area and striatum signals reward outcomes (Glimcher 2011),
and dopaminergic activity has been implicated in reward-based
motor learning (Galea et al. 2013; Pekny et al. 2015).

EEG has been used to identify neural correlates of error
monitoring, but few studies have employed motor adaptation
tasks. An event-related potential (ERP) known as the feedback-
related negativity (FRN) occurs in response to task-related
feedback. The reinforcement learning (RL) theory of the FRN
states that subjectively favorable or rewarding outcomes elicit
a positive voltage potential generated by medial frontal areas
whereas unfavorable outcomes elicit a negative potential (Hey-
dari and Holroyd 2016; Holroyd and Coles 2002; Nieuwenhuis
et al. 2004; Walsh and Anderson 2012). This voltage difference
is proposed to reflect a process of reinforcing successful
actions and/or deterring unrewarding actions. Alternative ac-
counts of the FRN state that it is not specifically tied to the
rewarding quality of outcomes but is generated when predic-
tions are violated generally (Alexander and Brown 2011;
Hauser et al. 2014). Another framework attributes the FRN to
response conflict elicited by performance feedback (Cockburn
and Frank 2011; Yeung et al. 2004).

Our goal was to test the RL theory of the FRN in the context
of motor adaptation by determining whether the FRN is elicited
specifically by reinforcement outcomes but not sensory error.
Counterfactually, if the FRN simply reflects violation of ex-
pectations or conflict due to updated response activation, then
sensory error should also elicit an FRN. Previous studies have
reported FRN-like neural responses to sensory error feedback
(Krigolson et al. 2008; MacLean et al. 2015; Reuter et al. 2018;
Savoie et al. 2018; Torrecillos et al. 2014). However, pertur-
bation of sensory outcomes typically coincides with a failure to
meet the goals of the task, making it difficult to differentiate
reinforcement-related error processing from sensory error pro-
cessing. Furthermore, previous research has introduced pertur-
bations during ongoing movements. In this case it is difficult to
distinguish adaptation-related error processing from the re-
cruitment of neural resources for ongoing control, such as
suppression of the ongoing planned movement. Cognitive
control and response inhibition have been shown to elicit an
N200 ERP component, which occurs with the same scalp
distribution and timing as the FRN (Folstein and Van Petten
2008). We predicted that the FRN would be elicited by binary
reinforcement feedback during motor adaptation in the absence
of sensory error signals whereas sensory error feedback that
does not disrupt task success or reward outcomes would not
elicit an FRN despite producing adaptation. We provided
feedback only at movement end point to avoid confounds due
to movements themselves or error processing related to ongo-
ing control.

The FRN potential is superimposed on the P300, a well-
characterized positive ERP component that peaks later than
FRN and with a more posterior scalp distribution. It has been
proposed that the P300 reflects the updating of an internal

model of stimulus context upon processing of unexpected
stimuli to facilitate adaptive responding (Donchin 1981;
Donchin and Coles 1988; Krigolson et al. 2008; MacLean et al.
2015; Polich 2007). In line with this interpretation, the P300 is
observed ubiquitously in processing task-related feedback, and
therefore we expected to detect a P300 in response to both
sensory error and reward feedback. However, a supposed
model-updating function of the P300 seems especially relevant
to accounts of sensory error-based motor adaptation, in which
internal models of motor dynamics are updated by sensory
error feedback (Synofzik et al. 2008; Wolpert et al. 1995). It is
thought that RL, however, can occur in a purely associative
way without the use of internal models of motor dynamics
(Haith and Krakauer 2013). Furthermore, the P300 is typically
localized to parietal regions, which are heavily implicated in
visuomotor adaptation (Bledowski et al. 2004; Diedrichsen et
al. 2005; Linden 2005; Tanaka et al. 2009). We tested whether
the P300 is modulated by sensory error induced by VMR and
whether P300 amplitude correlated to behavioral adaptation
induced by sensory error feedback.

MATERIALS AND METHODS

Experimental Design and Statistical Analysis

Participants made reaching movements toward a visual target and
received visual feedback pertaining to reach angle only at movement
end point. Neural responses to feedback were recorded by EEG.
Participants were instructed that each reach terminating within the
target would be rewarded with a small monetary bonus. Participants
first performed a block of 50 practice trials. The subsequent behav-
ioral procedure consisted of four blocks of a reward learning task and
four blocks of a VMR task. The order of the blocks alternated between
the two task types but was otherwise randomized. Participants took
self-paced rests between blocks.

In the VMR task, a cursor appeared at movement end point to
represent the position of the hand. In randomly selected trials, cursor
feedback indicated a reach angle that was rotated relative to the
unperturbed feedback. We tested for behavioral adaptation and mod-
ulation of ERPs in response to VMR. The perturbations were small
relative to the size of the target, such that participants nearly always
landed in the target, fulfilling the goal of the task and earning a
monetary reward. Thus reward and task error were constant between
perturbed and nonperturbed feedback, and by comparing the two
conditions we could isolate the neural correlates of sensory error
processing.

In the reward learning task, no cursor appeared to indicate the
position of the hand. Instead, binary feedback represented whether or
not participants succeeded in hitting the target. This allowed us to
assess reward-based learning in isolation from sensory error process-
ing, as visual information revealing the position of the hand was not
provided. Reward was delivered probabilistically, with a higher prob-
ability of reward for reaches in one direction than the other, relative
to participants’ recent history of reach direction. We compared the
neural responses to reward and nonreward feedback to assess the
neural correlates of reward processing during adaptation.

Linear relationships between behavioral and EEG measures were
assessed with robust regression, implemented by the MATLAB fitlm
function with robust fitting option. This method uses iteratively re-
weighted least-squares regression, assigning lower weight to outlier data
points (Holland and Welsch 1977). We used robust regression because
standard correlation techniques with relatively small sample size are
highly sensitive to outlier data and violations of assumptions (Schönbrodt
and Perugini 2013; Wilcox 2001; Yarkoni 2009). Student’s t-tests were
performed with MATLAB R2016b, and the Lilliefors test was used to
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test the assumption of normality. In the case of nonnormal data, the
Wilcoxon signed-rank test was used to test pairwise differences. Repeat-
ed-measures analyses of variance (ANOVAs) were conducted with IBM
SPSS Statistics version 25. For all ANOVAs, Mauchly’s test was used to
validate the assumption of sphericity.

Participants

A total of n � 20 healthy, right-handed participants were included
in our study (23.21 � 3.09 yr old; 12 women, 8 men). Three
participants underwent the experimental procedure but were excluded
because of malfunction of the EEG recording equipment. One partic-
ipant who reported performing movements based on a complex
strategy that was unrelated to the experimental task was excluded.
Participants provided written informed consent to experimental pro-
cedures approved by the Research Ethics Board at Western Univer-
sity.

