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Transformations in the Human Motor Periphery

X Chao Gu,1,3 X Daniel K. Wood,5 X Paul L. Gribble,1,2,3 and X Brian D. Corneil1,2,3,4

1Department of Psychology and 2Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7, 3Brain
and Mind Institute and 4Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7, and 5Department of Neurobiology,
Northwestern University, Evanston, Illinois 60208

The appearance of a novel visual stimulus generates a rapid stimulus-locked response (SLR) in the motor periphery within 100 ms of
stimulus onset. Here, we recorded SLRs from an upper limb muscle while humans reached toward (pro-reach) or away (anti-reach) from
a visual stimulus. The SLR on anti-reaches encoded the location of the visual stimulus rather than the movement goal. Further, SLR
magnitude was attenuated when subjects reached away from rather than toward the visual stimulus. Remarkably, SLR magnitudes also
correlated with reaction times on both pro-reaches and anti-reaches, but did so in opposite ways: larger SLRs preceded shorter latency
pro-reaches but longer latency anti-reaches. Although converging evidence suggests that the SLR is relayed via a tectoreticulospinal
pathway, our results show that task-related signals modulate visual signals feeding into this pathway. The SLR therefore provides a
trial-by-trial window into how visual information is integrated with cognitive control in humans.

Key words: cognitive control; human; reaching; visual processing

Introduction
The reaction time (RT) for almost all visually guided movements
far exceeds the minimum conduction time between sensory in-
put and motor output, allowing time for deliberation and strate-
gic action (Luce, 1986; Posner, 1986; Carpenter and Williams,
1995; Schall, 2003). Such behavioral flexibility is captured in tasks
in which subjects are instructed to move away from rather than

toward a visual stimulus (Hallett, 1978; Georgopoulos et al.,
1989). Successful performance in these tasks requires cognitive
control to: (1) consolidate the instruction, (2) process stimulus
location, and (3) transform stimulus location into the appropri-
ate motor command. The neural substrates of this sensorimotor
transformation has been particularly well studied in the oculo-
motor system of nonhuman primates (Munoz and Everling,
2004), showing, for example, that trial-by-trial representations of
the visual stimulus are attenuated in many oculomotor regions by
prior instruction to prepare for an anti-saccade that moves gaze
diametrically away from the visual stimulus (Everling et al., 1999;
Gottlieb and Goldberg, 1999; Everling and Munoz, 2000). Such
trial-by-trial resolution has simply not been available in humans,
so increases in average RT and error rate on anti-saccade trials
have been traditional behavioral biomarkers used to assess cog-
nitive control in healthy and clinical populations (Chan et al.,
2005; Antoniades et al., 2013; Luna et al., 2015).

Recent studies have shown that the strong transient response
sweeping throughout the brain after visual stimulus onset (Wurtz
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Significance Statement

The presentation of a visual stimulus elicits a trial-by-trial stimulus-locked response (SLR) on the human limb within 100 ms.
Here, we show that the SLR continues to reflect stimulus location even when subjects move in the opposite direction (an anti-
reach). Remarkably, the attenuation of SLR magnitude reflected the cognitive control required to generate a correct anti-reach,
with greater degrees of attenuation preceding shorter-latency anti-reaches and no attenuation preceding error trials. Our results
are strikingly similar to neurophysiological recordings in the superior colliculus of nonhuman primates generating anti-saccades,
implicating the tectoreticulospinal pathway. Measuring SLR magnitude therefore provides an unprecedented trial-by-trial oppor-
tunity to assess the influence of cognitive control on the initial processing of a visual stimulus in humans.
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and Goldberg, 1972; Schmolesky et al., 1998; Churchland et al.,
2010) culminates in a short-latency stimulus-locked response
(SLR) on both neck (Goonetilleke et al., 2015) and upper limb
muscles in humans (Pruszynski et al., 2010; Wood et al., 2015).
Based on the latency of the SLR (within 100 ms after stimulus
onset) and its temporal separation from the larger wave of muscle
recruitment associated with voluntary movement, we and others
have speculated that the SLR is conveyed via a reticulospinal
rather than a corticospinal pathway (Pruszynski et al., 2010;
Wood et al., 2015) and may therefore share the same circuitry as
that generating the fast visuomotor response during corrections
of ongoing reaching movements (Carlton, 1981; Goodale et al.,
1986; Day and Brown, 2001). However, previous reports of the
SLR had subjects reach toward a visual stimulus immediately or
after an instructed delay. In doing so, these studies could not
dissociate whether the SLR encoded the visual stimulus or arose
as a preparatory response for the ensuing movement. Such dis-
sociation is vital because it begins to shed light on the underlying
neural substrates of the SLR.

