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Abstract

Consideration of previous successes and failures is essential to mastering a motor skill.

Much of what we know about how humans and animals learn from such reinforcement

feedback comes from experiments that involve sampling from a small number of discrete

actions. Yet, it is less understood how we learn through reinforcement feedback when sam-

pling from a continuous set of possible actions. Navigating a continuous set of possible

actions likely requires using gradient information to maximize success. Here we addressed

how humans adapt the aim of their hand when experiencing reinforcement feedback that

was associated with a continuous set of possible actions. Specifically, we manipulated

the change in the probability of reward given a change in motor action—the reinforcement

gradient—to study its influence on learning. We found that participants learned faster when

exposed to a steep gradient compared to a shallow gradient. Further, when initially positioned

between a steep and a shallow gradient that rose in opposite directions, participants were

more likely to ascend the steep gradient. We introduce a model that captures our results and

several features of motor learning. Taken together, our work suggests that the sensorimotor

system relies on temporally recent and spatially local gradient information to drive learning.

Author summary

In recent years it has been shown that reinforcement feedback may also subserve our abil-
ity to acquire new motor skills. Here we address how the reinforcement gradient influ-
ences motor learning. We found that a steeper gradient increased both the rate and
likelihood of learning. Moreover, while many mainstream theories posit that we build a
full representation of the reinforcement landscape, both our data and model suggest that
the sensorimotor system relies primarily on temporally recent and spatially local gradient
information to drive learning. Our work provides new insights into how we sample from
a continuous action-reward landscape to maximize success.
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Introduction

Whether a previous action is successful or unsuccessful is an important contributor to sensori-
motor learning. Indeed, binary reinforcement feedback (e.g., reward) is sufficient to cause
adaptation of hand aim during a reaching task, independent from error feedback [1, 2, 3, 4, 5,
6, 7]. It has been proposed that updating aim of the hand based on reinforcement feedback is
model-free and occurs by sampling a continuous set of possible motor actions until one or
more actions are found that improve task success [8, 9]. Sampling motor actions presumably
allows the sensorimotor system to use information from the reinforcement landscape to drive
adaptation.

Here we broadly define the reinforcement landscape as the mapping between all possible
motor actions and the expected reward of those actions. In this context, the sensorimotor sys-
tem can maximize expected reward by ascending the reinforcement landscape [10]. However,
for a meaningful change in behaviour to occur there has to be an underlying process that either
evaluates or accounts for whether one action is better than another. More specifically for learn-
ing to occur the sensorimotor system must account for the gradient of the reinforcement land-
scape, which defines the rate of change in the expected reward with respect to a change in
motor action. Intuitively, the evaluation of different actions may be easier with a steeper gradi-
ent, as there would be a more salient change in the expected reward for a change in action.

The form of the reinforcement feedback influences the shape of the reinforcement land-
scape. Reinforcement feedback can be binary or graded, and can be provided deterministically
[1, 11] or probabilistically [2, 5]. Binary reinforcement feedback signifies only whether the
action was successful or unsuccessful [1, 2, 5]. Graded feedback varies the magnitude of posi-
tive feedback (reward) or negative feedback (punishment) as a function of motor action [11,
12]. Thus, the reinforcement landscape gradient can be influenced by the magnitude and or
the probability of feedback. Another consideration when using graded reinforcement feedback
is that humans form a nonlinear relationship between different reward (or punishment) mag-
nitudes and their perceived value [13]. This nonlinear relationship could potentially influence
how the sensorimotor system evaluates perceived changes in expected reward.

Movement variability is also thought to influence the gradient of the reinforcement land-
scape by creating uncertainty between intended actions and actual actions. That is, the
expected reward can change depending on whether it is a function of the intended action
or the actual action [10]. Further, greater movement variability has been linked to faster learn-
ing in reinforcement-based tasks as it promotes exploration of the reinforcement landscape
[14, 15].

Here we designed two experiments to examine how humans adapt the aim of their hand
when receiving binary reinforcement feedback. Specifically, we tested the hypothesis that the
gradient of the reinforcement landscape influences sensorimotor adaptation. We manipulated
the reinforcement landscape gradient by altering the expected reward (the probability of
receiving reward) given the angular distance between the hand location and target. To maxi-
mize reward, participants had to update the aim of their unseen hand to a location that was
not aligned with the visually displayed target. Importantly, we normalized the reinforcement
landscapes to baseline movement variability on an individual basis. This normalization
allowed us to assess the influence of the reinforcement landscape gradient on learning while
accounting for individual differences in movement variability. We used binary reinforcement
feedback to eliminate the potentially confounding nonlinear relationship between different
magnitudes of reward and their perceived value.

We tested the prediction that a steep reinforcement landscape would lead to faster learning
than a shallow landscape (Experiment 1). Building on these results, in Experiment 2 we used
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a complex reinforcement landscape where each participant’s initial action was positioned in
the ‘valley’ between two slopes that had different gradients (steep and shallow) and rose in the
opposite direction (clockwise or counterclockwise). We predicted that participants would
ascend the steeper portion of the complex reinforcement landscape. Finally, we introduce a
model that relies on binary reinforcement feedback to update the aim of the hand during a
reaching task.

Results

Experimental design

In Experiments 1 and 2, 120 participants performed 450 forward reaching movements (Fig
1A). For each trial they began at a starting position and attempted to pass their hand (unseen)
through a virtually displayed target. We recorded reach angle, which was calculated relative to
the line that intersected the visually displayed target and starting position, the moment their
hand was 20 cm away from the starting position.

Participants began by completing 50 baseline trials, where no feedback was received on
whether reaches were successful or unsuccessful. During the next 350 experimental trials
participants received binary reinforcement feedback according to their randomly assigned
reinforcement landscape (see Experiment 1 and Experiment 2). Like baseline, the final 50
washout trials were also performed without feedback.

We instructed participants to “hit the target”. We informed participants that no feedback
would be received if they missed the target, and for each target hit 1) the target would expand,
2) they would hear a pleasant noise, and 3) they would receive monetary reward, such that
they could earn up to $5.00 CAD.

To test the idea that the gradient of the reinforcement landscape influences sensorimotor
learning, we manipulated the probability of receiving positive reinforcement feedback (i.e.,
reward) as a function of reach angle. In Experiment 1 we tested the idea that the gradient of
the reinforcement landscape would influence the rate of learning. In Experiment 2 we tested
the notion that the sensorimotor system would use gradient information from a complex rein-
forcement landscape to find the best of multiple solutions that improved performance.

Experiment 1

We tested the idea that the gradient of the reinforcement landscape influences the rate of learn-
ing. We predicted that a steeper reinforcement landscape would lead to a faster learning rate.

Participants either experienced a steep reinforcement landscape (n = 40) or a shallow rein-
forcement landscape (n = 40). To control for direction, the probability of positive reinforce-
ment (reward) rose either in the clockwise (Fig 1B; Eq 2) or counterclockwise direction (Eq 3).
We created these landscapes by manipulating the probability of reward as a function of reach
angle. The width of each reinforcement landscape, that is the probability of reward given reach
angle, was normalized to baseline movement variability on an individual basis. This normali-
zation ensured that participants in an experimental group (steep or shallow) experienced
the same gradient for a particular landscape, irrespective of movement variability. This also
allowed us to calculate the change in reward probability for a change in intended aim (Fig 1C,

Eqs 7–9) across participants, as well as the optimal intended reach aim (yaimopt ) that maximized

success (Eq 10).
Reach angles were normalized by baseline movement variability on an individual basis

and expressed as a z-score. Further, to allow for visual and statistical comparison irrespective
of the direction that the reinforcement landscape rose (clockwise or counterclockwise), we
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multiplied the normalized reach angles by −1.0 for all participants that experienced a rein-
forcement landscape that increased in the counterclockwise direction [5, 16].

Similar to others [17, 18], we found two subpopulations of participants in Experiment 1:
learner and non-learners. When examining the histogram of final reach position (average nor-
malized reach angle of the last 100 experimental trials), we found a bimodal distribution (S1
Data, S1 Fig). Based on this analysis, we found that a cutoff z-score of 1.0 did well to partition
the bimodal distribution and separate the learners from the non-learners.

Fig 2A and 2B shows individual data from two participants. The participant experiencing a
steep reinforcement landscape quickly changed their behaviour towards a reach angle that
maximized reward (z-score between 3 and 6). The participant experiencing a shallow rein-
forcement landscape took comparatively longer to change their reaching behaviour. The dif-
ference in learning rates between these two participants is most evident during the first 50
experimental trials.

