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Cashaback JG, McGregor HR, Pun HC, Buckingham G,
Gribble PL. Does the sensorimotor system minimize prediction error
or select the most likely prediction during object lifting? J Neuro-
physiol 117: 260–274, 2017. First published October 19, 2016;
doi:10.1152/jn.00609.2016.—The human sensorimotor system is rou-
tinely capable of making accurate predictions about an object’s
weight, which allows for energetically efficient lifts and prevents
objects from being dropped. Often, however, poor predictions arise
when the weight of an object can vary and sensory cues about object
weight are sparse (e.g., picking up an opaque water bottle). The
question arises, what strategies does the sensorimotor system use to
make weight predictions when one is dealing with an object whose
weight may vary? For example, does the sensorimotor system use a
strategy that minimizes prediction error (minimal squared error) or
one that selects the weight that is most likely to be correct (maximum
a posteriori)? In this study we dissociated the predictions of these two
strategies by having participants lift an object whose weight varied
according to a skewed probability distribution. We found, using a
small range of weight uncertainty, that four indexes of sensorimotor
prediction (grip force rate, grip force, load force rate, and load force)
were consistent with a feedforward strategy that minimizes the square
of prediction errors. These findings match research in the visuomotor
system, suggesting parallels in underlying processes. We interpret our
findings within a Bayesian framework and discuss the potential
benefits of using a minimal squared error strategy.

NEW & NOTEWORTHY Using a novel experimental model of
object lifting, we tested whether the sensorimotor system models the
weight of objects by minimizing lifting errors or by selecting the
statistically most likely weight. We found that the sensorimotor
system minimizes the square of prediction errors for object lifting.
This parallels the results of studies that investigated visually guided
reaching, suggesting an overlap in the underlying mechanisms be-
tween tasks that involve different sensory systems.

object lifting; fingertip force; feedforward control; prediction; Bayesian

HUMANS ARE REMARKABLY ADEPT at lifting and manipulating the
hundreds of objects they interact with on a daily basis. To do
so, they rely on relatively accurate predictions of an object’s
weight (Flanagan et al. 2006; Johansson and Flanagan 2009;

Johansson and Westling 1988; Wolpert and Flanagan 2001).
Prior knowledge from handling similar objects is integrated
with sensory information about object size (Gordon et al.
1991a, 1991b, 1991c), material (Buckingham et al. 2009,
2010), shape (Jenmalm and Johansson 1997), and density
(Grandy and Westwood 2006; Peters et al. 2016) to make a
feedforward prediction of object weight (Brayanov and Smith
2010; Buckingham and Goodale 2010; Hermsdorfer et al.
2011). Often, however, feedforward prediction errors can arise
from having imperfect prior knowledge (e.g., environmental
uncertainty) and also from misleading or sparse current infor-
mation about an object’s weight (Brayanov and Smith 2010;
Buckingham and Goodale 2010; Buckingham et al. 2011).

When lifting an object of constant weight, humans can
quickly reduce prediction errors within two to three lifts
(Johansson and Westling 1984). However, humans often op-
erate in highly uncertain environments, making it impossible to
make an accurate feedforward prediction on every lift. For
example, a baggage handler at an airport must grasp and lift
luggage for which the contents are not visible. If the baggage
handler underestimates the true weight of the luggage, it will
not leave the ground or, if lifted, may slip from their grasp.
Conversely, if weight is overestimated, the luggage will accel-
erate at a much faster rate than predicted and will be gripped
too tightly, both of which are energetically inefficient. Thus,
given a lack of useful visual cues, the baggage handler must
rely heavily on prior knowledge of the uncertainty associated
with luggage weight. This will allow him or her to apply
relatively appropriate lift and grip forces to efficiently move
the luggage. In the presence of such environmental uncertainty,
what strategy does the sensorimotor system employ to make a
feedforward prediction? Two viable strategies to deal with
environmental uncertainty are 1) to minimize the squared error
of potential feedforward predictions (Körding and Wolpert
2004b) or 2) to select the feedforward prediction that is most
likely to be correct (Peters et al. 2016).

Briefly, a minimal squared error strategy applies a quadratic
penalization for linear increases in error magnitude. A feed-
forward prediction that minimizes squared error can be accom-
plished in many ways. For example, a minimal squared error
strategy can be achieved by averaging somatosensory informa-
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tion from a single (Johansson and Westling 1984) or several
(Hadjiosif and Smith 2015; Landy et al. 2012; Scheidt et al.
2001; Takahashi et al. 2001) previous lift(s) to predict the
weight of a subsequent lift. A minimal squared error strategy
can also be achieved using a Bayesian framework (Körding
and Wolpert 2004b; Zhang et al. 2015). Here the nervous
system would have to build a representation of environmental
uncertainty based on the somatosensory information gained
from many previous lifts (Körding and Wolpert 2004a). The
attractiveness of the Bayesian framework is that it can account
for many more behavioral features than a model based on
simply averaging previous trials (Acerbi et al. 2014), such as
reduced variability with practice (Körding and Wolpert 2004a)
and explaining perceptual illusions (Peters et al. 2016). Fur-
thermore, in this framework, environmental uncertainty can be
integrated with available sensory information (e.g., object size,
material, shape, density, and other cues) to assign a probability
to each possible weight that an object may have (Peters et al.,
2016). Ultimately, however, the sensorimotor system must
select a single weight, or “point estimate,” when forming a
feedforward response to attempt to lift an object. One such
point estimate corresponds to that generated by a minimal
squared error strategy. Although minimizing squared error
does well to explain many patterns of behavior (Körding and
Wolpert 2004b; Scheidt et al. 2001; Zhang et al. 2015), there
are examples in the literature that suggest a departure from this
strategy.

Instances in which the sensorimotor system departs from a
minimal squared error strategy may occur when the controller
attempts to predict the most likely occurrence. Again using a
Bayesian framework, the point estimate that predicts the most
likely occurrence is termed the maximum a posteriori estimate.
As proposed by Wolpert (2007), there are likely many tasks in
which the sensorimotor system may use a maximum a poste-
riori strategy, such as when maximizing externally provided
reward (Trommerhäuser et al. 2003). Mawase and Karniel
(2010) provide evidence supporting the idea that the sensori-
motor system may attempt to correctly predict the most likely
weight of an object. The authors found that when participants
experienced a sequential increase in object weight in a series of
trials, they unconsciously and reliably predicted a heavier
object weight on subsequent lifts. This predictive behavior
cannot be obtained with the use of a model of object weight
that relies on a minimal squared error estimate but is consistent
with a feedforward controller that predicts the weight of an
object using a maximum a posteriori estimate (Karniel 2011;
Mawase and Karniel 2010).