Apparatus/Behavioral Task

Participants produced reaching movements with their right arm
while holding the handle of a robotic arm (InMotion2; Interactive
Motion Technologies; Fig. 1). Position of the robot handle was
sampled at 600 Hz. A semisilvered mirror obscured vision of the arm
and displayed visual information related to the task. An air sled
supported each participant’s right arm.

Participants reached to a white circular target 14 cm away from a
circular start position (1-cm diameter) in front of their chest (Fig. 1A).
The start position turned from red to green to cue the onset of each
reach once the handle had remained inside it continuously for 750 ms.
Participants were instructed that they must wait for the cue to begin
each reach but that it was not necessary to react quickly upon seeing
the cue.

Participants were instructed to make forward reaches and to stop
their hand within the target. An arc-shaped cursor indicated reach
extent throughout each movement without revealing reach angle. In
only the first five baseline trials of each block, an additional circular
cursor continuously indicated the position of the hand throughout the
reach. A viscous force field assisted participants in braking their hand
when the reach extent was �14 cm.

The robot ended each movement by fixing the handle position
when the hand velocity decreased below 0.03 m/s. The hand was fixed
in place for 700 ms, during which time visual feedback of reach angle
was provided. Feedback indicated either reach end point position, a
binary reward outcome, or feedback of movement speed (see below).
Visual feedback was then removed, and the robot guided the hand
back to the start position.

Reach end point was defined as the position at which the reach path
intersected the perimeter of a circle (14-cm radius) centered at the
start position. Reach angle was calculated as the angle between
vectors defined by reach end point and the center of the target, each
relative to the start position, such that reaching straight ahead corre-
sponds to 0° and counterclockwise reach angles are positive (Fig. 1A).
Feedback about reach angle was provided either in the form of
end-point position feedback or binary reward feedback. The type of
feedback, as well as various feedback manipulations, varied according
to the assigned experimental block type (see Reward Learning Task
and Visuomotor Rotation Task). Participants were told that they would
earn additional monetary compensation for reaches that ended within
the target, up to a maximum of CAD$10.

Movement duration was defined as the time elapsed between the
hand leaving the start position and the moment hand velocity dropped
below 0.03 m/s. If movement duration was �700 ms or �450 ms, no
feedback pertaining to movement angle was provided. Instead, the
gray arc behind the target turned blue or yellow to indicate that the
reach was too slow or too fast, respectively. Participants were in-

formed that movements with an incorrect speed would be repeated but
would not otherwise affect the experiment.

To minimize the impact of eyeblink-related EEG artifacts, partic-
ipants were asked to fixate their gaze on a black circular target in the
center of the reach target and to refrain from blinking throughout each
arm movement and subsequent presentation of feedback.

Practice Block

Each participant first completed a block of practice trials that
continued until he/she achieved 50 movements within the desired
range of movement duration. Continuous position feedback was
provided during the first 5 trials, and only end-point position feedback

Fig. 1. Experimental setup. A: participants (n � 20) reached to visual targets
while holding the handle of a robotic arm. Vision of the arm was obscured by
a screen that displayed visual information related to the task. B: during reaches,
hand position was hidden but an arc-shaped cursor indicated the extent of the
reach without revealing reach angle. Feedback was provided at reach end
point. C: in the reward learning condition, binary feedback represented
whether reaches were successful or unsuccessful in hitting the target by turning
green or red, respectively. Reach adaptation was induced by providing reward
for movements that did not necessarily correspond to the visual target. D: in the
visuomotor rotation condition, feedback represented the end-point position of
the hand. Adaptation was induced by rotating the angle of the feedback relative
to the actual reach angle.
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was provided for the following 10 trials. Subsequently, no position
feedback was provided outside the start position.

Reward Learning Task

Binary reward feedback was provided to induce adaptation of reach
angle. Each participant completed four blocks in the reward learning
condition. We manipulated feedback with direction of intended learn-
ing and reward frequency as factors, using a 2 � 2 design (direction
of learning � reward frequency) across blocks. For each direction of
intended learning (clockwise and counterclockwise), each participant
experienced a block with high reward frequency and a block with low
reward frequency. Reward frequency was manipulated to assess
effects related to expectation, under the assumption that outcomes that
occurred less frequently would violate expectations more strongly.
Each block continued until the participant completed 115 reaches with
acceptable movement duration. Participants reached toward a circular
target 1.2 cm (4.9°) in diameter. The first 15 reaches were baseline
trials during which continuous position feedback was provided during
the first 5 trials, followed by 10 trials with only end-point position
feedback. After these baseline trials no position feedback was pro-
vided, and binary reward feedback was instead provided at the end of
the movement. Target hits and misses were indicated by the target
turning green and red, respectively.

Unbeknownst to participants, reward feedback was delivered
probabilistically. The likelihood of reward depended on the difference
between the current reach angle and the median reach angle of the
previous 10 reaches. In the high-reward frequency condition, reward
was delivered at a probability of 100% if the difference between the
current reach angle and the running median was in the direction of
intended learning and at a probability of 30% otherwise (Eq. 1). When
the running median was at least 6° away from zero in the direction of
intended learning, reward was delivered at a fixed probability of 65%.
This was intended to minimize conscious awareness of the manipu-
lation by limiting adaptation to �6°. In the low-reward frequency
condition, reward was similarly delivered at a probability of either
70% or 0% (Eq. 2). When the running median was at least 6° away
from zero in the direction of intended learning, reward was delivered
at a fixed probability of 35%. Reach angle and feedback throughout a
representative experimental block are shown in Fig. 2.

We employed this adaptive, closed-loop reward schedule so that
the overall frequency of reward was controlled. This allowed us to
assess correlations between neural measures and behavior without
confounding learning and reward frequency.

phigh � �
1, z · ��i � median��i�10, ... , �i�1�� � 0

0.3, z · ��i � median��i�10, ... , �i�1�� � 0

0.65, z · median��i�9, ... , �i� � 6

(1)

plow � �
0.7, z · ��i � median��i�10, ... , �i�1�� � 0

0, z · ��i � median��i�10, ... , �i�1�� � 0

0.35, z · median��i�9, ... , �i� � 6

(2)

where p is probability of reward described separately for the high- and
low-reward frequency conditions, � is the reach angle on trial i, z �
1 for counterclockwise learning blocks, and z � �1 for clockwise
learning blocks.

Visuomotor Rotation Task

End-point feedback was rotated relative to the actual reach angle to
induce sensory error-based adaptation. Each participant completed
four blocks in the VMR condition. We manipulated feedback with
initial rotation direction and perturbation size as factors, using a 2 �
2 design across blocks. For each direction of initial rotation (clock-
wise and counterclockwise) each participant experienced a block with
large rotation (1.5°) and a block with small rotation (0.75°). Each

block continued until participants completed 125 reaches within
acceptable movement duration limits. Participants reached toward a
circular target 2.5 cm (10.2°) in diameter. Participants first performed
baseline reaches during which cursor feedback reflected veridical
reach angle continuously for the first 10 trials and only at movement
end point for the subsequent 15 trials. After the baseline reaches the
adaptation portion of each block began, unannounced to participants.