Fig 1. Apparatus and Experiment 1 design. A) Participants held the handle of a robotic arm. A semi-silvered mirror reflected images (target and home
position) from an LCD screen onto a horizontal plane aligned with the shoulder, and occluded vision of the hand and arm. Participants made forward
reaches from a home position, attempted to pass through a virtual target, and stopped once they passed over a horizontal line that disappeared when
crossed. We informed participants that they would receive positive reinforcement for each target hit (target expanded, pleasant noise, and monetary
reward). Unbeknownst to them, we manipulated B) the reinforcement landscape (steep or shallow), which dictated the probability of receiving reward
(y-axis) as a function of their reach angle (x-axis). Reach angle was calculated relative to the line that intersected the target and home position, where the
latter was the centre of rotation. To control for individual differences in movement variability, these reinforcement landscapes were scaled according to
baseline reach behaviour. Accordingly, a z-score of 0.0 corresponds to their average baseline reach angle. A z-score of 1.0 corresponds to a reach angle
that was 1.0 standard deviation, relative to baseline movement variability, away from the average baseline reach angle. We expected participants to adjust
their aim such that they moved from their average baseline reach angle (0.0 z-score) to one that produced greater reward (z-score between 3-6).
Critically, we predicted that participants experiencing the steep (blue) reinforcement landscape would learn to adjust their reach aim at faster rate than
those experiencing the shallow (orange) reinforcement landscape (Experiment 1). C) Using Eqs 7–9, we accounted for movement variability to calculate
the probability of reward (y-axis) given intended reach aim (x-axis). The blue and orange vertical dashed lines correspond to the optimal intended reach
aim (yaimopt , Eq 10) that maximized the probability of reward for the steep and shallow reinforcement landscapes, respectively.

https://doi.org/10.1371/journal.pcbi.1006839.g001
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Fig 2C shows the average reach angle over trials for participants (learners) that experienced
either a steep or shallow reinforcement landscape. To compare the rate of learning between
these two groups of participants, we fit an exponential function (Eq 6) over the experimental
trials via bootstrapping (see Methods for details). We were interested in the time constant of

Fig 2. Behavioral data of Experiment 1. Reach angle (y-axis) over trials (x-axis): A) of a participant that experienced the steep reinforcement
landscape, and B) of a participant that experienced the shallow reinforcement landscape, and C) averaged across participants that experienced
either the steep (blue) or shallow (orange) reinforcement landscape, where shaded regions represent ± 1.0 SE. The grey vertical lines separate
baseline trials (1-50), experimental trials (51-400) and washout trials (401-450). The dashed horizontal lines indicate the optimal intended reach
aim (yaimopt ) to maximize reward. In A) and B), during the experimental trials, the blue and orange circles respectively indicate that the

participant received reward on a given trial, while the black circles indicate no reward. In C), the thick blue and orange curves represents the
best-fit exponential functions to the reach angles of participants that experienced the steep or shallow reinforcement landscapes, respectively.
The time constant (λ) of these exponential functions characterize the rate of learning and were found via a bootstrapping procedure. D)
Posterior probability distributions of the exponential function time constants given the experimental reach angles (left y-axis) of participants
that experienced the steep (λsteep, blue) or shallow (λshallow, orange) reinforcement landscapes. The thick lines are the corresponding cumulative
distributions (right y-axis). The inset represents the posterior probability distribution of the time constant differences between the shallow and
steep participants (i.e., λshallow − λsteep). As observed in C) and D), we found that participants who experienced a steep reinforcement landscape
had a significantly faster rate of learning (i.e., λsteep< λshallow) than those that experienced a shallow landscape (p = 0.012).

https://doi.org/10.1371/journal.pcbi.1006839.g002
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the exponential function, λ, which defines the rate of learning. The exponential bootstrap fit
analysis was performed separately first with the data from the learners alone, and then again
with all participants (learners and non-learners together). As hypothesized, we found that the
participants experiencing the steep landscape had faster learning (i.e., a lower exponential
function time constant, λ) than those experiencing a shallow reinforcement landscape
(p = 0.012 learners only, p = 0.021 for combined learners and non-learners, one-tailed). Fig 2D
shows the posterior probability distribution and cumulative distribution of the time constant λ
given the reach angles of participants experiencing either a steep or shallow reinforcement
landscape. The inset of Fig 2D shows the posterior probability distribution of the time constant
difference between the two experimental groups, from which we calculated the p-values
reported directly above. The direction of the reinforcement landscape, clockwise or counter-
clockwise, did not influence the rate of learning (p = 0.540, two-tailed).

We also found that participants who experienced a steep landscape were more likely to be
classified as learners than those who experienced a shallow reinforcement landscape
(p = 0.036, two-tailed; Table 1).

Experiment 2

In this experiment we tested the notion that the sensorimotor system uses gradient informa-
tion from a complex reinforcement landscape to find the solution that maximizes reward. The
probability of reward was at a minimum for reaches toward mean baseline behaviour but
increased at different gradients (steep or shallow) for reaches in either direction (clockwise or
counterclockwise) away from the target. We predicted that a significantly greater number of
participants would adapt their reach aim in the direction of the steeper gradient.

Two different reinforcement landscapes were used in this experiment: one landscape had a
steep slope that rose in the clockwise direction and a shallow slope that rose in the counter-
clockwise direction (steep clockwise; n = 20; Fig 3A; Eq 4), and the other landscape had a steep
slope that rose in the counterclockwise direction and a shallow slope that rose in the counter-
clockwise direction (steep counterclockwise; n = 20; Fig 3C; Eq 5). As in Experiment 1, for
both reinforcement landscapes we calculated the probability of reward given intended aim

(Fig 3B and 3D; Eqs 7–9), as well as the optimal intended reach aim (yaimopt ) to maximize reward

(Eq 10).
Here we were interested in the frequency of participants that changed their reach behaviour

in the clockwise or counterclockwise direction, depending on whether they experienced the
steep clockwise or steep counterclockwise reinforcement landscape. We used the average of
the last 100 experimental trials to classify the direction of their final reach behaviour. Final
reach direction was classified to be counterclockwise (z-score −1.0), center (−1.0 < z-score
< +1.0) or clockwise (z-score� +1.0). This classification was done separately for those
experiencing a steep clockwise or steep counterclockwise reinforcement landscape.

Fig 4A and 4B show the average reach angle of steep learners, shallow learners and non-
learners for participants experiencing the steep clockwise or steep counterclockwise reinforce-
ment landscapes, respectively. The steep and shallower learners in Fig 4A respectively look

Table 1. Frequency of learners and non-learners. Frequency of learners and non-learners partitioned based on
whether the participants experienced a steep or shallow reinforcement landscape.

Group Learners Non-Learners

Steep Reinforcement Landscape 37 3

Shallow Reinforcement Landscape 29 11

https://doi.org/10.1371/journal.pcbi.1006839.t001
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Fig 3. Experimental 2 design. Participants experienced a complex reinforcement landscape where they were initially positioned in the ‘valley’ between
a steep and shallow slope. Participants experienced a reinforcement landscape where the steep slope rose in the A) clockwise direction (CW) or C)
counterclockwise (CCW) direction. These reinforcement landscapes define the probability of reward (y-axis) as a function of reach angle (x-axis).
Reach angle is normalized to baseline reach behaviour and is expressed as a z-score. B) and D) define the probability of reward (y-axis) given intended
aim (x-axis) for the steep clockwise and steep counterclockwise reinforcement landscapes, respectively. In both these figures, yaimopt and the

corresponding dashed vertical line correspond to the optimal intended reach aim that maximizes reward. We predicted that participants experiencing
the steep clockwise reinforcement landscape to adjust their aim in the clockwise direction. Similarly, we expected that those experiencing the steep
counterclockwise reinforcement landscape to adjust their aim in the counterclockwise direction.

https://doi.org/10.1371/journal.pcbi.1006839.g003

Ascending the reinforcement gradient

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006839 March 4, 2019 7 / 27

https://doi.org/10.1371/journal.pcbi.1006839.g003
https://doi.org/10.1371/journal.pcbi.1006839


qualitatively similar to the steep and shallow learners in Fig 4B when reflecting either of
these figures about its x-axis. The behaviour of the non-learners was less consistent based on
whether they experienced the clockwise or counterclockwise landscapes, but there was a lim-
ited frequency of non-learners (n = 2 and n = 3, respectively).

As an additional classification, participants that had a final reach position corresponding to
the direction of the steep slope, shallow slope or a central location, were deemed steep learners,

Fig 4. Behavioral data of Experiment 2. Average reach angles (y-axis) over trials (x-axis) of participants that experienced A) a steep clockwise
or B) a steep counterclockwise reinforcement landscape. In both these subplots we partition the behaviour of participants that were classified as
steep learners (solid lines), shallow learners (dashed lines), or non-learners (dotted lines). In A) positive reach angles correspond with the steep
slope and the clockwise (CW) direction. In B) negative reach angles correspond with the steep slope and the counterclockwise (CCW)
direction. The grey vertical lines separate baseline, experimental and washout trials. Shaded regions represent ± 1.0 SE. C) Frequency of
participants whose final reach direction (average of the last 100 trials) was in the clockwise (z-score −1.0), central (−1.0< z-score< +1.0),
and (z-score� +1.0) counterclockwise directions. As expected, we found significant differences in the frequency of final reach directions
between participants that experienced the steep clockwise or steep counterclockwise reinforcement landscapes (p = 0.010). As predicted, we
found the majority of participants used information from the complex reinforcement landscape to ascend up the steeper slope.

https://doi.org/10.1371/journal.pcbi.1006839.g004
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shallow learners and non-learners, respectively. This was done separately for participants that
experienced either the steep clockwise or steep counterclockwise reinforcement landscape.

For this experiment we predicted that participants would ascend the steeper gradient of
their assigned reinforcement landscape. Specifically, we expected more participants who expe-
rienced the steep clockwise reinforcement landscape to have their final average reach angle to
be classified as clockwise. Similarly, we expected participants who experienced the steep coun-
terclockwise reinforcement landscape to have their final average reach angle to be classified as
counterclockwise. Using z-score cutoffs of −1.0 and +1.0, we found that there were significant
differences in the final average reach classification between participants who experienced a
steep clockwise or steep counterclockwise reinforcement landscape (p = 0.010, two-tailed, Fig
4C). These results were robust to whether we used z-score cutoffs of ±0.5 (p = 0.016, two-
tailed) or ±1.5 (p = 0.020, two-tailed) to classify final reach direction. Further, we found that
the direction (clockwise or counterclockwise) did not influence behaviour in terms of whether
a participant was classified as a steep learner, shallow learner or non-learner (p = 0.810, two-
tailed). Thus, the direction of the reinforcement landscape had an effect on their final reach
direction, but it did not impact the frequency of steep learners, shallow learners, and non-
learners.