A challenge in attempting to determine whether a controller
is using a minimal squared error or a maximum a posteriori
strategy is that the optimal solutions of these two strategies
often coincide. A feedforward controller using a minimal
squared error strategy would, over many trials, converge on a
prediction of object weight based on the statistical mean of the
environment uncertainty. A controller that uses a maximum a
posteriori strategy would base its prediction on the statistical
mode of the environment uncertainty. In many experimental
designs, the stimuli, such as visual displacement or object
weight, are held constant or vary according to a symmetrical
(e.g., Gaussian, bimodal, or uniform) probability distribution.
With constant (Gordan et al. 1993a) or Gaussian stimuli
(Körding et al. 2004; Körding and Wolpert 2004a; Hadjiosif

and Smith 2015), the mean and mode are identical, making it
impossible to distinguish whether the feedforward controller is
using a minimal squared error or maximum a posteriori strat-
egy. Furthermore, another issue arises when stimuli are varied
with the use of uniform (Berg et al. 2016) or bimodal proba-
bility distributions (Körding and Wolpert 2004a; Scheidt et al.,
2001) that have an ill-defined mode. However, skewed prob-
ability distributions can be used to separate a well-defined
mean and mode (Körding and Wolpert 2004b).

To our knowledge, no one has varied object weight in a lifting
task using a skewed distribution. By varying an object’s weight
according to a skewed probability distribution in which the mean
and mode are distinct, we were able to dissociate the minimal
squared error and maximum a posteriori point estimates. This
dissociation allowed us to test whether the sensorimotor system
uses a minimal squared error or maximum a posteriori strategy to
make feedforward predictions of object weight.

METHODS

Participants. Ninety healthy participants [mean age: 20.3 yr (SD
2.7 yr)] participated in this experiment. Participants reported they
were right-handed, free of neuromuscular disease, and had normal or
corrected vision. Each participant was paid $10.00 (Canadian) and
provided informed consent to procedures approved by Western Uni-
versity’s Ethics Board.

Apparatus. A pair of six degree-of-freedom force transducers (F/T
model Nano17; ATI Industrial Automation, Raleigh, NC) recorded
forces and moments acting on three orthogonal axes. A digital
computer with an analog-to-digital board (16-bit; model NI PCI-
6033E; National Instruments, Austin, TX) sampled force transducer
data at 770 Hz. The transducers were mounted to the top of a wooden
platform that covered a hole in a table (Fig. 1, A and B). A metal cable
attached to the bottom of the wooden platform was positioned under
the centroid of the force transducer. This cable passed vertically (in
line with the gravity vector) through a hole in the table, passed under
the table through two pulleys, and was attached to a removable
container that held lead shot. Thus the additive weight of the force
transducers, wooden platform, metal cable, container, and lead shot
determined the total weight of the object to be lifted. Different
amounts of lead shot were placed in each container to produce nine
different object weights. The nine weights had an ordered, incremen-
tal difference of 0.1 kg and ranged from 0.4 to 1.2 kg. Participants
were seated such that the object to lift was directly in front of them.
A plastic block (height: 10 cm) was placed in front of participants,
behind the object, and was used to specify the instructed lift height.

Protocol. Participants were pseudorandomly assigned to one of six
groups (n � 15 per group). Participants in all groups performed object
lifting. The weight of the object was selected from a discrete proba-
bility distribution. Three of these probability distributions produced
varying weights, and the other three produced a constant weight (Fig.
2). Each group of participants was assigned one of the following six
probability distributions: 1) skewed heavy mode, 2) symmetrical, 3)
skewed light mode, 4) constant heavy, 5) constant mean, and 6)
constant light. See Table 1 for complete statistics of these probability
distributions.

Participants were instructed to use the beat of a metronome (40
beats/min) to time transitions between different phases of each lift.
Pilot testing showed that this metronome frequency produced consis-
tent and relatively quick lifts, allowing us to capture a feedforward
response. Four successive metronome beats signified the following
(Fig. 1C): beat 1, a warning noise that the trial was starting; beat 2,
grip and lift the object in one motion; beat 3, the object should reach
and then be held at the height of the plastic block (10 cm); and beat
4, lower and then release the object.
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To practice lifting according to the beat of the metronome, partic-
ipants performed 10 training lifts with the weight of the object
selected from their respective distribution (bin 1). After practicing,
participants performed the main experiment. Participants made 21 lifts
with object weight selected from their assigned probability distribu-
tion without replacement. That is, they lifted all of the weights in a
given distribution until it was depleted. This process was performed
nine times (bins 2–10) for a total of 189 lifts. By selecting object
weight from a distribution without replacement, we were able to avoid
random clustering of certain weights while ensuring that the statistical
properties of any given probability distribution were preserved in each
experimental bin.

We made sure that participants in the varying probability distribu-
tion groups (skewed heavy mode, skewed light mode, and symmet-
rical) had no knowledge of the weight they were about to lift by 1)
hiding the attached and unattached containers from our participants’
field of view, and 2) when successive lifts had the same weight, we
would remove the attached container, place it on the ground, and then
reattach the same container.

As mentioned above, participants in three of the groups repeatedly
lifted an object with a constant weight of 0.6, 0.8, or 1.0 kg. These
weights were chosen to match important statistics, the mean and
mode, of the three skewed probability distributions. More specifically,
the weight of the constant heavy probability distribution (1.0 kg)
matched the modal weight of the skewed heavy mode probability
distribution, the weight of the constant mean probability distribution
(0.8 kg) matched the mean weight of the skewed heavy mode and the
skewed light mode probability distributions, and the weight of the
constant light probability distribution (0.6 kg) matched the modal
weight of the skewed heavy mode probability distribution.

The inclusion of constant weight groups served two purposes. First,
it allowed us to directly compare the sensorimotor system’s feedfor-
ward response when participants lifted an object of varying weight
relative to when they lifted an object of constant weight. That is, we
were able to test whether feedforward responses in the context of
skewed weight distributions would match those observed for constant
weight distributions, where the constant weights were aligned with the

mean or mode of the skewed probability distributions. Second, it
allowed us to determine whether the dependent measures commonly
used as indexes of a feedforward prediction during object lifting
studies were sensitive enough to detect the weight difference between
the mean and mode (�0.2 kg) of the skewed probability distributions
weights. In this study, we used four dependent measures as indexes of
the sensorimotor system’s feedforward prediction. These dependent
measures were grip force rate, grip force, load force rate, and load
force, which were all taken at the time point that corresponded to the
peak load force rate. This time point occurred before object liftoff.

The symmetrical group acted as a control to test whether load force
variance alone influences the feedforward response of the sensorimo-
tor system. Participants in this group lifted an object whose weight
was selected from a symmetrical probability distribution (i.e., mean,
median, and mode were identical). This symmetrical probability
distribution had very similar load force variance and identical com-
plexity (discrete entropy) to the skewed light mode and skewed heavy
mode probability distributions.

The skewed light mode and skewed heavy mode probability dis-
tributions had the same mean and variance, but opposite skew. As
such, the mode of the skewed light mode distribution and skewed
heavy mode distribution were on opposite sides of the mean at 0.6 and
1.0 kg, respectively. We designed these skewed distributions such that
the mode had a much higher relative frequency (42.8%) than the other
six weights (9.5%). This difference in frequency increased the possi-
bility that the sensorimotor system would be able to distinguish the
modal weight from the other weights. Critically, the separation of the
mean and mode in both of the skewed probability distributions
allowed us to test whether the sensorimotor system uses a minimal
squared error strategy (mean) or a maximum a posteriori strategy
(mode).