During the adaptation trials, end-point position feedback was pro-
vided that did not necessarily correspond to the true hand position.
Participants were instructed that end-point feedback within the target
would earn them bonus compensation, but no explicit reward feed-
back was provided. To determine the feedback angle in the small- and
large-perturbation conditions, we added a rotation of 0.75° or 1.5°,
respectively, to the true reach angle in a randomly selected 50% of
trials. In addition, on every trial we subtracted an estimate of the
current state of reach adaptation (Eq. 3).

Xi ��i � q � mean��i�5, ... , �i�1� � �
k�i�3

i�1

(0.25 · Xk)

q �z · s · u

p�u� ��0.5, if u � 1

0.5, if u � 0

(3)

X denotes feedback angle, � denotes reach angle, and q denotes the
perturbation. z denotes the direction of the perturbation (z � 1 for
counterclockwise perturbations and z � �1 for clockwise perturba-
tions). s denotes the size of the perturbation (0.75° or 1.5° in the
small- and large-error conditions, respectively). u is a discrete random
variable that is realized as either 1 or 0 with equal probability (50%).

If the state of adaptation is accurately estimated and subtracted
from the true reach angle, then a reach that reflects the state of
adaptation without movement error will result in either unperturbed
feedback at 0° or rotated feedback at the angle of the perturbation. The
online estimate of adaptation consisted of a running average of the
previous five reach angles and a model of reach adaptation that

Fig. 2. Reach angles of a representative participant (n � 1). Top: the reward
learning block assigned to the clockwise (CW) adaptation with the high-reward
frequency condition. Reaches were rewarded with 100.0% probability for
reach angles less than the median of the previous 10 reaches and with 30.0%
probability for reach angles greater than this running median. Reward was
delivered at a fixed probability of 65.0% when the running median was less
than �6°, indicated by the “Non-Adaptation” portion of the block. Bottom: the
visuomotor rotation block assigned to the 1.5° rotation condition. The rotation
is imposed randomly in 50% of trials. The rotation is initially counterclockwise
(CCW) but reverses when the mean of the previous 5 reach angles becomes
less than �6.0°.
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assumed that participants would adapt to a fixed proportion of the
reach errors experienced during the previous three trials. A windowed
average centered around the current reach angle could estimate the
current state of reach adaptation, but the online running average was
necessarily centered behind the current reach angle. Thus an online
model was necessary to predict the state of adaptation. An adaptation
rate of 0.25 was chosen for the online model on the basis of pilot data.

This design allowed us to compare perturbed and unperturbed
feedback in randomly intermixed trials. Previous studies have im-
posed a fixed perturbation throughout a block of trials and compared
early trials to late trials in which the error has been reduced through
adaptation (MacLean et al. 2015; Tan et al. 2014). In such designs,
differences in neural response might be attributed to changes in the
state of adaptation or simply habituation to feedback, as opposed to
sensory error per se. Alternatively, rotations can be imposed randomly
in either direction, but previous work has demonstrated that neural and
behavioral responses are larger for consistent perturbations, presum-
ably because the sensorimotor system attributes variability in feed-
back to noise processes (Tan et al. 2014).

We sought to limit the magnitude of adaptation to 6° in an attempt
to minimize awareness of the manipulation. The direction of the
perturbation was reversed whenever the average reach angle in the
previous five movements differed from zero by at least 6° in the dir-
ection of intended reach adaptation. Reach angle and feedback angle
throughout a representative experimental block are shown in Fig. 2.

EEG Data Acquisition

EEG data were acquired from 16 cap-mounted electrodes with an
active electrode system (g.GAMMA; g.tec Medical Engineering) and
amplifier (g.USBamp; g.tec Medical Engineering). We recorded from
electrodes placed according to the 10-20 System at sites Fz, FCz, Cz,
CPz, Pz, POz, FP1, FP2, FT9, FT10, FC1, FC2, F3, F4, F7, and F8,
referenced to an electrode placed on participants’ left earlobe. Imped-
ances were maintained below 5 kU. Data were sampled at 4,800 Hz
and filtered online with band-pass (0.1–1,000 Hz) and notch (60 Hz)
filters. A photodiode attached to the display monitor was used to
synchronize recordings to stimulus onset.

Behavioral Data Analysis

Reward learning task. Motor learning scores were calculated for
each participant as the difference between the average reach angle in
the counterclockwise learning blocks and the average reach angle in
the clockwise learning blocks. We assessed reach angle throughout
the entire task primarily because reach direction was often unstable
and a smaller window was susceptible to drift. Furthermore, this
metric of learning reflected the rate of adaptation throughout the block
without assuming a particular function for the time course of learning.
Finally, this metric was not dependent on the choice of a particular
subset of trials.

We excluded baseline trials and trials that did not meet the
movement duration criteria, as no feedback related to reach angle was
provided on these trials (6.5% of trials in the VMR task, 7.4% of trials
in the reward learning task).

Visuomotor rotation task. To quantify trial-by-trial learning we first
calculated the change in reach angle between successive trials, as in
Eq. 4:

��i � �i�1 � �i (4)

We then performed a linear regression on ��i with the rotation
imposed on trial i as the predictor variable. The rotation was 0°,
�0.75°, or �1.5°. This regression was performed on an individual
participant basis, separately for each of the four VMR conditions
(corresponding to feedback rotations of �1.5°, �0.75°, 0.75°, and
1.5°). For these regressions, we excluded trials that did not meet the
duration criteria or that resulted in a visual error of �10°

[mean � 2.65 trials per participant (SD 4.3)], as these large errors
were thought to reflect execution errors or otherwise atypical move-
ments. We took the average of the resulting slope estimates across
blocks, multiplied by �1, as a metric of learning rate for each
participant, as it reflects the portion of visual errors that participants
corrected with a trial-by-trial adaptive process. Based on simulations
of our experimental design using a standard memory updating model
(Thoroughman and Shadmehr 2000) (not described here), we found
that it was necessary to perform the regression separately for each
rotation condition, as collapsing across the different rotation sizes and
directions could introduce bias to the estimate of learning rate.

EEG Data Denoising

EEG data were resampled to 480 Hz and filtered off-line between
0.1 and 35 Hz with a second-order Butterworth filter. Continuous data
were segmented into 2-s epochs time-locked to feedback stimulus
onset at 0 ms (time range: �500 to 	1,500 ms). Epochs containing
artifacts were removed with a semiautomatic algorithm for artifact
rejection in the EEGLAB toolbox [see Delorme and Makeig (2004)
for details]. Epochs flagged for containing artifacts as well as any
channels with bad recordings were removed after visual inspection.
Subsequently, extended infomax independent component analysis
was performed on each participant’s data (Delorme and Makeig
2004). Components reflecting eye movements and blink artifacts were
identified by visual inspection and subtracted by projection of the
remaining components back to the voltage time series.