Learning model and best-fit parameters

Here we introduce a learning model that predicts reach angle (θn) on a trial-by-trial basis (Eq
1). This model takes the form

yn à N Ö�yaim
n ; s2

nÜ Ö1aÜ;

�yaim
ná1; s

2
ná1 à

�yaim
n á aÖyn � �yaim

n Ü; s2
m r à 1

�yaim
n ; s2

m á s2
e r à 0

Ö1bÜ;

Ö1cÜ;

8
<

:

where n and n + 1 represent the current and next trial, respectively.
The model considers whether the current reach angle was successful (r = 1) or unsuccessful

(r = 0). The model explores small regions of the workspace in a natural way via movement var-
iability. Here, the variance of movement variability on the current trial (s2

n) is a function of

motor (execution) variance (s2
m) after a successful reach, and the addition of both motor vari-

ance and exploratory variance (s2
e ) after an unsuccessful reach [2]. It was assumed that the var-

iance of movement variability follows a Normal distributionN Ö�yaim
n ; s2

nÜ [19, 20, 21], where
�yaim
n represents the intended reach aim on the nth trial.

Inspired by Haith and Krakauer (2014) [22], the only action cached in memory is related to

the location of the last successful reach. That is, an update in the intended reach aim (�yaim
n )

occurs only after a successful reach. Specifically, this update is some proportion (α) of the dif-

ference between the current intended aim (�yaim
n ) and the location of the last successful reach

(θn). After an unsuccessful reach, the intended aim remains the same (i.e., �yaim
n is still stored

based on the last successful reach) but the subsequent movement has greater variance (σm +
σe). This results in a similar formulation to the equation just recently published by Therrien
and colleagues (2018) [23]. There are some slight differences between the present model and
the Therrien et al. (2015, 2018) model in terms of how they update the intended aim following
a successful reach [23, 24] (see Discussion). Nevertheless, in the following we show the utility
of this class of model in terms of replicating several features of sensorimotor adaptation. As
previously suggested by van Beers (2009) [25] and Zhang et al. (2015) [26], our model assumes
that the nervous system has some knowledge of movement variability when updating intended
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reach aim. This allows for an estimated difference between intended aim and actual reach
angle, despite the participants have no vision of their hand during trials.

Our model has three free parameters: α = 0.40 (unitless), σm = 0.81 (z-score), and σe = 0.90
(z-score). The initial guesses of σm and σe for the fitting procedure were made with a trial-by-
trial difference analysis (S2 Data, S2 Fig) that we modified from Pekny et al. (2015). It is
expected that σm is slightly lower than a z-score of 1, or baseline movement variability, since
here we were interested in the movement variability on a single-trial and not the additive vari-
ance that results from repeatedly subtracting two successive trials (see S2 Data, S2 Fig for fur-
ther details). We found the best-fit parameters using a bootstrap optimization fitting
procedure using only the data from Experiment 1 (S3 Data).

Simulating Experiment 1

With our learning model, we simulated 40 individuals experiencing the steep reinforcement
landscape of Experiment 1, and then simulated another 40 individuals experiencing the shal-
low landscape.

We found that simulated individuals displayed similar trial-by-trial variance and rates of
learning compared to the behavioural data (compare Fig 5A and 5B to Fig 3A and 3B). We
averaged across the 40 simulated individuals in each condition (steep or shallow reinforcement
landscape). The model did well to capture between-subject variance. Similar to the behavioural
data, we also found the emergence of exponential learning curves (Fig 5C).

We then simulated 100, 000 individuals experiencing the steep landscape and 100, 000 indi-
viduals experiencing the shallow landscapes. Simulating a large number of individuals allowed
us to numerically converge on the theoretical exponential learning curves produced by the
model. We then averaged across simulated individuals in each group and fit an exponential
function. The best-fit time constant, λ, of the exponential function for the steep and shallow
reinforcement landscapes were 28.0 and 49.6, respectively. Both values fall within the 95th per-
centile confidence intervals of the corresponding behavioural data. (steep [10.7, 36.2], shallow
[27.4, 102.1]; Fig 2D).

In S2 Data, S2 Fig we present a trial-by-trial analysis, as a function of reinforcement history,
of both the model simulations and behavioural data. We show in S4 Data with model simula-
tions that changing the initial reward probability of the shallow landscape has a marginal influ-
ence on learning rates.

Simulating Experiment 2 with the best-fit parameters found in Experiment
1

Here we simulated Experiment 2 using our learning model (n = 100, 000 simulated individu-
als) by using the best-fit parameters obtained from the behavioural data in Experiment 1. To
compare the model to the behavioural results, we combined the data from all participants in
Experiment 2. This was accomplished by multiplying the normalized reach angles by −1.0 for
participants that experienced the steep counterclockwise reinforcement landscape.

Fig 6A shows a histogram of the final reach angle of both the behavioural data and model
simulations. We then used the same final reach direction classification for the model simula-
tions that we used for the behavioural data. Based on these classifications, we found that the
model produced a similar frequency of steep learners, shallow learners and, to some extent,
non-learners as the behavioural data (Fig 6A and 6B). Further, we found that the model did
well to explain reach angle over trials for these three different groups (R2 = 0.85; Fig 6B).

We also performed an analysis to explore the influence of reinforcement feedback during
the initial periods of experimental trials. To this end, we calculated how a participant’s Nth
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success predicted their final reach classification. This was done separately for successful
reaches made on the shallow (Fig 6C) and steep (Fig 6D) slopes of the complex reinforcement
landscape. We found that if a participant had their 1st success on the steep slope that they
would likely be classified as a steep learner (Fig 6D). Conversely, a 1st success on the shallow

Fig 5. Simulations of Experiment 1. Reach angle (y-axis) over trials (x-axis) when using our learning model to simulate an ‘individual’
experiencing A) the steep reinforcement landscape and B) the shallow reinforcement landscape. In A) and B), during the experimental trials,
the blue and orange circles respectively indicate that the model received reward on a given trial, while the black circles indicate no reward. At
the individual level, the learning model does well to capture individual movement variability and a faster rate of learning when experiencing the
steep reinforcement landscape (compare to Fig 3A and 3B). For A), B), and C) the grey vertical lines separate baseline trials (1-50),
experimental trials (51-400) and washout trials (401-450). The dashed horizontal lines indicate the optimal intended reach aim (yaimopt ) to

maximize reward. C) Average reach angle (y-axis) over trials (x-axis) when using the learning model to simulate 40 ‘individuals’ for both the
steep (blue) and shallow (orange) reinforcement landscape. Shaded regions represent ± 1.0 SE. The thick blue and orange curves represents the
best-fit exponential functions to the average reach angles of simulated ‘individuals’ that experienced the steep or shallow reinforcement
landscapes, respectively. For comparison, the inset displays the behavioural data of Experiment 1 (also shown in Fig 2C). At the group level, the
learning model does well to capture between-subject variability, reproduces a faster rate of learning for the steep landscape, and gives rise to
exponential learning curves.

https://doi.org/10.1371/journal.pcbi.1006839.g005
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slope was not a good predictor of final reach classification (Fig 6D). However, a participant
was likely to be classified as a shallow learner if their 15th success and beyond was on the shal-
low slope. As shown, the model and data were highly correlated with each other (R2 = 0.933
and R2 = 0.995, respectively). This analysis shows that the participants and model simulations

Fig 6. Simulations of Experiment 2 (using the best-fit parameters found in Experiment 1). A), B), C), D) We simulated 100,000
‘individuals’ experiencing the steep clockwise reinforcement landscape with our learning model. A) Frequency (y-axis) of final reach direction
(x-axis), the average of the last 100 reaches, of the behavioural data (bars) and model (dashed line). The inset shows the corresponding
cumulative distribution. As shown, we found good agreement between the model and behaviour. B) Reach angle (y-axis) over trials (x-axis) for
the behaviour data and model outputs. Here we display the combined behavioural data of participants that experienced the steep clockwise and
steep counterclockwise reinforcement landscape (see Results for details). We partitioned participants into steep learners (thin solid line),
shallow learners (thin dashed line), and non-learners (thin dotted line) based on their final reach behaviour. Using the same classification
criteria, the model also produced steep learners (thick solid line) and shallow learners (thick dashed line) at similar frequencies, and to some
extent non-learner (thick dotted line). The model did well to capture the average reach angles of the steep learners (n = 26) and shallow learners
(n = 9). It did not do well to capture the reach angles of non-learners, however there were only five participants in this group. Overall, the
average reach angles of the model and behavioural data were highly correlated (R2 = 0.86). The grey vertical lines separate baseline,
experimental and washout trials. Shaded regions represent ± 1.0 SE. C) and D) show the probability of becoming classified as a steep learner,
shallow learner, or non-learner based based on whether the Nth successful reach was on the shallow slope or steep slope, respectively. Again, the
participants (solid lines) and model (dashed lines) behaved similarly. These data highlight the importance of early exploration on whether an
individual will maximize reward when experiencing a complex reinforcement landscape.

https://doi.org/10.1371/journal.pcbi.1006839.g006
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were both heavily influenced by early exploration and gradient information when they experi-
enced a complex reinforcement landscape.

Replicating previous work

Using the same set of best-fit parameters found from the data of Experiment 1, we replicated
the results of Izawa and Shadmehr (2011) and our previous work [5] (see Fig 7A and 7B,
respectively). In the study by Izawa and Shadmehr (2011), participants were only provided
binary feedback if they hit a target region that was gradually rotated from a visual displayed
target. In our previous work [5], cursor position was laterally shifted according to a skewed
probability distribution and participants received binary feedback on whether the laterally
shifted cursor hit the visually displayed target. In both these studies, participants had no vision
of their hand or arm. We had our model experience the same reported conditions from both
these studies. Our model did very well to capture average reach behaviour, between-subject
variance, trial-by-trial movement variability as a function of reinforcement history (see [2]; S2
Data, S2 Fig), and suboptimality.