In the context of a Bayesian framework, the predictions of minimal
squared error and maximum a posteriori strategies are found by taking
a point estimate (i.e., the mean and mode, respectively) from a
posterior distribution. In this study, we have manipulated the prior
probability distribution by imposing environmental uncertainty via the
object weight distributions described above. During the time course of

Fig. 1. Experimental apparatus and protocol. A: participants used a pinch grip when grasping the transducers. Grip forces were perpendicular to the contact
surfaces of the transducers. Load forces acted vertically and were parallel with the contact surfaces of the transducers. B: the force transducers were mounted
to the top of a wood platform that covered a hole in the table. A cable was attached to the wood platform, passed through 2 pulleys, and held up a container
holding lead shot. There were a total of 9 possible containers that participants could lift. Each container was filled with different amounts of lead shot (0.1-kg
increments), such that the total object weight varied from 0.4 to 1.2 kg. C: the beginning of the trial was signaled by a warning noise timed to a metronome beat
(40 beats/min). On the second beat, participants were instructed to grip and lift the object in a single motion. At the time of the following beat, the participant
was to lift the object to the height of a block (10 cm). They held the object there until the fourth and final beat, at which time they would lower and then release
the object. For each new trial, the experimenter would attach a container that was selected according to the participant’s assigned probability distribution.
Participants were pseudorandomly assigned to 1 of the 6 probability distributions.
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any given lift, participants obtain current somatosensory information
of an object’s weight. This current information (i.e., likelihood func-
tion) is then integrated with previously acquired somatosensory in-
formation (i.e., prior probability distribution) from past lifts. A point-
wise multiplication of the prior probability distribution with the
likelihood function results in a posterior probability distribution.
Thus, at the start of a subsequent lift, a feedforward controller could
draw on this posterior (which is now the new prior) to select a set of
motor commands. A minimal squared error feedforward strategy
would select a set of motor commands that aligns with the mean of the
posterior (i.e., the average weight of the imposed weight distribution).

In contrast, a maximum a posteriori strategy would select a set of
motor commands that aligns with the model weight (i.e., the most
frequent weight) of the posterior.

There were a total of eight a priori comparisons per dependent
measure (32 comparisons in total) that could be made to assess
whether the sensorimotor system uses a minimal squared error strat-
egy or a maximum a posteriori strategy. For a visual representation of
all predictions made by each strategy, refer to Fig. 3. As an example,
if the feedforward controller were using a minimal squared error
strategy (Fig. 3A), we would expect grip force rate, grip force, load
force rate, and load force to be the same between the skewed heavy

Fig. 2. Discrete probability distributions that describe the different object weights to be lifted (x-axis) and the frequency count of a particular weight (y-axis).
Participants were assigned one of the displayed distributions. There were 3 probability distributions that resulted in a constant weight [constant heavy (A),
constant mean (B), and constant light (C)] and 3 probability distributions that resulted in a varying weight [skewed heavy mode (D), symmetrical (E), and skewed
light mode (F)]. Each distribution had a total frequency count of 21 weights, matching the number of lifts per bin of trials. On each trial, object weight was
randomly drawn from a distribution until its depletion. This process was performed 9 times (bins 2–10) for a total of 189 experimental lifts (bin 1 was a set of
10 practice trials). For each distribution, the thin solid line, thin dashed line, and thin dotted line correspond to its mean, median, and mode, respectively. The
constant light distribution had a weight of 0.6 kg that was aligned to the mode of the skewed light mode. The constant mean had a weight of 0.8 kg that was
aligned to the mean of the skewed light mode, symmetrical, and skewed heavy mode probability distributions. The constant heavy had a weight of 1.0 kg that
was aligned to the mode of the skewed heavy mode. The symmetrical distribution had variance, no skew (mean, median, and mode identical), and acted as a
control to see if load force variance alone influenced feedforward predictions. Both the skewed light mode and skewed heavy mode had their mean and mode
separated (by 0.2 kg), allowing us to investigate whether the sensorimotor feedforward system attempts to minimize the square of prediction errors (feedforward
response aligned with the mean weight of a distribution) or attempts to select the most likely weight (feedforward response aligned with the modal weight of
a distribution). Participants were pseudorandomly assigned to 1 of the 6 probability distributions.

Table 1. Descriptive statistics of the 6 probability distributions that dictated the trial-by-trial weight of the object to be lifted

Probability Distribution

Probability Distribution Statistics

Mean, kg Mode, kg Median, kg Range, kg SD, kg Skew, kg Discrete entropy, bits

Constant heavy 1.0 1.0 1.0 [1.0] 0.0 0.0 0.0
Constant mean 0.8 0.8 0.8 [0.8] 0.0 0.0 0.0
Constant light 0.6 0.6 0.6 [0.6] 0.0 0.0 0.0
Skewed heavy mode 0.8 1.0 0.9 [0.4,1.0] 0.22 �0.6 1.7
Symmetrical 0.8 0.8 0.8 [0.5,1.1] 0.16 0.0 1.7
Skewed light mode 0.8 0.6 0.7 [0.6,1.2] 0.22 0.6 1.7
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mode group and the constant mean group. Contrastingly, if the
feedforward controller were attempting to use a maximum a posteriori
strategy (Fig. 3B), we would expect the skewed heavy mode and the
constant mean groups to have a significantly different grip force rate,
grip force, load force rate, and load force.

Data reduction and analysis. Raw force and moment signals were
smoothed using a dual low-pass, second-order, 14-Hz cutoff (Buck-
ingham and Goodale 2010; Flanagan et al. 2003) critically damped
filter (Robertson and Dowling 2003). Grip force (N) was calculated by
averaging the normal forces recorded from the two force transducers
(Flanagan et al. 2003; Fig. 1A). Load force (N) was calculated by
summing the vertical forces recorded from the two force transducers.
Grip force rate (N/s) and load force rate (N/s) are the time derivatives
of grip force and load force, respectively, and were calculated using
fourth-order central difference method. Grip force rate, grip force,
load force rate, and load force before object liftoff often serve as an
index of the sensorimotor system’s feedforward prediction of object
weight (Buckingham and Goodale 2010; Flanagan and Beltzner
2000).

To capture only a feedforward response, we analyzed grip force
rate, grip force, load force rate, and load force at the time point that
corresponded to peak load force rate (Baugh et al. 2012; Flanagan and
Beltzner 2000; Flanagan et al. 2008; Johansson and Westling, 1988).
In the last bin of trials, for each participant and trial we estimated
object liftoff from the load force traces recorded by the force trans-
ducers. Specifically, for each trial we found the point in time where
the load force magnitude had just exceeded the current weight of the
object. Furthermore, we inspected the data to be assured that the four
dependent measures were representative of a feedforward response
and were taken before any online feedback corrections.

Error analysis. An error analysis was performed to assess whether the
behavioral data were better explained by a minimal squared error strategy
or a maximum a posteriori strategy. The main advantage of this approach
is that it considers all of the experimental data of a particular measure,
allowing for a single comparison to be made between the two strategies.
To do this, we used a bootstrap procedure that allowed us to simultane-
ously contrast several groups to one another.