Event-Related Component Averaging

After artifact removal, we computed ERPs by trial averaging EEG
time series epochs for various feedback conditions described in the
sections below. ERPs were computed on an individual participant
basis separately for recordings from channels FCz and Pz. All ERPs
were baseline corrected by subtracting the average voltage in the
75-ms period immediately following stimulus onset. We used a
baseline period following stimulus onset because stimuli were pre-
sented immediately upon movement termination and the period before
stimulus presentation was more likely to be affected by movement-
related artifacts. Trials in which reaches did not meet the movement
duration criteria were excluded, as feedback relevant to reach adap-
tation was not provided on these trials (6.5% of trials in the VMR task,
7.4% of trials in the reward learning task.).

Reward learning task. We computed ERPs separately for feedback
conditions corresponding to “frequent reward,” “infrequent reward,”
“frequent nonreward,” and “infrequent nonreward.” Reward in the
high-reward frequency condition and nonreward in the low-reward
frequency condition were deemed frequent, whereas reward in the
low-reward frequency condition and nonreward in the high-reward
frequency condition were deemed infrequent (Holroyd and Krigolson
2007).

Visuomotor rotation task. We created trial-averaged ERP responses
for trials with rotated feedback and trials with nonrotated feedback,
separately for the 0.75° and 1.5° rotation conditions. The resulting
ERPs are identified by the conditions “rotated 0.75°,” “nonrotated
0.75,” “rotated 1.5°,” and “nonrotated 1.5°.”

To test for effects of absolute end-point error, which is determined
not only by VMR but also by movement execution errors, we sorted
trials in the adaptation portion of the VMR blocks by the absolute
value of the angle of visual feedback relative to the center of the
target. We created “most accurate” and “least accurate” ERPs for each
participant by selecting the 75 trials with the smallest and largest
absolute feedback angle, respectively.

We computed ERPs to test a correlation, across participants,
between behavioral learning rate and the average neural response to
feedback during adaptation to VMR. These ERPs, labeled as belong-

1565FEEDBACK PROCESSING IN MOTOR ADAPTATION

J Neurophysiol • doi:10.1152/jn.00792.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Univ Western Ontario (129.100.001.248) on April 18, 2019.



ing to the “adaptation” condition, included all trials in the rotated
0.75°, nonrotated 0.75°, rotated 1.5°, and nonrotated 1.5° conditions.

Feedback-Related Negativity Analysis

The FRN was analyzed with a difference wave approach with ERPs
recorded from FCz, where it is typically largest (Holroyd and Krigol-
son 2007; Miltner et al. 1997; Pfabigan et al. 2011). Although the
FRN is classically characterized by a negative voltage peak following
nonreward feedback, multiple lines of evidence suggest that a reward-
related positivity also contributes to the variance captured by the
difference wave approach, despite not producing a distinct peak
(Baker and Holroyd 2011; Becker et al. 2014; Carlson et al. 2011;
Heydari and Holroyd 2016; Walsh and Anderson 2012). Furthermore,
difference waves can be computed separately for frequent and infre-
quent outcomes, which subtracts effects of pure surprise while pre-
serving any interaction between feedback valence and reward fre-
quency (Holroyd and Krigolson 2007). Difference waves were com-
puted for each participant by subtracting ERPs corresponding to
unsuccessful outcomes from those corresponding to successful out-
comes. FRN amplitude was determined as the mean value of the
difference wave between 200 and 350 ms after feedback presentation.
This time window was chosen a priori on the basis of previous reports
(Walsh and Anderson 2012). To test for the presence of the FRN for
each difference wave, we submitted FRN amplitude to a t-test against
zero.

Visuomotor rotation task. First, we created difference waves to test
whether the rotations imposed on randomly selected trials elicited
FRN. The rotated 0.75° ERPs were subtracted from the nonrotated
0.75° ERPs to create a “small VMR” difference wave. The rotated
1.5° ERPs were subtracted from the nonrotated 1.5° ERPs to create a
“large VMR” difference wave.

Next, we created a difference wave to test whether a FRN was
observable by comparing trials where the end-point feedback was furthest
from the center of the target to those where feedback was closest to the
center of the target. The “least accurate” ERPs were subtracted from the
“most accurate” ERPs to create an “end-point error” difference wave.

Reward learning task. The frequent-nonreward ERP was subtracted
from the frequent-reward ERP to create a “frequent” difference wave,
and the infrequent-nonreward ERP was subtracted from the infre-
quent-reward EPR to create an “infrequent” difference wave.

P300 Analysis

To analyze the P300 we used ERPs recorded from channel Pz,
where it is typically largest (Fabiani et al. 1987; Hajcak et al. 2005;
MacLean et al. 2015; Polich 2007). We calculated P300 amplitude
using base-to-peak voltage difference. The temporal regions of inter-
est (ROIs) for the peak and base were determined with grand averages
computed across participants and conditions for each task (see Visuo-
motor rotation task and Reward learning task below). P300 peak was
defined as the maximum peak occurring 250–500 ms after stimulus
onset, which always corresponded to the largest peak in the analyzed
epoch. P300 base was defined as the minimum preceding peak that
occurred at least 100 ms after stimulus onset. For each subject, peak
and base voltages were calculated separately for each condition ERP
as the average voltage within 50-ms windows centered around the
temporal ROIs defined at the group level. P300 amplitude was then
determined as the difference between peak and base voltage.

Visuomotor rotation task. P300 amplitude was calculated in four
conditions using the rotated 0.75°, nonrotated 0.75°, rotated 1.5°, and
nonrotated 1.5° ERPs. Temporal ROIs were determined, as described
above, by aggregating all trials across participants and the four
conditions into a single set and averaging to produce an “aggregate
grand average from trials” waveform. This approach allows for
data-driven ROI selection without inflated type I error rate and has
been shown to be insensitive to trial number asymmetry across

conditions (Brooks et al. 2017). We tested for differences in P300
amplitude related to VMR with two-way repeated-measures ANOVA
with factors rotation (levels: nonrotated, rotated) and rotation magni-
tude (levels: 0.75°, 1.5°).