Here, we define suboptimality as approaching but not quite reaching the optimal behaviour

that maximizes reward (i.e., xmaxÖhitsÜ
opt in Fig 7B). Suboptimality is often a feature of ‘greedy’ algo-

rithms that place greater emphasis on locally optimal information rather than globally optimal
information [27]. Our learning model would be considered a greedy algorithm since it samples
from spatially local motor actions and updates its aim based on the last recent success. A
greedy algorithm can lead to suboptimal performance in non-symmetrical landscapes (e.g.,
[5], Fig 1B and 1C) and complex landscapes with local maximums (e.g., Fig 2). Behaviourally,

Fig 7. Replicating previous work using the best-fit parameters found in Experiment 1. A) We simulated the experiment of Izawa and
Shadmehr (2011) using our learning model. Reach angle (y-axis) over trials (x-axis) as simulated by our model is shown in green (n = 18).
The inset display the original behavioural data (black line) reported from Izawa and Shadmehr (2011; reprinted with permission). Our
model captures both the linear change in reach angle and the between-subject variability. B) We then simulated a previous experiment of
ours [5]. Hand position (i.e., compensation, mm) over trials (x-axis) as simulated by our model is shown in green (n = 30). The inset shows
the original behavioural data, where the dark red line represents the hand position of participants when they are receiving only binary

reinforcement feedback to perform the task ([5]; reprinted with permission). xmaxÖhitsÜ
opt represents the optimal location to aim the hand to

maximize target hits (reward). Here, the model replicates the exponential learning curve, between-subject variability and suboptimal
performance.

https://doi.org/10.1371/journal.pcbi.1006839.g007
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this was particularly evident in Experiment 2 where a relatively high proportion of partici-
pants (22.5%) performed suboptimally by ascending the shallow slope and having a final reach
direction aligned with a local maximum.

Further motivated by the model of Haith and Krakauer (2014) [22], we ran simulations to
examine how movement variability influences the rate of learning and whether our model
could capture random-walk behaviour. There is some debate to whether movement variability
is beneficial [14, 22] or detrimental [15, 28, 29, 30] when learning from error feedback, which
to some extent may be explained by the consistency (entropy) of the environment [31]. Recent
work has suggested that movement variability is important when learning from reinforcement
feedback and can influence the rate of learning [14]. Here we manipulated both motor (σm)
and exploratory (σe) contributions to movement variability when simulating the experimental
conditions of Experiment 1. We found that increasing the variance of movement variability,
either σm or σe, led to increased rates of learning for both the steep (Fig 8A) and shallow (Fig
8B) reinforcement landscapes. However, it should be noted that with different amounts of
movement variability there may exist a trade-off between the rate of learning and the probabil-
ity of reward.

In previous literature, random-walk behaviour along task-irrelevant dimensions has been
attributed solely to error-based learning [32, 33, 34, 35]. In the study by van Beers and col-
leagues (2013), participants received error (visual) feedback when reaching to large targets
(Fig 9D). They displayed random-walk behaviour (i.e., trial-by-trial correlations) along the
task-irrelevant dimensions that had no bearing on task success. Here we tested whether rein-
forcement feedback can also lead to random-walk behaviour. To test this idea, we used our
model to simulate the experiment van Beers et al. (2013). Critically however, we did not use
error feedback as in the original study—instead we only provided binary reinforcement feed-
back to the model based on whether it had hit or missed the target. Interestingly, we found
that random-walk behaviour along task-irrelevant dimensions also emerged from our model

Fig 8. Predicting learning rates given motor and exploratory movement variability. In A) and B) we predict the rate of learning (λ; y-axis)
after varying motor (σm, deg; x-axis) and exploratory (σe, deg; different shaded lines) contributions to movement variability, when the our
learning model experiences the steep (blue) and shallow (orange) landscapes, respectively (n = 10, 000 per data point). In both A) and B) we
find that increasing either σm or σe leads to a faster rate of learning (i.e., lower magnitudes of λ).

https://doi.org/10.1371/journal.pcbi.1006839.g008
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(Fig 9A, 9B and 9C). Thus, our simulations suggest that random-walk behaviour, at least in
part, may be attributed to reinforcement-based processes.

Our model relies on updating intended reach aim by using only the recent success (tempo-
rally current information) based on sampling the reinforcement landscape via movement vari-
ability (spatially local information). Given the strong relationship between our model and the
behavioural data throughout the simulations above, our results suggest that the sensorimotor
system largely depends on temporally recent and spatially local information to update where
to aim the hand during our reinforcement-based sensorimotor learning task.

Discussion

We found that manipulating the gradient of the reinforcement landscape influenced sensori-
motor learning. First, we found that a steep reinforcement landscape led to faster learning. Sec-
ond, participants were more likely to adjust their aim in the direction of the steepest portion of
a complex reinforcement landscape. Our learning model that relies on reinforcement feedback
to update aim of the hand was able to replicate the results in Experiment 1 and predict the

Fig 9. Random-walk behavior along task-irrelevant dimensions. In A), B), C), we show that our learning model predicts that updating aim
based on reinforcement feedback can lead to random-walk behaviour along task-irrelevant dimensions. A) Target with a long length (task-
irrelevant dimension) and short width (task-relevant dimension). Endpoint position (green) as predicted by our model for each trial. B)
Corresponding endpoints (y-axis) as partitioned into task-irrelevant (dark green) and task-relevant (light green) dimensions over trials (x-axis).
Here AFC(1) represent the autocorrelation (lag 1 trial) of the task-irrelevant (dark green) and task-relevant (light green) endpoint components
when simulating an individual. This autocorrelation provides insight if trials n and n + 1 are uncorrelated or correlated, where the latter is a
feature of random-walk behaviour. C) The average AFC(1) in task-irrelevant (dark green) and task-relevant (light green) when simulating six
subjects (± 1.0 SE bars). D) Original behavioural data from van Beers and colleagues (2013; reprinted with permission) showing task-irrelevant
random-walk when participants received error feedback—not reinforcement feedback as simulated with our model. Although previously
attributed to error-based processes, our model predicts that reinforcement-based processes may also give rise to random-walk behaviour.

https://doi.org/10.1371/journal.pcbi.1006839.g009
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results found in Experiment 2. Taken together, our data and model suggest that the sensori-
motor behaviour observed in our experiments does not necessitate a full representation of the
entire reinforcement landscape (storing the expected reward for all possible actions). Rather,
the majority of learning behaviour can be captured using temporally recent and spatially local
information about actions and rewards.

Participants learned faster when they experienced a steep reinforcement landscape, com-
pared to those experiencing a shallow landscape. To our knowledge this is the first work
showing that the gradient of the reinforcement landscape influences the rate of learning. The
present study may be distinguished from previous work showing that a graded reinforce-
ment landscape can augment error-based learning [11, 12]. Here we show that the gradient
of a binary, positive reinforcement landscape influences learning in the absence of error
feedback.

Using a visuomotor rotation task, Nikooyan and Ahmed (2014) used both graded rein-
forcement feedback and error feedback to study their effects on learning. Participants moved
a cursor which was rotated from the unseen hand as it moved away from a start position
towards a virtual target. Participants performed the task either with or without error (cursor)
feedback. They experienced a graded reinforcement landscape, such that the magnitude of
reward changed with the angular distance of the hand from the target, according to either a
linear or cubic function. The maximum reward magnitude occurred when the rotated cursor
hit the target. Relative to learning using only error feedback, linearly and cubically graded
reinforcement landscapes combined with error feedback accelerated learning. They also
found differences in the amount of adaptation between participants who experienced only
graded reinforcement feedback (without any visual error feedback) based on either a linear
or cubic reinforcement landscape. However, these differences reversed in direction during
the course of the experiment and, in some instances, opposed theoretical predictions from a
temporal-difference (TD) reinforcement algorithm [11, 36]. These inconsistent findings may
have been caused by not controlling for individual differences in movement variability [14]
or the nonlinear relationship between different reward magnitudes and their perceived value
[13].

In our experiments, we used binary feedback that always had the same magnitude of
reward. This eliminated the nonlinear relationship between different reward magnitudes and
their perceived value [13]. Further, we controlled for individual differences in movement vari-
ability, which can influence exploration and the rate of learning in reinforcement-based tasks
[14, 15, 37]. Thus, our work is the first to our knowledge that has isolated how the gradient of
the reinforcement landscape influences the rate of sensorimotor learning.

In our second experiment, each participant’s initial action was positioned in the ‘valley’
between two slopes that had different gradients (steep or shallow) and rose in opposite direc-
tions. As predicted, we found participants were more likely to ascend the steepest portion of
a complex reinforcement landscape. While the majority of participants ascended the steep
slope, several participants ascended the shallow slope. The probability of whether they would
be classified as a steep learner or shallow learner seemed related to initial success on either
the steep or shallow portion of the landscape. In particular, participants were very likely to
be classified as a steep learner if their first successful reach was on the steep slope of the com-
plex landscape.