Briefly, for each group, this bootstrap procedure involved the random
resampling without replacement (n resamples � group size) of a recorded
measure (i.e., grip force, grip force rate, load force, or load force rate),
taking the average of each group’s resampled data and from these
averages summing the absolute error (i.e., difference) between several
key groups. The predictions of each strategy dictated which groups were
contrasted to one another. This process was repeated a total of 10,000
times and performed for each strategy. If a particular strategy has
significantly less absolute error than a competing strategy, this indicates
it better explains the behavioral data.

Here, we provide a brief example of a group contrast made during the
bootstrap procedure. The maximum a posteriori strategy predicts that the
skewed light mode group would have the same grip force, grip force rate,
load force, and load force rate as the constant light group. Therefore, if a
maximum a posteriori strategy were dictating the feedforward response,
we would expect a small amount of absolute error between these groups.
However, instead of considering just one individual prediction like the
example above, this error analysis simultaneously considers several of the
a priori predictions depicted in Fig. 3. For complete details of this error
analysis, refer to the Appendix.

Statistical analysis. Our research question was focused on the stable
behavior of the feedforward controller, after learning had occurred,
during an object-lifting task. That is, we were interested in the state of the
feedforward controller after it had reached some stable pattern of behav-
ior in response to the imposed environmental uncertainty. As such, we
performed statistical analyses on bin 10 (the last bin of the main
experimental trials). We performed four separate one-way analyses of
variance (ANOVA) on the four dependent measures of grip force rate,
grip force, load force rate, and load force. In these four ANOVA, the
independent variable was group (skewed light mode, skewed heavy
mode, symmetrical, constant light, constant mean, and constant heavy).

All post hoc pairwise comparisons and error analysis compari-
sons (4 in total) were computed using a nonparametric bootstrap
hypothesis test (resamples � 1,000,000; Good 2005; Gribble and
Scott 2002). This test provides a more reliable P-value estimate
than traditional parametric tests (e.g., t-tests). Briefly, they make
no parametric assumptions (e.g., normality), are less biased by

Fig. 3. Predictions of feedforward controller that uses a minimal squared error strategy (A) or maximum a posteriori strategy (B). These predictions apply to the
4 dependent measures grip force rate, grip force, load force rate, and load force, which we used to characterize the feedforward response of the
sensorimotor system. The text at the top left of each panel summarizes the expected outcome of group mean comparisons for a minimal squared error
strategy (A; light blue text) and a maximum a posteriori strategy (B; dark blue text). Black text (i.e., S � CM) indicates an identical prediction between
the 2 strategies. The operators �, �, and � indicate whether we expect the dependent measures of a group to be equal to, significantly less than, or
significantly greater than another group, respectively.
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samples with unequal sample size or unequal variance, and are
better suited to analyze heteroscedastic data that are present in
several commonly recorded biological measures (e.g., neural ac-
tivity, electromyography, and force production) due to sensorimo-
tor noise (Cashaback et al. 2014; Faisal et al. 2008; Gribble and
Scott 2002). Holm-Bonferroni corrections were used to correct for
inflated type I error due to multiple comparisons (Holm 1979).
Reported P values are Holm-Bonferroni adjusted. The effect size
for each main effect was calculated using partial eta squared (�p

2).
Statistical significance was set to P � 0.05.

RESULTS

Individual data. Figure 4 shows the average traces of grip
force rate, grip force, load force rate, and load force trial
traces, taken from the last bin of trials, of a participant from
the constant light group and another participant from the
skewed light mode group. For all dependent measures, both
participants had similarly shaped force and force rate traces
that differed only in magnitude before object lift off. Based
on the load force traces, the average object liftoff time

Fig. 4. Individual participant traces, averaged across the last bin of trials, of grip force rate (A; N/s), grip force (B; N), load force rate (C; N/s), and load force
(D; N) from a participant in the constant light group and a participant in the skewed light mode group. For all measures, individual trial traces were aligned to
peak load force rate. Dashed vertical lines represent the time of peak load force rate, which intercepts the x-axis at 0.0 s. Both participants had consistently shaped
force and force rate traces before object liftoff, which on average occurred at 0.134 � 0.036 s, differing only in magnitude. By recording all 4 measures at the peak load
force rate (0.0 s) before object liftoff, we were able to capture each participant’s feedforward response. Beyond object liftoff, the increased trace variability of
the skewed light mode participant reflects feedback modulation in response to lifting weights that varied on a trial-to-trial basis. Contrastingly, the constant light
participant showed more consistent traces throughout the entire trial, indicating that their feedforward response was well matched to the force requirements of
the constant weight they repeatedly lifted throughout the experiment. Shaded regions represent �SD.
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across participants occurred at 0.134 (�0.036 SD) s after
peak load force rate (Figs. 4D and 5D). After liftoff, the
displayed participant in the constant light group maintained
relatively consistent traces for all dependent measures, in-
dicating that this participant’s feedforward response was
well aligned to the force requirements of the constant weight
the participant repeatedly lifted during the experiment. In
contrast, for all measures, the displayed skewed light mode
participant had a large amount of variability beyond object
liftoff in response to experiencing weights that varied on a

trial-to-trial basis. This reflects a shift from feedforward to feed-
back control that, importantly, occurred well after our recorded
dependent measures of the feedforward response. These patterns
of behavior were consistent across participants.

Group data. Figure 5 shows the average traces of each
group, from their last bin of trials, of grip force rate, grip force,
load force rate, and load force. For all measures, these traces
are similar in terms of shape, but not necessarily magnitude, for
participants experiencing either a constant or varying object
weight on a trial-to-trial basis.

Fig. 5. Average group traces, using the last bin of trials, of grip force rate (A; N/s), grip force (B; N), load force rate (C; N/s), and load force (D; N). For all
measures, individual trial traces were aligned to peak load force rate. Dashed vertical lines represent the time of peak load force rate, which intercepts the x-axis
at 0.0 s. The shape, but not necessarily the magnitude, of all 4 measures was quite consistent across groups. For all 4 measures that were recorded at the dashed
line, representing an index of the feedforward response, there were no significant differences between the groups whose participants lifted varying weights
(skewed heavy mode, symmetrical, and skewed light mode) and the constant mean group. This finding aligns with the prediction of a feedforward response using
a minimal squared error strategy. Beyond the time of object liftoff, which on average occurred at 0.134 � 0.036 s, there appears to be slight separation of grip
force between the constant mean group compared with the skewed heavy mode, symmetrical, and skewed light mode groups. This separation likely represents
feedback modulation in response to lifting weights that varied on a trial-to trial basis (see Fig. 4B). Shaded regions represent �SE.
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Figure 6 shows each group’s average grip force rate, grip
force, load force rate, and load force, taken at the time point
corresponding to peak load force rate, across the 10 differ-
ent bins of trials. Qualitatively, we found that both load
force rate and load force reached a stable pattern of behavior
during bin 1 (practice), whereas grip force rate and grip
force took longer (about bin 5 or 6) to reach a stable pattern
of behavior.