Reward learning task. P300 amplitude was calculated in four
conditions using the infrequent reward, frequent reward, infrequent
nonreward, and frequent nonreward feedback condition ERPs de-
scribed above. Because the waveform morphology was considerably
different for the ERPs elicited by reward feedback and those elicited
by nonreward feedback, we defined temporal ROIs separately for the
reward conditions (infrequent reward, frequent reward) and the non-
reward conditions (infrequent nonreward and frequent nonreward). In
both cases, temporal ROIs were determined by aggregating all trials
across participants and the corresponding two conditions into a single
set and averaging to produce an “aggregate grand average from trials”
waveform. This ROI selection method has only been shown to be
necessarily unbiased when all conditions display similar waveform
morphology and are grouped together (Brooks et al. 2017). For this
reason, we repeated our analysis, using a common method of selecting
peaks for each individual participant and condition ERP after match-
ing the number of trials across conditions, which produced similar
results.

We tested for differences in P300 amplitude between feedback
conditions with two-way repeated-measures ANOVA with factors
reward (levels: rewarded, nonrewarded) and expectancy (levels: in-
frequent, frequent).

RESULTS

Behavioral Results

Reward learning task. In the reward learning task partici-
pants adapted their reach angle on the basis of binary reward
feedback (Fig. 3). We calculated a reward learning score for
each subject by subtracting the average reach angle in the
clockwise learning condition from that in the counterclockwise
learning condition, excluding the baseline trials, such that the
average reward learning score would be approximately zero if
participants did not respond to the reward feedback in any way.
We observed a mean reward learning score of 5.47 (SD 4.66),
which is significantly greater than zero [1-sample t-test;
t(19) � 5.25, P � 0.001]. Participants received reward on
67.0% (SD 4.9) of trials in the high-frequency condition and
38.6% (SD 4.3) of trials in the low-frequency condition.

Visuomotor rotation task. In the VMR task participants
received end-point cursor feedback and adapted their reach

Fig. 3. Participants (n � 20) adapted their reach angle in the reward learning
condition. Group average reach angles in the reward learning conditions are
plotted. Each participant completed 4 blocks. For each direction of intended
learning [clockwise (CW) and counterclockwise (CCW)], each participant
completed a block in the high-reward frequency (65%) condition and a block
in the low-reward frequency (35%) condition. Shaded regions: �1 SE.
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angles in response to the rotated cursor feedback imposed on
randomly selected trials. To estimate trial-by-trial learning
rates for individual participants, we quantified the linear
relationship between the change in reach angle after each
trial with the rotation imposed on the preceding trial as the
predictor variable, separately for each rotation condition
(�1.5°, �0.75°, 0.75°, and 1.5°). We took the average of
the resulting slope estimates and multiplied it by �1 to
obtain a measure of learning rate. This metric reflects the
proportion of VMR that each participant corrected with a
trial-by-trial adaptive process. The mean learning rate was
0.49 (SD 0.46), which was significantly different from zero
[1-sample t-test; t(19) � 4.8, P � 0.001]. This indicates that
participants corrected for visual errors on a trial-by-trial
basis. Figure 4 shows the average change in reach angle for
each size and direction of the imposed cursor rotation.

Feedback-Related Negativity Results

Reward learning task. Figure 5A shows the ERPs recorded
from electrode FCz during the reward learning condition,
averaged across participants. The mean value of the “frequent”
difference wave recorded from FCz between 200 and 350 ms
was significantly different from zero [mean � 5.34 	V (SD
4.11), t(19) � 5.81, P � 0.001, 1-sample t-test], indicating that
frequent feedback elicited a FRN in our reward learning task.
The mean value of the “infrequent” difference wave was also
significantly larger than zero [mean � 7.09 	V (SD 2.76),
t(19) � 11.47, P � 0.001, 1-sample t-test], indicating that
infrequent feedback also elicited a FRN.

The mean amplitude of the “infrequent” difference wave
was not reliably larger than the mean amplitude of the “fre-
quent” difference wave, although the difference showed a
nearly significant trend in this direction [t(19) � 1.66, P �
0.056, paired t-test, 1-tailed; Fig. 5C]. Robust multiple linear
regression was used to predict reward learning scores, which
we calculated for each subject as the difference in average
reach angle between the clockwise and counterclockwise learn-
ing conditions, based on the mean values of the “frequent” and
“infrequent” difference waves as predictors. The predictors
were not correlated (r � 0.11, P � 0.642). The overall multiple
regression model was not significant [F(2,17) � 2.72, P �
0.095], with an R2 of 0.242. Participants’ predicted reward

learning score, in degrees of reach angle, is equal to 5.243 	
0.525
1 � 0.382
2, where 
1 is the mean value of the
“frequent” difference wave in microvolts and 
2 is the mean
value of the “infrequent” difference wave in microvolts. The
“frequent” difference wave was a significant predictor of the reward
learning score [t(17) � 2.17, P � 0.044], whereas the “infrequent”
difference wave was not a significant predictor of the reward
learning score [t(17) � �1.06, P � 0.30]. Figure 5D shows the
relationships between the “frequent” and “infrequent” FRN
amplitudes and the reward learning score.

Fig. 4. Participants (n � 20) adapted their reach angle on a trial-by-trial basis
in the visuomotor rotation condition. The average change (�) in reach angle
between subsequent pairs of trials is plotted for each size and direction of
rotation imposed on the preceding trial. The average change in reach angle is
in all cases opposite to the rotation, indicating that participants adapted their
reaches to counteract the perturbations.

Fig. 5. The feedback-related negativity was elicited by reward feedback
during the reward learning task. A: trial-averaged event-related potentials
(ERPs) recorded from electrode FCz aligned to feedback presentation (0
ms, vertical blue line). Frequent and infrequent reward reflect reward
feedback in the high- and low-reward frequency conditions, respectively.
Frequent and infrequent nonreward refer to nonreward feedback in the low-
and high-reward frequency conditions, respectively. Shaded regions: �SE
(n � 20). The gray shaded box indicates the temporal window of the
feedback-related negativity. B: the difference waves (reward ERP �
nonreward ERP) for frequent and infrequent feedback aligned to feedback
presentation. C: the mean amplitude of the difference wave (reward ERP �
nonreward ERP) between 200 and 350 ms for infrequent and frequent
feedback. D: the mean amplitudes of the difference waves are predictive of
behavioral learning scores across participants for the frequent feedback but
not the infrequent feedback.
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Visuomotor rotation task. Figure 6A shows the ERPs re-
corded from electrode FCz during the VMR condition, aver-
aged across participants. The mean value of the “small VMR”
difference wave recorded from FCz between 200 and 350 ms
was not significantly different from zero (mean �
�0.21 	V (SD 1.29), Z � �0.67, W � 87, P � 0.50, Wil-
coxon signed-rank test; Fig. 6C). Similarly, the mean value of
the “large VMR” difference wave recorded from FCz between
200 and 350 ms was not significantly different from zero
[mean � �0.26 	V (SD 1.22), t(19) � �0.97, P � 0.34,
1-sample t-test; Fig. 6C). These findings indicate that the
VMRs imposed in the VMR task did not reliably elicit a FRN.