Our learning model did well to capture trial-by-trial behaviour, between subject variability
and exponential learning curves in Experiment 1. Using the same set of best-fit parameters
found using Experiment 1 data, we then simulated Experiment 2. The model produced simi-
lar distributions of steep-learners, shallow-learners and, to some extent, non-learners. The
model was also able to capture several aspects of learning reported in previous work [1, 2, 5].
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As mentioned, the behavioural findings of Experiment 2 were well predicted by our learn-
ing model. Critically, our model does not build up a full representation of the reinforcement
landscape. Rather, it relies on using movement variability for spatially local exploration and
temporally recent reinforcement feedback to update intended reach aim. Considering that the
model does not build up a representation of the reinforcement landscape and that it was highly
correlated with the behavioural results, suggests that whether participants ascended up the
shallow portion or the steep portion of the complex reinforcement landscape was largely due
to movement variability and the probability of reward. As an example, a participant’s initial
reach angle had an equal probability of being aligned with either the steep or shallow slope due
to movement variability. However, a participant’s initial reach was more likely to be rewarded
on the steep slope because of its higher rate of reward. Moreover, the further a participant
ascended either the steep or shallow slope it became increasingly unlikely that future successes
would promote them from descending a slope. In particular, the steep slope had a stronger
effect of promoting participants to ascend since its reward rate was double that of the shallow
slope. This is evident in Fig 6D, where both the participants and model simulations were very
likely to be classified as a steep learner when they had their 1st success on the steep slope. Con-
versely, final reach classification for both the participants and model simulations only became
reliable after approximately the 15th success on the shallow slope (Fig 6C). Thus, participants
and the model were more likely to be initially rewarded on the steep slope and also more likely
to ascend the steep slope. Taken together, our behavioural results and model simulations sup-
port the idea that the nervous system does not build up a representation of the reinforcement
landscape. Rather, the nervous system seems to rely on spatially local movement variability for
exploration and temporally recent reinforcement feedback to update hand aim. Importantly,
our findings also suggest that early exploration is highly influential when attempting to avoid
local maximums and discover a global maximum.

Several hallmarks of motor learning simply emerged from our phenomenological learning
model. Specifically, we found that the model produces exponential learning curves, between-
and within-subject movement variability, suboptimal performance, increased learning rates
with greater movement variability, trial-by-trial variance given a successful or unsuccessful
reach (S2 Data, S2 Fig), reduced variability when hand aim approaches the optimal solution to
maximize success, and random-walk behaviour in task-irrelevant dimensions. To our knowl-
edge, random-walk behaviour has only been previously associated with error-based learning
[32, 33, 34, 35]. Future work should examine whether random-walk behaviour can be repli-
cated with experiments involving only reinforcement feedback.

The model of Haith and Krakauer (2014) [22] and the recently published model of Therrien
and colleagues (2018) [23] would also be able to reproduce the rich set of behavioural phenom-
ena mentioned in the above paragraph. These two models also rely on movement variability
for exploration and caching a single aim direction that can be updated based on recent feed-
back. The Haith and Krakauer model stems from a Markov chain Monte Carlo (MCMC) algo-
rithm and relies on sampling different motor actions. Actions are drawn from a probability
distribution with a previously cached action acting as the distribution mean. If a recently expe-
rienced action is deemed less costly and or more rewarding than the previously cached action,
this recent action becomes the newly cached action. Although this model was demonstrated
with error-based tasks (i.e., visuomotor rotation and force-field adaptation), it could be
extended to update hand aim using reinforcement feedback. As mentioned above, the work of
Haith and Krakauer (2014) [22] and Pekny et al. (2015) [2] provided the motivation for our
model. This resulted in a similar set of equations as recently proposed by Therrien and col-
leagues (2018) [23], albeit with some slight differences in terms of how the model updates
hand aim. In their model, updating hand aim relies on the assumption that the sensorimotor
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system has perfect knowledge of additional exploratory movement variability following an
unsuccessful reach and partial knowledge of the motor (execution) variability following a
successful reach. Conversely, our model assumes that the same proportion of motor and
exploratory movement variability are known by the sensorimotor system when updating hand
aim. While some studies have explored the idea that the sensorimotor system has some aware-
ness of movement variability [25, 26], to our knowledge no study has explored what propor-
tion of movement variability is known by the sensorimotor system following a successful or
unsuccessful reach. Nevertheless, our present work highlights the utility of this class of models,
which rely on movement variability for exploration and caching a single action, to predict sen-
sorimotor adaptation.

Emergent behaviour and simplicity are perhaps the most attractive features of our learn-
ing model. The model uses movement variability to sample the reinforcement landscape
locally, and temporally recent information to update where to aim the hand. These features
distinguish our model from several mainstream reinforcement algorithms in the motor liter-
ature that rely on building a full representation of the reinforcement landscape [1, 11, 37,
38]. The explicit goal of these algorithms is to maximize reward. For many of these reinforce-
ment learning models, exploration and maximizing reward is accomplished by selecting
actions using a soft-max function that considers the expected value of all possible actions. In
general, such models rely on a large number free parameters and assumptions. Depending
on the task and the discretization of considered actions and states, storing a representation
of the reinforcement landscape in real-world situations could require vast amounts of mem-
ory and may be implausible. In comparison, our model (similarly, [22, 23]) has a small
number of free parameters, makes few assumptions, implicitly maximizes reward, and uses
minimal memory.

Our learning model does well to capture several aspects of behaviour during learning. For
the model to adapt however, there has to be a non-zero gradient within the range of naturally
occurring movement variability. Thus, the model is limited to small areas of the workspace. It
has been shown in previous studies that participants are unaware of a change in aim when
operating over small areas of the workspace [1, 39]. In our task, the average change in behav-
iour was⇠ 7.0 degrees, suggesting that the participants in our experiments were also likely
unaware of the small shifts in reach angle [40]. Learning beyond these small areas of the work-
space would likely also require active (cognitive) exploration strategies [41] and explicit aware-
ness of the reinforcement landscape [17]. Nonetheless, our model did well to capture many
features of sensorimotor adaptation over small areas of the workspace.

Behaviourally, we found that a steeper reinforcement landscape leads to faster learning. We
also found that humans are more likely to ascend the steepest portion of a complex landscape.
Our model was able to replicate our findings without the need to build up a representation of
the reinforcement landscape. Further, several hallmarks of human learning simply emerged
from this model. Taken together, our data and our model suggest that the sensorimotor system
may not rely on building a representation of the reinforcement landscape. Rather, over small
areas of the workspace, sensorimotor adaptation in reinforcement tasks may occur by using
movement variability to locally explore the reinforcement landscape and recent successes to
update where to aim the hand.

Methods

Participants

80 individuals participated in Experiment 1 (20.1 years ± 2.8 SD) and 40 individuals partici-
pated in Experiment 2 (20.5 years ± 2.8 SD). Participants reported they were healthy, right-
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handed and provided informed consent to procedures approved by Western University’s Eth-
ics Board.

Apparatus

In both experiments, participants held the handle of a robotic arm (InMotion2, Interactive
Motion Technologies, Cambridge, MA; Fig 1A) and made right-handed reaching movements
in a horizontal plane. An air-sled supported each participant’s right arm while providing mini-
mal friction with the desk surface during the reaching movements. A semi-silvered mirror
blocked vision of both the participant’s upper-limb and the robotic arm, and projected images
from an LCD screen onto a horizontal plane passing through the participant’s shoulder. An
algorithm controlled the robot’s torque motors and compensated for the dynamical properties
of the robotic arm. The position of the robotic handle was recorded at 600 Hz and the data
were stored for offline analysis.

Protocol

Reaching task for Experiment 1 and 2. Participants were presented with virtual images
of a start position (0.5 cm diameter, blue circle), a target (0.5 cm diameter, blue circle) located
20 cm forward of the start position, and a blue finish line located 2 cm beyond the target (Fig
1A). For each trial, participants began from a start position, passed by or through the target,
and then stopped their reach when the robot handle passed over the finish line that disap-
peared once crossed. After 1 sec, the finish line reappeared and the robotic arm returned the
participant’s hand to the starting position.

Participants performed 450 reaching movements. We instructed them to “hit the target”.
Participants received no feedback during baseline reaches (trials 1 − 50). During the experi-
mental reaches (trials 51 − 400), they received binary reinforcement feedback that was depen-
dent on their assigned reinforcement landscape. We told them that each time they hit the
target: 1) it would expand (5x) in diameter, 2) they would hear a pleasant noise, and 3) that
they could earn monetary reward. Participants were informed that they could earn up to 5.00
CAD based on their performance. We also told participants that if they missed the target, no
feedback would be presented and the robot would return them to the start position after they
passed the finish line. During washout (trials 401 − 450) participants received no feedback.

Reinforcement landscapes

During both experiments, participants were exposed to one of several different reinforcement
landscapes. We manipulated the gradient of the reinforcement landscapes by controlling the
probability of positive reinforcement (reward) as a function of reach angle. These landscapes
were constructed such that participants had to learn to change their reach angle, relative to
baseline performance, to maximize the probability of reward.

The width of the reinforcement landscape experienced by a participant was normalized to
the variability of their baseline reach angles. Reach angle was measured at the position where
the robot handle first became 20 cm away from the center of the starting position, and was cal-
culated relative to the line that intersected the starting position and the displayed target. The
last 25 baseline trials were used to calculate their average baseline reach angle and the standard
deviation of their angular movement variability. All reach angles were converted into z-scores.
Specifically, reach angles were expressed relative to the average baseline reach angle and then
normalized by the participant’s average standard deviation recorded during baseline. Thus, a
z-score of 0.0 corresponded with their average baseline reach angle. A z-score of 1.0 or −1.0
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indicated that a reach angle was ± 1 SD away from their average baseline reach angle in the
clockwise or counterclockwise direction, respectively.