In bin 10 (Fig. 7), we found that all four dependent measures
were in line with the predictions of a feedforward controller
that uses a minimal squared error strategy, rather than a
maximum a posteriori strategy, to predict object weight. Com-
pare Fig. 7 with Fig. 3 for a visualization of the data relative to
each of the strategy predictions.

Grip force rate. We found a significant effect of group on
grip force rate (Fig. 7A) in the final bin of trials [F(5, 84) �

8.321, P � 0.001, �p
2 � 0.331]. For grip force rate, eight

pairwise comparisons were made to determine how the senso-
rimotor system makes a feedforward prediction. We found that
four of the comparisons matched the predictions of a minimal
squared error strategy (Table 2). The remaining four compar-
isons did not match the predictions of a maximum a posteriori
strategy (Table 2). Thus, taken together, the eight pairwise
comparisons support the idea that the sensorimotor system uses
a minimal squared error strategy to make feedforward predic-
tions about object weight.

Grip force. For grip force (Fig. 7B), we found a significant
effect of group in the final bin of trials [F(5, 84) � 5.955, P �
0.001, �p

2 � 0.262]. Again, we made eight pairwise comparisons
to test whether the sensorimotor system uses a minimal squared
error or maximum a posteriori strategy. Three of four comparisons
matched the predictions of a minimal squared error strategy

Fig. 6. Average grip force rate (A; N/s), grip force (B; N), load force rate (C; N/s), and load force (D; N) of each group across separate bins of trials. Error bars
represent �SE.
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(Table 2). Of the remaining four comparisons, only one matched
the maximum a posteriori prediction (Table 2). In other words, six
of the eight pairwise comparisons were consistent with the idea
that the sensorimotor system uses a minimal squared error strategy
to make feedforward predictions of object weight.

Pairwise comparisons that did not match with a minimal
squared error strategy involved the skewed heavy mode and
constant heavy groups. Consistent with the maximum a poste-
riori strategy predictions, the skewed heavy mode group did
not have a significantly different grip force from the constant
heavy group (P � 0.466, 2-tailed).

Load force rate. We found a significant effect of group on
load force rate (Fig. 7C) in bin 10 [F(5, 84) � 9.348, P �
0.001, �p

2 � 0.357]. Six of the eight pairwise comparisons were
consistent with the idea that the sensorimotor system uses a
minimal squared error strategy (see Table 2). For load force
rate, pairwise comparisons that did not support a minimal
squared error strategy involved the skewed light mode and
constant light groups. Consistent with the maximum a poste-
riori strategy, the load force rate was not significantly different
between the skewed light mode group and constant light group
(P � 0.075, 2-tailed).

Fig. 7. Average (A; N/s), grip force (B; N), load force rate (C; N/s), and load force (D; N) of each group in the final, 10th bin of trials. The text at the top left
of each panel summarizes key group mean comparisons that relate to how the sensorimotor system makes a feedforward prediction (for an exhaustive list, see
Table 2). For any dependent measure, the operators �, �, and � indicate whether one group was equal to, less than, or greater than another group, respectively.
Dark blue lettering indicates the comparison is aligned with a maximum a posteriori strategy, whereas light blue lettering indicates a comparison that supports
a minimize squared error strategy. Black lettering indicates an identical prediction between the 2 strategies. As can be seen across dependent measures, the vast
majority of comparisons support a minimal squared error strategy. Error bars represent �SE. P � 0.05.
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Load force. For load force (Fig. 7D), we found a significant
effect of group [F(5, 84) � 16.756, P � 0.001, �p

2 � 0.499].
We found that four pairwise comparisons matched the predic-
tions of a minimal squared error strategy (Table 2). The
remaining four tests did not follow the predictions of a maxi-
mum a posteriori strategy (Table 2). Thus, for load force, all
eight pairwise comparisons were consistent with the idea that
the sensorimotor system uses a feedforward controller that
minimizes squared error.

Error analysis. For each dependent measure, the error anal-
ysis provided a single, comprehensive comparison between the
two candidate strategies (minimal squared error vs. maximum
a posteriori). The results of the error analysis are shown in Fig.
8. For all four dependent measures, a model based on mini-
mizing squared error explained significantly more of the be-
havioral data (i.e., had less error) compared with the maximum
a posteriori model (P � 0.001 for all 4 comparisons). Across
measures, the model based on minimizing squared error had
56.8% less absolute error relative to the model based on
maximum a posteriori estimates of object weight.

Sensitivity of dependent measures to different weights. We
found the four dependent measures were sensitive to object
weight differences of 0.2 kg, which matched the weight dif-
ference between the mean and mode of the skewed probability
distributions. We found that mean values of each dependent
measure were significantly greater for the constant mean group
compared with the constant light group (Table 3). Similarly,
for three of the four dependent measures, we found that mean
values for the constant heavy group were significantly greater
than those for the constant mean group (Table 3). The only
nonsignificant comparison between these two groups was for
load force rate (P � 0.054, 1-tailed).

Influence of load force variance. For all four dependent
measures, we found that mean values for the symmetrical
group were not significantly different from those of the con-
stant mean group (Table 4). This was predicted by both the

minimal squared error and maximum a posteriori strategies.
More importantly, this shows that the load force variance
alone, at least within the range dictated by our probability
distributions, did not significantly influence the sensorimotor
system’s feedforward controller for object lifting.

DISCUSSION

An important feature of our experimental task was the
randomization of object weights from trial to trial using
skewed probability distributions. This allowed us to dissociate
the predictions of minimal squared error and maximum a

Table 2. Group mean comparisons (adjusted P values) for each prediction made by the minimal squared error and the maximum a
posteriori strategies

Measure

Minimal Squared Error: Predicted Comparisons

Skewed heavy mode � constant
mean

Skewed light mode � constant
mean

Skewed heavy mode � constant
heavy

Skewed light mode � constant
light

Grip force rate, N/s P � 0.999 P � 0.490 P � 0.002 P � 0.003
Grip force, N P � 0.565 P � 0.598 P � 0.330 P � 0.022
Lift force rate, N/s P � 0.294 P � 0.633 P � 0.001 P � 0.051
Lift force, N P � 0.999 P � 0.999 P � 0.007 P � 0.002

Measure

Maximum A Posteriori: Predicted Comparisons

Skewed heavy mode � constant
heavy

Skewed light mode � constant
light

Skewed heavy mode � constant
mean

Skewed light mode � constant
light

Grip force rate, N/s P � 0.003 P � 0.008 P � 0.999 P � 0.999
Grip force, N P � 0.466 P � 0.040 P � 0.424 P � 0.565
Lift force rate, N/s P � 0.002 P � 0.075 P � 0.999 P � 0.424
Lift force, N P � 0.012 P � 0.004 P � 0.967 P � 0.999

Group mean comparisons and the predicted results (i.e., equal to, greater than, or less than) of a minimal squared error strategy and a maximum a posteriori
strategy are shown for each measure. These predictions match those visually shown in Fig. 3. Bold P values support the specific prediction for the corresponding
comparison. When a strategy predicts 2 groups to be equal to one another (e.g., skewed heavy mode � constant mean), for the prediction to be true, then the
P value would have to be �0.05 (i.e., no difference between groups). In contrast, if the prediction expects one group to be significantly different from another
group (e.g., skewed heavy mode � constant heavy mode), then the P value has to be �0.05 for the prediction to be true. As shown (bold), 14 of 16 comparisons
are aligned with a minimal squared error strategy. Conversely, only 2 of 16 comparisons are aligned with a maximum a posteriori strategy. Taken together, 28
of the 32 total comparisons support the idea of a sensorimotor system that minimizes the square of prediction errors.