The mean value of the “end-point error” difference wave
recorded from FCz between 200 and 350 ms was not signifi-
cantly different from zero [mean � 0.61 	V (SD 3.28),
t(19) � 0.82, P � 0.42, 1-sample t-test], indicating that a FRN

did not reliably occur on the basis of end-point error feedback.
The fact that we were able to detect a FRN in the reward
learning task but not in the VMR task is consistent with the
notion that the FRN reflects reward processing but not sensory
error processing and that our experimental design successfully
dissociated the two.

P300 Results

Reward learning task. Figure 7A shows ERPs recorded
from electrode Pz during the reward learning condition,
averaged across participants. We performed a 2 � 2 repeat-
ed-measures ANOVA on P300 amplitude with factors ex-
pectancy and reward. Figure 7B shows P300 amplitude for
each condition, averaged across participants. We found a
significant main effect of feedback expectancy [F(1,19) �
97.16, P � 0.001], indicating that P300 amplitude was
significantly larger in the infrequent feedback conditions.
We also found a significant main effect of reward
[F(1,19) � 13.18, P � 0.002], indicating that P300 ampli-
tude was larger after rewarded trials compared with unre-
warded trials. We found no reliable interaction between
reward and expectancy [F(1,19) � 0.992, P � 0.332). P300
amplitude was not significantly correlated to reward learn-
ing scores for any of the four feedback conditions: frequent
reward [R2 � 0.17, F(1,18) � 0.97, P � 0.34], infrequent
reward [R2 � 0.030, F(1,18) � 0.558, P � 0.47], frequent
nonreward [R2 � 0.067, F(1,18) � 1.3, P � 0.27], and inf-
requent nonreward [R2 � 0.06, F(1,18) � 1.15, P � 0.30].

Fig. 6. The feedback-related negativity (FRN) was not elicited by sensory error
feedback during the visuomotor rotation task. A: trial-averaged event-related
potentials (ERPs) recorded from electrode FCz aligned to feedback presenta-
tion (0 ms, vertical line). Shaded regions: �SE (n � 20). The gray shaded box
indicates the temporal window of the FRN. B: the difference waves (nonrotated
ERP � rotated ERP) for the 0.75° and 1.5° rotation conditions aligned to
feedback presentation. C: the mean amplitude of the difference wave (nonro-
tated ERP � rotated ERP) between 200 and 350 ms for the 0.75° and 1.5°
rotation conditions. Error bars show �SE.

Fig. 7. The P300 is modulated by feedback during the reward learning task.
A: trial-averaged event-related potentials (ERPs) recorded from electrode
Pz aligned to feedback presentation (0 ms, vertical line). Shaded regions:
�SE (n � 20). Arrowheads indicate the time points for the base and peak
of the P300. B: P300 amplitude in each feedback condition (error bars:
�SE). P300 amplitude is larger for rewarded feedback relative to unre-
warded feedback and for infrequent feedback relative to frequent feedback.
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Visuomotor rotation task. Figure 8A shows ERPs recorded
from electrode Pz during the VMR task, averaged across
participants. We first tested for an effect of the VMR on P300
amplitude by comparing nonrotated feedback trials and rotated
feedback trials. We performed a two-way repeated-measures
ANOVA with factors presence of rotation and size of rotation
(Fig. 8B). We did not find significant main effects of presence
of rotation [F(1,19) � 2.917, P � 0.104]. We also did not find
a main effect of size of rotation [F(1,19) � 3.087, P � 0.095].
We did find a significant interaction effect between presence of
rotation and rotation magnitude [F(1,19) � 8.728, P � 0.008].
We performed planned pairwise comparisons using Bonferroni
corrected t-tests between nonrotated and rotated conditions
separately for the small- and large-error conditions. We found
that P300 amplitude was significantly greater for rotated com-
pared with nonrotated feedback in the 1.5° rotation condition
[t(19) � 2.83, P � 0.021, Bonferroni corrected] but not the
0.75° rotation condition [t(19) � 0.09, P � 0.93].

Robust linear regression was used to predict behavioral
learning rate in the VMR task based on the amplitude of the
P300 measured in the “adaptation” condition ERPs (Fig. 8D).
P300 amplitude was a significant predictor of learning rate
[F(1,18) � 15.9, P � 0.0001], with an R2 of 0.469. Partici-
pants’ predicted learning rate is equal to �0.219 	 0.065
1,
where 
1 is the P300 amplitude in microvolts.

DISCUSSION

We observed neural correlates of reward and sensory error
feedback processing during motor adaptation. We employed
reaching tasks that were designed to isolate reward- and sen-
sory error-based learning while producing comparable changes
in reach angle. In both tasks, learning occurred in response to
temporally discrete feedback shown after each movement. By
examining ERPs elicited by feedback delivered at the end of
movement we avoided potential confounds caused by neural
activity or artifacts related to movement execution, motion of
the limb, and online error correction. We observed that the
FRN was elicited by binary reward feedback but not by sensory
error feedback. This suggests that the process generating the
FRN is not necessary for sensory error-based learning and
supports the idea that the processes underlying the FRN are
specific to reward learning. The P300 occurred in response to
both reward and sensory error feedback, and P300 amplitude
was modulated by VMR, reward, and surprise. In the VMR
task, P300 amplitude depended on the size of the visuomotor
perturbation and was correlated to learning rate across partic-
ipants. This suggests that the P300 might reflect general pro-
cessing of feedback during motor adaptation that is particularly
important for sensory error-based learning.

The FRN Reflects Processing of Reward Feedback but Not
Sensory Error Feedback

Although motor adaptation has traditionally focused on
sensory error-based learning, recent work suggests that reward-
based or RL processes can also contribute to motor adaptation.
In the present study, reward-based learning was isolated from
sensory error-based learning during the reward learning task by
providing only binary reward feedback in the absence of visual
information indicating the position of the hand relative to the
target. This feedback elicited a well-characterized fronto-cen-
tral ERP component known as the FRN.

In RL theory, agents estimate the expected value of reward
outcomes associated with actions, and actions are selected
according to predictions regarding the value of reward out-
comes. Reward prediction error (RPE) is the difference be-
tween the observed value and the predicted value of a reward
outcome. Estimates of expected value are updated proportion-
ally to RPE. The true expected value of a reward outcome is
equal to the product of reward magnitude and the probability of
reward. In our reward learning task the reward magnitude was
fixed and thus can be represented as a binary quantity (0 or 1),
and so the expected reward value of a particular action on each
trial (e.g., the direction of hand movement) was directly pro-
portional to the probability of reward. Therefore, reward feed-
back should elicit a positive RPE with increasing magnitude
when reward is less probable. Conversely, nonreward should
elicit negative RPE with increasing magnitude when reward is
more probable.