Defining the reinforcement landscape in terms of a z-score served two purposes. First, we
controlled for slight differences in individual aiming bias by positioning all participants on the
same location of the reinforcement landscape during the start of the experimental trials. Sec-
ond, we normalized the width of the reinforcement landscape for each participant based on
baseline movement variability, allowing us to isolate how the reinforcement landscape gradi-
ent influenced learning.

Experiment 1. Here we tested the idea that the gradient (steep or shallow) of a reinforce-
ment landscape influences the rate of learning. As a control, we also manipulated the direction
that the reinforcement landscape increased along (clockwise or counterclockwise). Testing
both directions assured us that changes in behaviour were not caused by systematic drift across
trials. These manipulations resulted in four different reinforcement landscapes: a steep land-
scape increasing in the clockwise direction (Fig 1B), a shallow landscape increasing in the
clockwise direction (Fig 1B), a steep landscape increasing in the counterclockwise direction,
and a shallow landscape increasing in the counterclockwise direction. We predicted that par-
ticipants would have faster learning in the steep condition relative to the shallow condition.
Participants were pseudorandomly assigned to one of the four reinforcement landscapes
(n = 20 participants per condition).

For the four reinforcement landscapes, average baseline behaviour (0.0 z-score) led to a
33.0% probability of receiving positive reinforcement. The probability of reward in the steep

clockwise ÖRÖyÜCWsteepÜ and shallow clockwise ÖRÖyÜCWshallowÜ reinforcement landscapes rose in
the clockwise direction (CW) at a rate of 22.2% per z-score and 11.1% per z-score, respectively.
These two reinforcement landscapes, which define the probability of success given reach angle
[p(r = 1|θ)], can be summarized with
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r = 1 denotes a successful reach. The maximal success rate, mi, was between 3.0 to 6.0 z-score
away from the average baseline reach angle in the clockwise direction. More specifically,
msteep(1.0) and mshallow(2/3) define the maximal success rate of the steep and shallow land-
scapes, and are used to calculate both the landscape slopes and x-intercepts. Along the counter-
clockwise direction, the probability of success decreased linearly until 0.0%. Elsewhere, the
probability of success was 0.0%. θ is expressed as a z-score.

The steep counterclockwise (RÖyÜCCWsteep) and shallow counterclockwise (RÖyÜCCWshallow) rein-
forcement landscapes are mirror images, reflected about the average baseline reach angle (0.0
z-score), of their clockwise counterparts. They are summarized as

RÖyÜCCWi à pÖr à 1jyÜCCWi à

0; y < �6 Ö3aÜ;
mi; �6  y < �3 Ö3bÜ;

1
9
� mi

3

� �
� yá 1

3
; �3  y  3

3�mi�1
Ö3cÜ;

0; y > 3
3�mi�1

Ö3dÜ:

8
>>>>>><

>>>>>>:

Ascending the reinforcement gradient

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006839 March 4, 2019 20 / 27

https://doi.org/10.1371/journal.pcbi.1006839


Experiment 2. Here, we tested the idea that the sensorimotor system is able to use local
gradient information to ascend the steepest slope of a complex reinforcement landscape. To
investigate, participants were initially positioned between two slopes that rose at differing rates
(steep and shallow) and opposite directions (Fig 3A and 3C). We tested two landscapes: 1) a
steep clockwise condition (Fig 3A); where the steeper slope of the reinforcement landscape
rose in the clockwise direction and the shallow slope rose in the counterclockwise direction
and 2) a steep counterclockwise condition (Fig 3C); where the steeper slope of the reinforce-
ment landscape rose in the counterclockwise direction and the shallow slope rose in the
clockwise direction. We predicted that a greater proportion of participants would ascend the
steeper gradient, irrespective of direction (clockwise or counterclockwise). Similar to Experi-
ment 1, we used two directions (steep clockwise or steep counterclockwise) to be assured that
changes in behaviour were not due to systematic drift. Participants were pseudorandomly
assigned to one of these two reinforcement landscapes (n = 20 participants per condition).

The steep clockwise condition (R(θ)StCW) can be summarized with

RÖyÜStCW à pÖr à 1jyÜStCW à

0; y < �6 Ö4aÜ;

2

3
; �6  y < �3 Ö4bÜ;

� 1

9
� yá 1

3
; �3  y < 0 Ö4cÜ;

2

9
� yá 1

3
; 0  y  3 Ö4dÜ;

1; 3 < y  6 Ö4eÜ;

0; y > 6 Ö4f Ü:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

The gradients of the steep and shallow slopes were identical to those described in Experiment
1. The maximal success rate (100.0%) in the clockwise direction occurred between 3.0 to 6.0
z-score, while the maximal success rate (66.7%) in the counterclockwise direction occurred
between −3.0 to −6.0 z-score in the counterclockwise direction. Elsewhere, the probability of
success was 0.0%.

The steep counterclockwise condition (R(θ)StCCW) was the mirror image of the steep clock-
wise condition, reflected about the average baseline reach angle (0.0 z-score). This is summa-
rized by

RÖyÜStCCW à pÖr à 1jyÜStCCW à

0; y < �6 Ö5aÜ;
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Data analysis

We performed data analysis using custom Python 2.7.11 scripts. For all participants in both
Experiments, we recorded their endpoint reach angle for each of the 450 trials. Reach angles
were normalized based on baseline reach behaviour, as described above, and expressed as a z-
score.

Experiment 1. To perform comparisons across groups, we multiplied the normalized
reach angles by −1.0 for all participants experiencing a reinforcement landscape that increased
in the counterclockwise direction [5, 16].

Here we were primarily interested in the rate of learning given the gradient (steep or shal-
low) of the assigned reinforcement landscape. The rate of learning is captured in the λ term of
the following exponential function [42]:

yi à aÖ1� e�i=lÜ; Ö6Ü

where θi is the estimated reach angle (z-score) on the ith experimental trial, e (2.71) is a con-
stant, and a defines the asymptotic reach angle (z-score). We used least squares to fit this equa-
tion to the experimental trials (51 to 400) via bootstrapping. Specifically, we fit an exponential
function for each bootstrap resample, allowing use to estimate the posterior distribution of
each parameter given the data. The bootstrapping technique also allowed for statistical com-
parison to be made between the two groups. We expected participants experiencing a steep
reinforcement landscape to learn faster (i.e., have a significantly lower λ) than those experienc-
ing a shallow landscape.

When inspecting individual data, there seemed to be two distinct subpopulations of partici-
pants: learners and non-learners. For all participants in Experiment 1, we characterized their
asymptotic reaching behaviour by calculating their average reach angle during the last 100
trials of the experimental trials. We found that a final reach angle of 1.0 z-score was an appro-
priate cutoff to separate these two subpopulations (S1 Data, S1 Fig). We then summed the
number of learners and non-learners based on whether they experienced a shallow or steep
reinforcement landscape (Table 1).

Experiment 2. In this experiment, we were interested in the final reach direction after
participants had been initially positioned between a shallow slope and steep slope acting in
opposite directions. We averaged the last 100 experimental trials to calculate each participant’s
asymptotic behaviour. We then classified each participant’s final asymptotic reach behaviour
using the same cutoff used in Experiment 1. Specifically, final reach behaviour was classified
to be counterclockwise (z-score −1.0), center (−1.0 < z-score< +1.0) or clockwise (z-score
� +1.0). Separately for those experiencing a steep clockwise or steep counterclockwise rein-
forcement landscape, we counted the number of participants whose asymptotic reach behav-
iour fell into these classifications.

We predicted that participants would ascend the steeper slope of the complex landscape.
Consequently, we expected significant differences in the final average reach classification
between participants that experienced a steep clockwise or steep counterclockwise reinforce-
ment landscape. As a reminder, final reach position was calculated as the average of the last
100 experimental trials. For all participants in Experiment 2, those who had a final reach posi-
tion corresponding to the direction of the steep slope, shallow slope or a central location were
termed: steep learners, shallow learners and non-learners, respectively.

We also performed an analysis to explore the influence of reinforcement feedback during
the initial periods of the experimental trials. To this end, we calculated how the location (steep
or shallow slope) of their Nth success predicted the likelihood of their final reach classification.
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This analysis provides insight into the influence of both early exploration and gradient infor-
mation on how a complex reinforcement landscape is experienced over the course of learning.

Probability of reward given intended reach aim for Experiment 1 and 2. For all experi-
mental conditions, we calculated the probability of reward given the intended reach aim (Fig
1C; Fig 3B and 3D). Critically, this analysis demonstrates that the experimentally imposed
reinforcement landscapes still lead to different gradients (steep or shallow) when accounting
for normalized movement variability.

The probability of reward, that is the expected utility (E[UΘ(�)]) for the set of possible
actions (Θ), is estimate by solving

EâUYÖ�yaim; s2Üä à
Z

pÖyj�yaim; s2ÜRÖyÜjdy; Ö7Ü

where [R(θ)j] is the experimentally imposed reinforcement landscape and [pÖyj�yaim; s2Ü] is the
probability of some reach angle [19, 43, 44].

Reach angle (θ) was modelled with a Normal distribution [19, 20, 21],

pÖyj�yaim; s2Ü à 1

s
ÅÅÅÅÅÅ
2p
p e�

Öy��yaimÜ2

2s2 ; Ö8Ü

where θaim represents an unbiased aim and σ2 is the overall reach angle variance. σ2 was esti-
mated by considering both motor (execution) variance (s2

m) and exploration variance (s2
e ) [2,

25]. Pekny and colleagues (2015) proposed that the magnitude of exploration variability is
inversely related to the probability of reward, the latter of which we manipulated as a function
of reach angle [p(r = 1|θ)j] according to the assigned reinforcement landscape (j). Thus, by
considering two potential sources of movement variability and the probability of reward, σ2

was approximated by the following equation:

s2 à s2
m á â1� pÖr à 1jyÜjä � s2

e : Ö9Ü

Here, motor (execution) variance is constant from trial-to-trial. The influence of exploration
variance scales inversely with the probability of receiving reward. The values of σm(0.81) and
σe(0.9) were the best-fit parameters of our learning model (Eq 1). Eqs 7–9 were solved numeri-
cally by convolving the reach angle probability distribution over each of the experimentally
imposed reinforcement landscapes [44].