Fig. 8. For each dependent measure (x-axis), the resulting magnitude of error
(y-axis) when the data are predicted with a minimal squared error strategy
(gray) or maximum a posteriori strategy (black). Error bars represent �SD.
*P � 0.05.
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posteriori strategies for predicting object weight. We found
that for object lifting, the sensorimotor system minimizes the
square of prediction errors in the presence of environmental
uncertainty. This finding is consistent with results found in
studies of visually guided reaching (Körding and Wolpert
2004b). Below we discuss how minimizing the square of
feedforward errors may be beneficial in terms of the interplay
between feedback and feedforward systems for sensorimotor
control.

The finding that the sensorimotor system uses a minimal
squared error strategy was supported by all four dependent
measures that we used as indexes of the feedforward response
(grip force rate, grip force, load force rate, and load force). The
results of 28 of the 32 pairwise comparisons made among these
four measures were consistent with a minimal squared error
strategy. Furthermore, for each of the four dependent mea-
sures, our error analysis showed that a minimal squared error
feedforward strategy explained significantly more behavior
than a maximum a posteriori feedforward strategy.

In our task, we found that the sensorimotor system used a
minimal squared error strategy to make a feedforward predic-
tion of object weight. This strategy could be accomplished by
predicting the weight of a subsequent lift by using somatosen-
sory information from a previous lift (Johansson and Westling
1984), or by taking an unweighted (Scheidt et al. 2001;
Takahashi et al. 2001) or weighted (e.g., exponential decay:
Hadjiosif and Smith 2015; Landy et al. 2012) moving average
of somatosensory information over several previous lifts. The
use of a single previous lift, or averaging several previous lifts
to make weight predictions, is often termed “sensorimotor
memory” (Chouinard et al. 2005). However, the concept of
sensorimotor memory in itself is unable to explain phenomena
such as reduced variability with practice (Acerbi et al. 2014;
Körding and Wolpert 2004a), explaining perceptual illusions
(Peters et al. 2016) or incorporating sensory cues (Trampenau
et al. 2015). A Bayesian framework is able to account for all
these phenomena.

If participants used a Bayesian-like process, they would
build a prior representation of the environmental uncertainty.
Similar to the sensorimotor memory strategy, they would use
somatosensory information from previous lifts to build up a
prior. However, where the Bayesian framework and sensori-
motor memory strategies differ relates to how the somatosen-
sory information from previous lifts is weighted. The sensori-

motor memory strategy would suggest a constant weighting
scheme, whereas the Bayesian approach uses an adaptive
weighting process due to the evolving prior over the course of
learning. For example, decreases in movement variability in
the presence of environmental uncertainty noise can be ex-
plained by an adaptive (un)weighting process that places less
emphasis on trial-by-trial perturbations as a prior representa-
tion of environmental uncertainty is built (Körding and Wol-
pert 2004a).

In the context of our task it would be difficult to track the prior
over time, since these weightings would be convoluted with the
safety margin that took time to stabilize (see Fig. 6). However, we
were still able to answer our research question because we used a
small range of object weight uncertainty and analyzed only the
last bin of trials after the safety margin stabilized. Whereas
previous work has tracked the evolution of a prior with learning
(Berniker et al. 2010), an interesting direction would be exploring
how previously acquired sensorimotor information becomes
adaptively (un)weighted in a Bayesian, statistically optimal way
during the course of learning.

Our finding that the sensorimotor system uses a minimal
squared error strategy during object lifting parallels research
that examined visually guided reaching (Körding and Wolpert
2004b; Zhang et al. 2015). We recently examined how the
visuomotor system deals with environmental uncertainty dur-
ing an implicit learning task (Cashaback JG, McGregor HR,
Mohatarem A, and Gribble PL, unpublished observations). We
found that the visuomotor system uses a minimal squared error
strategy when updating where to aim reaches when visual error
feedback is being used (i.e., the visual distance from a target)
but can also switch to a maximum a posteriori strategy when
only binary reinforcement feedback is being used (visual,
auditory, and monetary reward per target hit). Surprisingly,
when both error and reinforcement feedback were made avail-
able, the visuomotor system used a minimal squared error
strategy, as opposed to a maximum a posteriori strategy that
maximized both target hits and reward. This suggests during
implicit learning that the visuomotor system heavily weights
error feedback over reinforcement feedback when updating
where to aim reaches. Likewise, it is possible that the senso-
rimotor system may be able to perform a maximum a posteriori
feedforward prediction when reinforcement feedback is being
used, but perhaps only in the absence of sensorimotor error
feedback. Future research involving individuals with periph-
eral nerve deafferentation (Buckingham et al. 2016) or the
blocking of ascending tactile (Johansson and Westling 1984)
and proprioceptive signals (Buffenoir et al. 2013) in healthy
individuals would likely provide valuable insights into how the

Table 4. Sensitivity of each measure to load force variance

Measure

Sensitivity to Load Force Variance

Symmetrical � constant mean

Grip force rate, N/s P � 0.249
Grip force, N P � 0.796
Lift force rate, N/s P � 0.999
Lift force, N P � 0.999

For each dependent measure, the corresponding adjusted P values are shown
for the specified group comparison. As expected, all comparisons were insig-
nificant, indicating that the dependent measures were not sensitive to the low
range of load force variance used in this study.

Table 3. Sensitivity of each measure to changes in object weight

Measure

Sensitivity to Weight

Constant light �
constant mean

Constant mean �
constant heavy

Grip force rate, N/s P � 0.009 P < 0.001
Grip force, N P � 0.019 P � 0.020
Lift force rate, N/s P � 0.024 P � 0.054
Lift force, N P < 0.001 P � 0.004

For each dependent measure, the corresponding adjusted P values are shown
for the specifed group mean comparisons. Bold P values indicate significant
differences. All but one of the comparisons was significant, albeit the insig-
nicant comparison was trending toward a difference (P � 0.054). The results
of these comparisons suggest that the dependent measures were sensitive to
weight changes of 0.2 kg, which is the difference between the mean and mode
in both the skewed light mode and skewed heavy mode probability distribu-
tions.
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sensorimotor system uses error and reinforcement feedback to
update feedforward predictions. Nevertheless, with error feed-
back available, the sensorimotor system appears to use a
minimal squared error strategy when one is lifting objects and
making visually guided reaches. This parallel in behavior may
be explained by the use of common brain areas to represent
uncertainty or similar neuronal features, such as individual
neuronal firing rates (Ma et al. 2006; Schultz 2013) and neural
population coding (Pouget et al. 2013; Vilares et al. 2012).
Some reported brain areas that may represent environmental
uncertainty include the putamen, amygdala, insula, orbitofron-
tal cortex, posterior parietal cortex, and anterior cingulate
cortex (O’Reilly et al. 2013; Vilares et al. 2012). However,
theories and empirical studies on how the brain represents
either sensorimotor noise or environmental uncertainty are
currently sparse (Faisel et al. 2008; Körding 2014).