The FRN was observed in the reward learning task as a
difference in voltage between ERPs elicited by nonreward
feedback and those elicited by reward feedback. A large body
of literature has shown that the FRN is larger for infrequent
outcomes than frequent outcomes. Because less frequent out-
comes should violate reward predictions more strongly, this
finding is taken as support for the theory that the FRN encodes
a signed RPE (Cohen et al. 2007; Eppinger et al. 2008; Holroyd

Fig. 8. The P300 reflects sensory error processing during the visuomotor
rotation task. A: trial-averaged event related potentials (ERPs) recorded from
electrode Pz aligned to feedback presentation (0 ms, vertical line). Shaded
regions: �SE (n � 20). Arrowheads indicate the time points for the base and
peak of the P300. B: the peak-to-peak amplitude of the P300 during the
visuomotor rotation task (error bars: �SE). C: P300 amplitude was larger for
rotated than nonrotated trials in the 1.5° rotation condition but not the 0.75°
rotation condition. D: P300 amplitude during adaptation predicted learning
rate. Line of best fit corresponds to robust linear regression using iteratively
reweighted least squares.
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et al. 2011; Holroyd and Krigolson 2007; Kreussel et al. 2012;
Walsh and Anderson 2012). In the present study, the FRN was
larger for improbable feedback than for probable feedback,
although the difference was not statistically reliable (P �
0.056). This result is potentially due to the relatively small
difference in reward frequency experienced between the low-
and high-reward frequency conditions (38.6% and 67.0%,
respectively) compared with other studies. We decided to
avoid using very low or very high reward frequency as we
found it to produce highly variable and strategic behavior in the
task. Furthermore, we did not directly assay reward prediction,
and as such we reserve conclusions that we measured neural
correlates of RPE as opposed to some other potential mecha-
nisms of processing reward or reinforcement outcomes.

A prominent theory proposes that the FRN reflects activity
originating in the anterior cingulate cortex driven by phasic
dopaminergic signaling related to reward outcomes (Holroyd
and Coles 2002; Santesso et al. 2009). This activity is pur-
ported to underlie reward-based learning processes by integrat-
ing feedback to affect future action selection. We sought to
examine the role of the FRN in reward-based learning by
testing the correlation between the amplitude of the FRN and
the extent of learning as assessed behaviorally.

In typical reward learning paradigms successful learning is
correlated with increased reward frequency, and therefore the
relationship between the FRN and the magnitude of learning is
confounded by any effect of reward frequency on FRN ampli-
tude. In the present study, the reward learning task was adap-
tive to learning such that the overall reward frequency was
largely decoupled from the extent of adaptation. We found that
the extent of behavioral learning was predicted by the ampli-
tude of the FRN for the frequent-feedback condition but not the
infrequent-feedback condition. One possible explanation for
this discrepancy is that participants responded reliably to in-
frequent feedback outcomes as they were most salient, but the
limiting factor for individual differences in learning was a
sensitivity to less salient frequent outcomes. Furthermore,
frequent outcomes were by definition more numerous and as
such could contribute more to the overall extent of learning.
Another possibility is that the measurement of FRN amplitude
became less reliable in the infrequent-feedback condition be-
cause of interference by surprise-related signals that were not
directly related to RL, such as the P300. Relationships between
the FRN and learning have been observed for tasks such as
time estimation and discrete motor sequence learning (Holroyd
and Krigolson 2007; van der Helden et al. 2010). Therefore,
the present findings support the idea that the same reward
feedback processing mechanism can drive learning across both
cognitive and motor tasks. However, correlations with limited
sample sizes can be unreliable, and the relationship between
FRN amplitude and reward learning in the present study was
not particularly strong. Future work is needed to further test
this relationship, preferably through causal manipulation and
behavioral tasks that produce less variable and idiosyncratic
learning behavior.

The sensory error-based learning task allowed us to disso-
ciate the neural signatures of reward-based learning and sen-
sory error-based learning. Sensory error often coincides with
task error and reward omission, as failure to achieve the
expected sensory consequences of a motor command usually
entails failure to achieve the subjective goal of the task.

Achieving task goals may be inherently rewarding or explicitly
rewarded, as in the present study. Our VMR task was designed
to elicit learning through sensory error feedback while mini-
mizing task error, as the perturbations were relatively small
and rarely resulted in cursor feedback outside of the target. We
did not observe the presence of the FRN in response to sensory
error feedback, despite reliable observation of behavioral ad-
aptation and the P300 neural response. This suggests that the
process that generates the FRN is not necessary for adaptation
to sensory errors.

Our results suggest that the ERP responses to reward and
sensory error processing can be dissociated in motor adaptation
and that the FRN is specific to reward-based learning pro-
cesses. Although the FRN is classically associated with RL,
recent work has identified the FRN or the closely related
error-related negativity in various motor learning and execu-
tion tasks involving sensory error signals. These studies either
concluded that reinforcement- and sensory error-based learning
processes share common neural resources or they simply did
not distinguish between these two processes (Krigolson et al.
2008; MacLean et al. 2015; Torrecillos et al. 2014). We argue
that the brain processes reward and sensory error feedback
through distinct mechanisms but the two processes can be
confounded when perturbations causing sensory error are also
evaluated as an implicit failure to meet task goals. In this case,
the brain could process a reward and sensory error indepen-
dently, although learning might be driven primarily by the
sensory error. This is consistent with behavioral studies show-
ing that sensory error-based learning is the primary driver of
behavioral change when both reward and sensory feedback are
provided (Cashaback et al. 2017; Izawa and Shadmehr 2011).

Recently, Savoie et al. (2018) also examined the effects of
sensory error on EEG responses while carefully controlling for
reward- or task-related errors. Following Mazzoni and Krakauer
(2006), a 45° VMR was imposed on continuous cursor feed-
back, and participants were instructed to reach to a second
target opposite to the rotation. In this paradigm, participants do
not experience failure to achieve task goals or reward, as they
effectively counteract the rotation through strategic aiming.
Nonetheless, participants automatically and implicitly adapt to
the sensory error caused by the rotation. This strategic condi-
tion was contrasted to a condition with no instructed strategy,
in which participants had already adapted fully to a 45°
rotation and thus experienced no task or sensory error. Unlike
the present study, the authors report a prominent midfrontal
negativity resembling the FRN in the strategic condition,
despite a lack of task- or reward-related errors. One possible
explanation for these conflicting results is that the FRN can be
elicited by sensory error but the VMRs used in the present
study were simply too small to elicit an observable FRN.
Another possible explanation is that the response observed by
Savoie et al. (2018) was not an FRN elicited by failure to
achieve reward or task goals but another frontal negativity
related to implementation of the strategy such as the N200,
which can be indistinguishable from the FRN (Holroyd et al.
2008). The N200 is elicited by response conflict and cognitive
control, which may have occurred during the strategic aiming
condition, as participants were required to inhibit the prepotent
response of reaching directly toward the target and instead
implement the strategic aiming response (Enriquez-Geppert et
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al. 2010; Folstein and Van Petten 2008; Nieuwenhuis et al.
2003).