For each reinforcement landscape, the intended reach aim that maximizes the probability

of reward (yaimopt ) corresponds to the intended reach aim that maximizes the expected reward of

Eq 7. This is summarized by

yaimopt à arg max
yaim2Y

fEâUYÖ�yaim; s2Üäg: Ö10Ü

In Experiment 1, the yaimopt for the steep and shallow clockwise reinforcement landscapes were

3.96 z-score and 3.8 z-score, respectively. In Experiment 2, the yaimopt for the steep clockwise

and the steep counterclockwise reinforcement landscapes were 3.96 z-score and −3.96 z-score,
respectively.

Statistical analysis

Tests between means were performed using bootstrapped hypothesis tests with 1, 000, 000
resamples (Python 2.7.11) [5, 45, 46, 47]. Fisher’s exact test was used to test frequency tables
(R 3.2.4). Coefficient of Determination (R2) was used to compare model simulations to
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behavioural data (Python 2.7.11). One-sided tests were used for planned comparisons based
on theory-driven predictions. For all other comparisons we used two-tailed tests. Multiple
comparisons were corrected for Type-I error using the Holm-Bonferroni procedure [48]. Sta-
tistical tests were considered significant at p< 0.05.

Supporting information

S1 Data. Cutoff criterion used to separate learners and non-learners. Cutoff criterion of
final reach direction used to separate learners and non-learners in Experiment 1.
(PDF)

S2 Data. Trial-by-trial analyses. Trial-by-trial analyses that examine: a) behavioural estimates
of motor and exploratory contributions to movement variability, and b) movement variability
as a function of reinforcement history.
(PDF)

S3 Data. Best-fit parameters of the learning model. Finds the best-fit parameters of the
learning model using bootstrapping to minimize squared error.
(PDF)

S4 Data. Influence of initial reward probability on learning rate. Simulations to demon-
strate that the initial reward probability of the shallow landscape has a marginal influence on
learning rate.
(PDF)

S1 Fig. Distribution of final reach direction. The frequency (y-axis) of final reach position
(x-axis) for the 80 participants collected in Experiment 1. We used a z-score cutoff of 1.0
(dashed, vertical black line) to separate the learners (z-score� 1.0) from the non-learners
(z-score < 1.0).
(PDF)

S2 Fig. Movement variability as a function of reinforcement history. Average standard devi-
ation of changes in reach angle between trials n and n + 1 (y-axis) given reinforcement history
(x-axis) for A) the behaviour data of participants in Experiment 1, and B) the learning model
simulations. Base and Wash represent baseline (trials 25-50) and washout (trials 400-450),
respectively. The best-fit parameters (x-axis) and their magnitudes (y-axis) of the variability
state-space model developed by Pekny and Colleagues (2015) as applied to C) the behavioural
data of participants in Experiment 1 and D) the outputs of our learning model. For all sub-
plots, the orange and blue colours represent participants (or model simulations) that experi-
enced the shallow or steep reinforcement landscapes, respectively. Grey represents the average
collapsed across all participants or simulations. Error bars are ±1.0 SE.
(PDF)
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S1 DATA

Cutoff Criterion Used to Separate Learners and Non-Learners

For each experimental group in Experiment 1, there were two distinct subpopulations

of participants: those who changed their reaching direction during the experimental tri-

als and ascended the reinforcement landscape (learners) and those who did not change

their reaching behaviour during the experimental trials (non-learners). For each par-

ticipant, we determined their average reach angle during the last 100 trials of the ex-

perimental trials. Plotting a histogram of participant final positions revealed a bimodal

distribution, representing the two subpopulations of learners and non-learners (see Fig.

S1).

We found that a z-score of 1.0 was a suitable cutoff for separating the learners

from the non-learners. That is, participants whose final reach position had a z-score ≥

1.0 were classified as learners, and those whose final reach position had a z-score < 1.0

were classified as non-learners. Although the non-learners affect the average final reach

angle of their respective groups, they did not bias the time-constant (λ) of the expo-

nential curves. In other words, the non-learners do not affect the time taken to reach

asymptotic behaviour. Crucially, those experiencing a steep or shallow reinforcement

landscape had significantly different learning rates, irrespective of whether non-learners

were (p = 0.021) or were not (p = 0.012) included in the comparison.

Moreover, the same cutoff was used in Experiment 2 to separate steep learners,

shallow learners and non-learners. For both the steep clockwise and steep counter-

clockwise reinforcement landscapes, participants that moved at least 1.0 z-score away

from baseline in the direction of the steep slope were classified as steep learners. Partic-

ipants that moved at least 1.0 z-score away from baseline in the direction of the shallow

slope were classified as shallow learners. Those who stayed within ± 1.0 z-score relative

to baseline behaviour were classified as non-learners.
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S2 DATA

Trial-by-Trial Analyses

A) Behavioural estimates of motor and exploratory contributions to movement variability

There is evidence that movement variability is greater following an unsuccessful action

compared to following a successful action (Izawa and Shadmehr, 2011; Galea et al.,

2013; Pekny et al., 2015). Accordingly, an important aspect of our model was estimat-

ing movement variability following a successful reach and an unsuccessful reach.

As a reminder, our model assumed that the movement variability (σ2
n+1) after a

successful reach (r = 1) was the result of motor execution noise (σm). We also assumed

that movement variability (σ2
n+1) after an unsuccessful action (r = 0) is the result of the

additive effects of motor noise (σm) and exploratory noise (σe). Thus, as shown in Eq. 1

in the manuscript, movement variability can be modelled as

σ2
n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

σ2
m r = 1 (B1a),

σ2
m + σ2

e r = 0 (B1b).

Using the behavioural data from participants in Experiment 1 we estimated (σm) and (σe)

using a trial-by-trial analysis.

Following the work of Pekny and colleagues (2015), we calculated trial-by-trial an-

gular differences (∆θ) by

∆θ = θn+1 − θn (B2).

By iterating Eq. B2 over many trials we were able to build a distribution of ∆θ. From

this distribution one can estimate the variance of ∆θ, that is σ2
∆θ.

It is important to consider, however, that both θn+1 and θn are independent random

processes and their respective variances, σ2
θn+1

and σ2
θn , are additive in determining σ2

∆θ.
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This is summarized by

σ2
∆θ = σ2

θn+1
+ σ2

θn (B3).

As discussed later, the variables in this equation are estimated from a distribution by

repeatedly performing Eq. B2 across many trials. For our model, we wanted to isolate

the movement variability on a single-trial (not the additive variance that results from

subtracting two successive trials). Assuming that σ2
θn+1

and σ2
θn are approximately similar

in magnitude and then following some simple rearranging of Eq. B3, we approximated

single-trial movement variance (σ2
θ ) with

σ2
θ ≈ σ2

∆θ

2
(B4).

As described in further detail below, we then used Eqs. B1-B4 to estimate motor noise

(σm) and exploratory noise (σe).

We used Eqs. B1a, B2-B4 on the last 25 baseline trials to estimate motor noise

(σm). Using baseline trials to estimate motor noise, rather than calculating changes in

reach angle after a successful action, allowed us to eliminate the confound of updated

reach aim on trial n+1 following a rewarded on trial n. That is, we wanted to be assured

that the angular differences were caused bymotor noise alone, and not confoundedwith

changes in reach angle due to an updating of reach aim following a successful action.

We related motor noise and single-trial baseline variance using Eqs. C1a and C4, such

that

σ2
θ ≈ σ2

m (B5).

Using Experiment 1 participants, our experimental estimate of σm was 0.85(0.83, 0.87)

z-score.

To estimate the additive of effects of motor noise (σm) and exploratory noise (σe)

following an unsuccessful trial (see Eq. 1b), we used Eqs. B2-B4 when trials n and n− 1
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were unrewarded. This was done to minimize the differences in magnitude between

σ2
θn+1

and σ2
θn . Using Eqs. B1b and B4, we can then relate single-trial variability following

an unsuccessful trial to the additive effects of both motor and exploratory movement

variability with

σ2
θ ≈ σ2

m + σ2
e (B6).

Using Eqs. B2-B4 we found that the estimate of σ2
θ following unsuccessful trials was

1.31(1.25, 1.37) z-score. Given we had an estimate of both σ2
θ and σm, we rearranged Eq.

B6 to isolate σe. As a result, we estimated σe to have a magnitude of approximately

0.99(0.93, 1.05) z-score.

The experimental estimates of σm(0.85) and σe(0.99) were used as initial guesses

during the bootstrap optimization best-fit procedure (see S3 DATA). Since these esti-

mates are based on the assumptions we list above, we let both σm and σe free to vary

in Step 2 of the bootstrap optimization best-fit procedure. We found that the best-fit

values (and corresponding 95th percentile confidence intervals) of α, σm, and σe were

0.40(0.25, 0.63), 0.9(0.813, 1.02), and 0.81(0.63, 0.97), respectively. Moreover, there was

an overlap of the 95th percentile confidence intervals between the experimental esti-

mates of variance and the corresponding best-fit parameters found from the bootstrap

optimization best-fitting procedure.