Körding and Wolport (2004b) also examined the effects of
environmental uncertainty in a visuomotor task. They had
participants operate a virtual peashooter. When shot, the peas
were visually displaced by an amount drawn from a skewed
noise distribution. On separate trials, the authors also manip-
ulated the amount of uncertainty (variance) of these skewed
noise distribution. Participants were required to move a cursor
to a location such that the shot peas were “on average as close
to the target as possible.” With low-variance skewed noise, that
is, when visual displacements were less than approximately
�1.5 cm, Körding and Wolpert found that the visuomotor
system minimized approximately squared error. However, as
visual displacement variance increased beyond this range, they
found the visuomotor system shifted away from a minimal
squared error strategy and became less sensitive to larger errors
(Körding and Wolpert 2004b; Wolpert 2007). In our task, both
the skewed light mode and skewed heavy mode probability
distributions that we used to determine object weight on a
trial-to-trial basis each had a standard deviation of �0.22 kg.
With this relatively low level of uncertainty, participants used
a feedforward response that was closely aligned with the mean
(0.8 kg) of these skewed probability distributions. That is, with
this amount of load force variance, the sensorimotor system
used the same feedforward response as if an object with a
constant weight of 0.8 kg were being lifted. This shows that the
amount of load force variance associated with the two skewed
distributions had little or no influence on the feedforward
response. This was further supported by no behavioral differ-
ences between participants in the constant mean and symmet-
rical (no skew) groups. Thus, given that the variance of the
probability distributions used to vary object weight did not
influence behavior and that the sensorimotor system was sen-
sitive to weight differences of 0.2 kg, we were able to directly
assess whether the sensorimotor system was using a minimal
squared error or maximum a posteriori strategy to deal with
environmental uncertainty. With low amounts of load force
variance, we found that the sensorimotor system used a mini-
mal squared error strategy to make feedforward predictions of
object weight.

Our finding that the sensorimotor system was not influenced
by load force variance differs from research by Hadjiosif and
Smith (2015). However, these differences are likely caused by
difference in experimental design. We used a task where the
load forces were acceleratory (gravitational) in nature and had
relatively low amounts of load force variance relative to the

mean (i.e., coefficient of variation � SD/mean � 100.0 �
27.5%). In contrast, Hadjiosif and Smith (2015) had partici-
pants pinch grip a force transducer that was mounted on a
robotic arm. Participants then made reaching movements to a
target in a velocity-dependent (viscous) force field. The
strength of this force field was either held constant or varied
according to a Gaussian distribution. For the different blocks of
trials where the force field strength varied, the corresponding
coefficient of variation ranged from 40% to 250%. Hadjiosif
and Smith (2015) found that participants applied larger grip
forces with greater variability in force field strength. The
authors relate this finding to the idea of a “flexible safety
margin.” Briefly, a safety margin refers to the finding that
individuals grip with a higher force than is required to prevent
an object from slipping in the event of an inaccurate feedfor-
ward prediction. This safety margin is present during repeated
lifting of an object with a constant weight (Westling and
Johansson 1984) and is “flexible” in the sense that it scales
with environmental uncertainty (Hadjiosif and Smith 2015). In
our task, given the relatively low coefficient of variation
(27%), the safety margin used for a constant weight of 0.8 kg
may have been sufficient to absorb the majority of the load
force variance. This load force variance was dictated by the
spread of the three probability distributions (skewed heavy
mode, skewed light mode, and symmetrical) used to vary
object weight. However, with greater load force variance, as
shown by Hadjiosif and Smith (2015), a feedforward response
aligned with the mean of the environmental uncertainty may be
unable to absorb the whole range of the load force variability.
Taking into account both our current work and that of Hadjiosif
and Smith (2015), it is possible that with larger amounts of
load force variability, the sensorimotor system becomes sensi-
tive to environmental uncertainty and places less emphasis on
the use of a minimal squared error strategy.

A change in emphasis from using a minimal squared error
strategy to becoming sensitive to environmental uncertainty
may occur when the sensorimotor system is unable to fully
compensate for high levels of load force variability. In other
words, the feedback response may not have enough time to
respond to the larger prediction errors, which in some instances
could be detrimental to task success (e.g., dropping an object).
An inability of the feedback system to respond quickly enough
to the whole range of load force variability may explain the
finding of Berg et al. (2016). They found in their ball-catching
experiment that the sensorimotor system seems to use a feed-
forward response aligned with the heaviest object. This may
represent an upper bound of how the sensorimotor system deals
with very high levels of weight uncertainty, where the feed-
forward response seems to scale its motor commands to the
greatest weight that is lifted or caught. Nevertheless, in our
experiment the safety factor seemed able to absorb the rela-
tively small range of load force variability, providing the
feedback system sufficient time to make small corrections in
response to feedforward prediction errors.

Currently, we do not know why the sensorimotor system
uses a minimal squared error strategy or how this strategy is
implemented by the nervous system. Regardless, there are
instances where a minimal squared error strategy is advanta-
geous. As mentioned above, a minimal squared error strategy
corresponds to the mean of the environmental uncertainty.
From a computational point of view, the mean is always
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defined unlike other point estimate statistics. For example,
unlike the mean, the mode and median become ill-defined
when the environmental uncertainty follows a uniform (Berg et
al. 2016) or certain bimodal probability distributions (Körding
and Wolpert 2004a; Scheidt et al. 2001). Thus using the mean
may ensure an efficient updating of internal models when noisy
error-based feedback is used.

Another potential advantage of a minimal squared error
strategy relates to how errors are penalized. This strategy
considers all potential errors but applies a greater penalization
to large errors relative to smaller ones. As a result, a minimal
squared error strategy will produce a feedforward response that
protects against large feedforward prediction errors. By using a
feedforward response that protects against large errors, this
would allow the feedback system to respond more quickly to
potentially detrimental feedforward prediction errors. For ex-
ample, consider participants experiencing weights selected
from the skewed light distribution. If the participants had used
a maximum a posteriori strategy, they would have used a
feedforward response corresponding to the lightest weight of
0.6 kg. However, this would place the feedforward grip and
load forces far from the appropriate force magnitudes required
to lift and grasp the maximum weight (1.2 kg) of the skewed
light mode probability distribution. However, the minimal
squared error strategy that participants used aligned them with
the mean (0.8 kg) of the skewed light mode probability distri-
bution, which was closer to the maximum weight of this
distribution. As such, the feedback system would be able to
respond more rapidly to the heaviest weight, since the required
corrective adjustments would be smaller. Although a feedfor-
ward controller using maximum a posteriori strategy would
predict the correct object weight at a higher frequency, this
comes at the potential cost of having larger prediction errors
with inaccurate feedforward responses. Conversely, the mini-
mal squared error strategy would have a higher frequency of
prediction errors, but these errors would be smaller and would
subsequently allow for a more rapid feedback response. Thus,
by using a minimal squared error strategy, it is possible that the
feedforward system hedges against larger errors to setup the
feedback system for success. To test this idea, future work
should manipulate both the magnitude of feedforward predic-
tion errors and the time the feedback system has to respond to
such errors. Such work would improve our understanding on
the interplay between the feedback and feedforward system.