The P300 Is Modulated by Sensory Error, Surprise, and
Reward

During the VMR task in the present study, we observed a
P300 ERP in response to reach end-point position feedback,
and we found that P300 amplitude was sensitive to the mag-
nitude of sensory error. P300 amplitude was increased by the
larger but not the smaller VMR. Learning in VMR paradigms
is thought to be driven primarily by sensory error-based learn-
ing, and therefore our findings suggest that the P300 observed
in this task might reflect neural activity that is related to
processing of sensory error underlying motor adaptation
(Izawa and Shadmehr 2011).

It is important to note that a P300 response is typically
elicited by stimulus processing in tasks unrelated to sensory
error-based motor adaptation, including the reward learning
task in the present study. A prominent and enduring theory
proposes that the P300 reflects cortical processing related to the
updating of a neural model of stimulus context upon processing
of unexpected stimuli (Donchin 1981; Donchin and Coles
1988; Polich 2007). This theory resembles an account of
sensory error-based motor adaptation in which the updating of
an internal model of motor dynamics occurs when sensory
input differs from the predictions of the internal model (Syn-
ofzik et al. 2008; Wolpert et al. 1995). It is possible that the
P300 reflects a general aspect of feedback processing that is
common to both sensorimotor and cognitive function. The
P300 is typically localized to parietal regions, which are
implicated in processing sensory error during adaptation to
VMR (Bledowski et al. 2004; Diedrichsen et al. 2005; Linden
2005; Tanaka et al. 2009). Consistent with the P300 underlying
sensory error processing, cerebellar damage impairs sensory
error-based adaptation and results in P300 abnormalities
(Mannarelli et al. 2015; Martin et al. 1996; Maschke et al.
2004; Paulus et al. 2004; Smith and Shadmehr 2005; Tachi-
bana et al. 1995; Therrien et al. 2016).

Previous studies have examined P300 responses elicited by
sensory error feedback. It has been demonstrated that P300
amplitude decreases along with the magnitude of reach errors
during the course of prism adaptation (MacLean et al. 2015).
This suggests that the P300 is modulated by sensory error, but
it does not rule out the possibility that the P300 simply
attenuated with time. The P300 has also been reported to occur
in response to random shifts in target location (Krigolson et al.
2008), another type of visuospatial error that, however, does
not reliably produce learning (Diedrichsen et al. 2005). Both of
these studies also reported FRN components occurring in
response to task errors. In the present study a P300 response
was observed that is correlated to behavioral learning and
isolated from the FRN.

In our reward learning task, P300 amplitude was modulated
by feedback valence and expectancy but was not correlated to
learning. The finding that P300 shows a larger positive ampli-
tude for infrequent feedback regardless of valence is consistent
with previous reports and supports the notion that the P300
reflects a general model updating process when the stimulus
differs from expectation (Hajcak et al. 2005, 2007; Pfabigan et
al. 2011; Wu and Zhou 2009). This is distinct from the

interaction between valence and expectancy that is character-
istic of encoding RPE, in which surprise has opposite effects
on the response to reward and nonreward. We also found that
the P300 was larger for reward than nonreward feedback.
Some previous studies have shown a similar effect of reward
valence on P300 amplitude (Hajcak et al. 2005; Leng and Zhou
2010; Wu and Zhou 2009; Zhou et al. 2010), whereas others
have not (Pfabigan et al. 2011; Sato et al. 2005; Yeung and
Sanfey 2004). This finding is also consistent with idea that the
P300 reflects updating of a model of stimulus context in
response to task-relevant feedback, as reward feedback would
indicate that the previous action was rewarding while all other
possible actions were not rewarding. Nonreward feedback
would only indicate that the previous action was not rewarding
and thus carries less information for updating of the internal
representation of the task.

Outstanding Questions

In VMR paradigms, a dissociation has been drawn between
explicit and implicit learning processes that contribute to learn-
ing in a largely independent manner (Benson et al. 2011; Heuer
and Hegele 2011; Krakauer 2009; Mazzoni and Krakauer
2006; McDougle et al. 2015, 2016; Schween and Hegele 2017;
Taylor et al. 2014). The implicit process occurs automatically,
without conscious awareness, and constitutes a recalibration of
the visuomotor mapping. The explicit process is characterized
by conscious and strategic changes in aiming intended to
counteract experimental perturbations. The implicit component
is known to be dependent on cerebellar processes, whereas
explicit learning may rely on prefrontal and premotor cortex
(Heuer and Hegele 2011; McDougle et al. 2016; Taylor et al.
2010; Taylor and Ivry 2014).

In the present study, relatively small perturbations of feed-
back produced gradual changes in reach direction. This gradual
form of adaptation is thought to primarily recruit the implicit
adaptation process (Klassen et al. 2005; Michel et al. 2007;
Saijo and Gomi 2010). Nonetheless, it is possible that a
mixture of implicit and strategic learning contributes the ob-
served adaptation, especially considering the finding that visual
feedback restricted to movement end point elicits less implicit
learning relative to continuous feedback and that strategic
aiming is employed to reduce residual error (Taylor et al.
2014). Further work is necessary to determine whether the
neural generators of the P300 observed in the VMR task
contribute specifically to implicit or strategic learning pro-
cesses.

Similarly, it is not clear whether adaptation in the reward
learning task occurred implicitly or through strategic pro-
cesses. The extent of learning was variable and idiosyncratic,
which may reflect differences in awareness of the manipulation
or conscious strategy (Holland et al. 2018). Recent work has
shown that when participants learn to produce reach angles
directed away from a visual target through binary reward
feedback, adaptation is dramatically reduced by instructions to
cease any strategic aiming, suggesting a dominant explicit
component to reward-based reach adaptation (Codol et al.
2018; Holland et al. 2018). Nonetheless, after learning a 25°
rotation through binary feedback and being instructed to cease
strategic aiming, small changes in reach angle persist (Holland
et al. 2018). It is not clear whether this residual adaptation can

1571FEEDBACK PROCESSING IN MOTOR ADAPTATION

J Neurophysiol • doi:10.1152/jn.00792.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Univ Western Ontario (129.100.001.248) on April 18, 2019.



be attributed to an implicit form of reward learning or whether
it reflects use-dependent plasticity, but it suggests that implicit
reward learning may occur for small changes in reach angle,
such as those observed in the present study. Future work
should determine whether the FRN and P300 are specifically
related to strategic or explicit reward-based motor adaptation,
especially considering evidence from sequence and cognitive
learning domains that the FRN relates more closely to explicit
processes (Loonis et al. 2017; Rüsseler et al. 2003).
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