B) Trial-by-trial analysis based on reinforcement history

Using methods described by Pekny and colleagues (2015), we examine movement vari-

ability as a function of previous reward history. The first analysis examines the variance

of trial-by-trial changes in reach angle given the reward of the last previous trials. The

second analysis finds the coefficients of a variability state-space model. This model at-

tempts to predict movement variability given the successful (r = 1) and unsuccessful

(r = 0) reaches of the previous three trials.
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For the first analysis, we used Eq. B2 to calculate the trial-by-trial changes in reach

angle for each combination of successful and unsuccessful reaches during the previous

three trials. This resulted in 8 different combinations since we examined the previous

three trials. In addition to experimental trials, we also calculated trial-by-trial changes

in reach angle during baseline and washout. Similar to Pekny and colleagues (2015), we

then calculated the standard deviation of these trial-by-trial changes in reach angle.

For the second analysis, we used the following variability state-space model developed

by Pekny and colleagues (2015):

|∆θ| = α0(1− r(n)) + α1(1− r(n− 1)) + α2(1− r(n− 2)) + ϵ (B7).

Here, the absolute change in reach angle (∆θ) between trials n and n + 1 is a function

of previous unsuccessful reaches. In the equation above, the r(·) terms are set to 1

if the nth reach is successful and set to 0 if the nth reach is unsuccessful. Each αj co-

efficients dictate the amount of additional movement variability on trial n + 1 given a

corresponding unsuccessful reach during one of the previous three trials. ϵ represents

the unexplained variance due to unsuccessful reaches. It has been interpreted as the

amount of movement variability due to motor noise (Pekny et al., 2015).

We performed both of these analyses on the behavioural data of Experiment 1. We

also performed these analyses on the output of our learning model. Using our model,

we simulated 10, 000 ’individuals’ experiencing the shallow reinforcement landscape and

another 10, 000 ’individuals’ experiencing the steep reinforcement landscape.

Since we did not did not expect differences between conditions, we initially ana-

lyzed participants’ data irrespective of the experienced reinforcement landscape. For

qualitative comparison, we then performed the same analysis after partitioning partici-

pants according to whether they experienced either the steep or shallow reinforcement

landscape. The same procedure was performedwhen analyzing the outputs of our learn-
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ing model. To compare to our results, we encourage the reader to examine Fig. 5 in

the paper by Pekny and colleagues (2015).

The variance of trial-by-trial changes in reach angle as a function of previous rein-

forcement history is displayed in S2 Figure. Our behavioural results (S2,A Figure) are

quite similar to those reported by Pekny and collleagues (2015; see Fig. 5A). Specifi-

cally, we also found that the variance of trial-by-trial changes in reach angle was lower

following a successful trial than an unsuccessful trial. Unexpectedly, we also observed

a qualitative difference between participants experiencing the steep and shallow rein-

forcement landscapes. However, as mentioned by Dhawale and colleagues (2017) and

expanded upon below, using the variance of trial-by-trial changes in reach angle may

not be well suited in truly capturing a reward-prediction error.

The results of performing the trial-by-trial difference analysis on the outputs of

our learning model are displayed in S2,B Figure. In terms of shape, the patterns are

surprisingly similar to the empirical results of both our work (S2,A Figure) and Pekny

and colleagues (2015). This was unexpected given that our learning model considers

only the reinforcement state of the previous trial when modulating movement variabil-

ity. That is, given the formulation of our model we did not expect reinforcement two

or three trials back to have an impact on movement variability on a current trial. How-

ever, as suggested by Dhawale et al., 2017, there are potential confounds when trying

to relate the variance of trial-by-trial changes in reach angle to previous reinforcement

history. Some potential factors beyond reinforcement history that may influence the

variance of trial-by-trial changes in reach angle are: a) updates in reach aim, b) indepen-

dent noise between trials, or c) the propagation of dependent noise across successive

trial (van Beers et al., 2013, Chaisanguanthum et al., 2014). As highlighted by the anal-

ysis of trial-by-trial changes in reach angle on our model outputs, it is difficult to solely

attribute changes in movement variability with previous reinforcement history.
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The learning model did well to mimic the average variance of trial-by-trial changes

in reach angle given reinforcement history. However, it did not seem to capture ap-

parent differences between participants experiencing a steep reinforcement landscape

and those experiencing a shallow reinforcement landscape. It is possible that these

apparent differences are due to a reward prediction error. However, this is difficult to

determine given the aforementioned limitations when examining the variance of trial-

by-trial changes in reach angle given recent reinforcement history.

We also examined the parameters (αj and ϵ) of a variability state-space model

(Pekny et al., 2015) that were fit to our Experiment 1 data (S2,C Figure) and to the

outputs of our learning model when simulating Experiment 1 (S2,D Figure). We found

that the best-fit parameters of the variability state-space model were strikingly similar

between our behavioural data and the outputs of our learning model. Moreover, they

were also quite similar to the findings of Pekny and colleagues (2015; see Fig. 5B). The

interpretation of these results mirrors that of the trial-by-trial analysis above. Moreover,

the same potential confounds that may influence the ability to relate the variance of

trial-by-trial changes in reach angle to reinforcement history would also apply to this

variability state-space model.

Despite the potential limitations of relating trial-by-trial changes in reach angle to

reinforcement history, the reported results above highlight that our model did well to

capture the average variance of trial-by-trial changes in reach angle. Moreover, these

results demonstrated that we made reasonable estimates of motor (σm) and exploratory

(σe) contributions to movement variability.
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S3 DATA

Best-fit Parameters of the Learning model

The reinforcement-based state-space model has three free parameters: α, σm, and σe.

To find the best-fit parameters and their corresponding confidence intervals, we per-

formed a bootstrap optimization fitting procedure. Fitting was done using a two-step

process. For all optimizations, we used a Nelder-Mead optimization routine contained

in the SciPy module (optimize, minimization) in Python.

Step 1: Finding Initial Guesses with Behavioural Estimates and ‘Warm-start’ Optimization

We used a ‘warm-start’ bootstrap optimization procedure to find an initial guess of α,

where σm and σe were held as constants (0.85 and 0.99, respectively). Estimates of σm

and σe were found using a trial-by-trial analysis (see S2 DATA).

For each bootstrap (N = 1000), we resampled with replacement separately for

participants experiencing a steep landscape and participants experiencing a shallow

landscape. For each group, we averaged across participants to find the mean reach an-

gle of each trial. Then we fit an exponential function (Eq. 6) to these two experimental

groups. Consequently, we obtained a time-constant that defines the rate of learning

for participants experiencing the steep reinforcement landscape (λbehaviour
steep ) and a time-

constant for participants experiencing the shallow reinforcement landscape (λbehaviour
shallow ).

For each exponential function, we also found the best-fit term that defines the asymp-

totic reach angle (a).

Simultaneously, with our learning model (Eq. 1) we simulated 2000 ’individuals’

experiencing the steep reinforcement landscape and another 2000 ’individuals’ expe-

riencing the shallow reinforcement landscape. Like the behavioural data, we averaged

across simulated individuals to obtain the mean reach angle for each trial. We then fit an

exponential function to the simulated individuals that experienced the steep reinforce-

ment landscape and the simulated individuals that experienced a shallow reinforcement
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landscape. This yielded a time-constant that defines the rate of learning for simulated

individuals experiencing the steep reinforcement landscape (λmodel
steep ) and a time-constant

for simulated individuals experiencing the shallow reinforcement landscape (λmodel
shallow).

We also found the best-fit term that defines the asymptotic reach angle (a) for each ex-

ponential function.

For each bootstrap (i), we then found the best-fit αi by minimizing error between

the behavioural time-constants and model time-constants according to following equa-

tion:

αi = argmin
α

{|(λbehaviour
steep − λmodel

steep )|2 + |(λbehaviour
shallow − λmodel

shallow)|2} (C1).

This process produces a single best-fit αi per bootstrap.

Repeating this process 1000 times yields a distribution of αi. We then took the

mean of this distribution to find a single α, which was then used as the initial guess for

the best-fit optimization procedure described below.

Step 2: Finding the Best-fit parameters and their 95th percentile confidence intervals

The procedure for finding the best-fit parameters was the same as described above,

except that all three parameters (α, σm, σe) of the model were free to vary:

αopti , σopti
m , σopti

e = argmin
α,σm,σe

{|(λbehaviour
steep − λmodel

steep )|2 + |(λbehaviour
shallow − λmodel

shallow)|2} (C2).

From each of the resulting parameter distributions, we used the mean as the best-

fit value for each parameter. Further, an advantage of this bootstrap optimization pro-

cedure is that confidence intervals can be found from these parameter distributions. The

best-fit values (and corresponding 95th percentile confidence intervals) of α, σm, and σe

were 0.40(0.25, 0.63), 0.9(0.813, 1.02), and 0.81(0.63, 0.97), respectively.
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S4 DATA

Influence of Initial Reward Probability on Learning Rate

Here we performed a simulation with our learning model (n = 100, 000) to explore the

influence of initial reward probability on the rate of learning. Specifically, we examined

the learning rate when experiencing a shallow landscape with an initial reward probabil-

ity (z-score = 0) set to 33.3% (Fig. 1B) or 66.7%. Shifting the initial reward probability up

to 66.7% resulted in a maximal reward probability of 100.0%. We found that changing

the initial reward probability from 33.3% to 66.7% resulted in a marginally slower learn-

ing rate (i.e., λ changed from 49.6 to 55.9). These marginal learning rate changes can

be attributed to a slightly lower frequency of additional exploratory variability. Never-

theless, our simulations find that a steep landscape results in faster learning (λ = 28.0;

see Results) compared to a shallow landscape, irrespective of the latter’s initial reward

probability.
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