It is noteworthy that many authors make the assumption of
a maximum a posteriori strategy, often termed as maximum
likelihood (equivalent to maximum a posteriori estimate when
using a noninformative, flat prior). A convenient advantage of
using maximum a posteriori estimates is that they are more
readily calculated with explicit equations, making it easier to
solve the optimal solution(s). Some examples of where authors
have assumed a maximum a posteriori strategy include per-
forming state estimation (Crevecoeur and Scott 2013; Diedrich-
son 2007), integrating information from multiple senses (An-
gelaki et al. 2009), making a choice in a forced decision-
making task (Acuna et al. 2015; Resulaj et al. 2009; Wolpert
and Landy 2012), making feedforward predictions with the aid
of visual cues (Trampenau et al. 2015), and predicting the
weight of novel objects (Peters et al. 2016). Although these
studies have provided valuable information about how the
sensorimotor system generates predictions in the presence of

noise, the present study addresses a different question. Namely,
how are humans able to generate feedforward predictions in the
presence of asymmetrical noise? In the current study we
separated the optimal solutions of a maximum a posteriori
strategy and a minimal squared error strategy by using skewed
probability distributions. We found that the sensorimotor sys-
tem uses a minimal squared error strategy in the presence of a
small range of environmental uncertainty and that the maxi-
mum a posteriori estimate was inferior in predicting our be-
havioral measures. However, we do not argue that the senso-
rimotor system never uses a maximum a posteriori strategy
(Mawase and Karniel 2010). Rather, we propose that the
chosen strategy is likely task and goal dependent. Nevertheless,
our work highlights the importance of determining the under-
lying processes that drive the control of our movements.

In summary, in the presence of a relatively narrow range of
object weight uncertainty, we found that the sensorimotor
system minimizes the square of potential prediction errors
during object lifting. This finding parallels previous research
that examined visually guided reaching. The apparent overlap
in strategy when one is lifting objects and making visually
guided reaches suggests common underlying mechanisms to
deal with environmental uncertainty. These mechanisms may
include an overlap in brain areas that integrate environmental
uncertainty or similarities in neuronal features (e.g., firing rate
properties and population coding). Finally, we propose that the
sensorimotor system may use a minimal squared error strategy
to hedge against potentially large prediction errors. Such error
hedging may maximize the probability of a successful feed-
back response. Future work testing this hypothesis may pro-
vide important insights on the interplay between feedforward
and feedback components of the sensorimotor system.

APPENDIX: ERROR ANALYSIS

In this Appendix we describe the error analysis we used to
compare whether the experimental data were better explained
by a minimize squared error strategy or a maximum a poste-
riori strategy. The main advantage of this error analysis is that
it considers all of the experimental data to allow for a single
comparison to be made between the two strategies. To do this,
we bootstrap the experimental data and sum the absolute error
between several key groups. The predictions of each strategy
are used to select which groups are compared with one another.
For example, the maximum a posteriori strategy predicts that
the skewed heavy mode group would be no different from the
constant heavy group. Thus, if the maximum a posteriori
strategy were driving behavior, we would expect a small
amount of error between the groups. However, instead of just
considering one individual prediction like the example directly
above, the error analysis simultaneously considers all the
predictions of a given strategy. Below, we describe this error
analysis in detail.

First, let X represent all the data, from all groups, of one
dependent measure (grip force rate, grip force, load force rate, or
load force) in the final bin of trials. Ẋ represents the overall mean
of a dependent measure, which we will use later to normalize the
estimated absolute error. Furthermore, let Xj � x1

j , x2
j , ..., xn

j , where
Xj represents a vector of the dependent measures for some group
(j) and xi

j represents some individual’s (i) data point in that group.
The six groups are the skewed heavy mode (shm), skewed light
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mode (slm), symmetrical (s), constant heavy (ch), constant mean
(cm), and constant light (cl).

To perform bootstrapping, it is necessary to resample (with
replacement) n times from a group of interest to generate a
single bootstrap resample. This bootstrap resample is the same
length as the original group (here, n � 15, matching the
number of participants per group) and only contains individual
data points from the original group it resampled from. This
resampling procedure is performed N times to generate N
bootstrap resamples (here, N � 10,000). We denote a bootstrap
resample as Xk

j*, where the asterisk represents a resampled
vector and k represents the bootstrap resample iteration. The
average of a bootstrap resample is Ẋk

j*.
As an example of some bootstrap resample, if we were

resampling from the skewed heavy mode group and were on
the 1,054th iteration, it might look as follows: X1,054

shm* � x2
shm,

x3
shm, x7

shm, x11
shm, x4

shm, x5
shm, x7

shm, x10
shm, x14

shm, x4
shm, x14

shm, x8
shm,

x2
shm, x10

shm, x12
shm. Notice that this bootstrap resample vector

contains the same number of data points as there are partici-
pants in the group being sampled (n � 15). Also, due to the
resampling with replacement, notice that that some data points
are represented more than once (e.g., x4

shm), whereas others are
not present (e.g., x1

shm). The data points in a bootstrap resample
can vary on any given iteration. Furthermore, each bootstrap
resample is composed of individual data points from one
group.

In the equations below (Eq. 1 and 2), we describe how we
use the experimental data and a bootstrap procedure to
calculate the normalized absolute error of a minimal squared
error (mse) strategy and a maximum a posteriori (map)
strategy. Briefly, each equation sums the absolute differ-
ences between each group lifting an object of varying
weight to their corresponding group that is lifting a constant
weight. A particular strategy dictates the groups that are
compared with one another (e.g., map strategy; shm � ch).
The normalized absolute error of the mse strategy (�k

mse*) on
any particular bootstrap iteration is

�k
mse� �

��Xk
shm� �

�Xk
cm�� � ��Xk

s� �
�Xk

cm�� � ��Xk
slm� �

�Xk
cm��

�X
.

(1)

Likewise, the normalized absolute error of the map strategy
(�k

map*) on any particular bootstrap iteration is

�k
map� �

��Xk
shm� �

�Xk
ch�� � ��Xk

s� �
�Xk

cm�� � ��Xk
slm� �

�Xk
cl��

�X
.

(2)

After performing the bootstrap procedure, we compiled all
iterations of �k

mse* and �k
map* to form a distribution of normal-

ized absolute error for each strategy. �̂mse* represents the
distribution of normalized absolute error for the mse strategy,
whereas �̂map* represents the distribution of normalized abso-
lute error for the map strategy.

We then compared whether �̂mse* and �̂map* were statisti-
cally different by using a two-tailed bootstrap hypothesis test.
For graphical purposes (Fig. 8), we calculated the mean (�x�̂mse*

and �x�̂map*) and standard deviation (	�̂mse* and 	�̂map*) of �̂mse* and
�̂map*, respectively.
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