Here, we examined the SLR on an upper limb muscle while
healthy human subjects either reached toward (pro-reach) or
away from (anti-reach) a peripheral visual stimulus (Fig. 1A).
Our results show that the SLR encodes visual stimulus location
even on anti-reach trials, so it is dissociable from the eventual
movement goal. Despite being locked to the sensory input, cog-

nitive control attenuated the magnitude of the SLR on individual
correct, but not incorrect, anti-reach trials, with greater attenua-
tion of the SLR preceding short-latency anti-reaches. Such trial-
by-trial results link directly with electrophysiological results
obtained in nonhuman primates correlating the magnitude of
visual responses in the oculomotor system with ensuing pro-
saccadic and anti-saccadic RTs (Everling et al., 1999; Everling and
Munoz, 2000) and show that the SLR in humans can be used to
reveal trial-by-trial fluctuations in how visual information is in-
tegrated with ongoing task demands.

Materials and Methods
Participants and procedures. A total of 10 healthy participants (nine males
and one female, age 22– 43, all self-declared right-handed except for one
self-declared left-handed male) took part in the experiment. Subjects
provided written consent, were paid for their participation, and were free
to withdraw from the experiment at any time. All procedures were ap-
proved by the University Research Board for Health Science Research at
the University of Western Ontario. All subjects reported no history of
visual, neurological, and/or musculoskeletal disorders.

Apparatus. Parts of the apparatus, electromyography (EMG) record-
ing setup, and data analyses have been described previously (Wood et al.,
2015). Briefly, subjects performed reach movements in the horizontal
plane with their right arm while grasping the handle of a robotic manipu-
landum (InMotion Technologies). A six-axis force transducer (ATI In-
dustrial Automation; resolution of 0.005 N) in the handle measured
manual hand forces. Subjects sat at a desk and interacted with the robotic
arm on a horizontal plane in line with the subject’s elbow height. The x-
and y-position of the manipulandum was sampled at 600 Hz. A constant
load force of 5.3 N (5 N to the right and 1.75 N toward the subject) was
applied to increase the baseline activity of the limb muscle of interest. All
stimuli were presented on a horizontal mirror placed just below chin
level, which reflected the display of a downward-facing LCD monitor
with a refresh rate of 75 Hz. The precise timing of visual events on the
LCD screen was determined by a photodiode. The subject’s arm was
occluded by the mirror, with real-time feedback of hand position pro-
vided by a small red cursor.

Pro-reach/anti-reach task. To initiate the task, subjects moved the cur-
sor into a gray start circle. Once the cursor entered the circle, the color
was then changed to either red or green (Fig. 1A). For five of our subjects,
a red circle indicated pro-reaches and a green circle indicated anti-reach-
es; this was reversed for the other five subjects. After a variable delay of
1–1.5 s, a black peripheral circle appeared 10 cm from the start circle at a
counterclockwise rotation angle (from straight right) of either 160° (a
leftward stimulus) or 340° (a rightward stimulus). These two locations
have been reported previously to generate the SLR on the limb muscle of
interest (Wood et al., 2015). The start circle was extinguished simultane-
ously with the presentation of the peripheral stimulus. Subjects then had
to move the cursor as quickly as possible either toward (pro-reach) or
180° away from (anti-reach) the peripheral stimulus. The next trial
started after a short randomized delay (0.5–1 s). Nine of our 10 subjects
performed four sessions and one subject performed three sessions of
interleaved pro-reach and anti-reach trials, with each session consisting
of 30 trials at each location and trial type.

Muscle recordings. Intramuscular EMG activity was recorded using
fine-wire electrodes (A-M Systems) inserted into the clavicular head of
the right pectoralis major (PEC) muscle (for insertion procedure, see
Wood et al., 2015). Briefly, for each recording, we inserted two monopo-
lar electrodes, enabling recording of multiple motor units. Insertions
were aimed �1 cm inferior to the inflection point of the clavicle. All
intramuscular EMG data were recorded with a Myopac Junior system
(Run Technologies; low-pass filter modified to 2 kHz). Surface EMG was
also recorded using silver-chloride electrodes and a P15 amplifier (Grass
Instruments); the electrodes were placed just lateral to the intramuscular
electrodes on the same muscle fiber belly. Both the surface and intramus-
cular EMG signals were digitized at 4 kHz.

Data analysis. To achieve sample-to-sample locking between kine-
matic and EMG data, kinematic data were up-sampled from 600 to 1000
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Figure 1. Pro-reach/anti-reach task and behavioral results. A, Timeline of the four different
pro-reach/anti-reach trial conditions. The color of the central fixation circle indicated either a
pro-reach (red, in this case) or anti-reach (green) trial. B, Pooled distribution of all 10 subjects’
reach RT for all correct trials sorted by trial condition. Thick black line indicates the mean RT for
the given RT distribution.
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Hz with a low-pass interpolation algorithm and then low-pass filtered
with a second-order Butterworth filter with a cutoff at 150 Hz. Both the
intramuscular and surface recordings were rectified offline and bin inte-
grated down to match the 1 kHz sample rate. Reach RT was calculated as
the time from the appearance of the visual stimulus (measured by a
photodiode) to the initiation of the reach. Reach initiation was identified
by first finding the peak tangential hand velocity and then moving back-
wards to the closest previous point at which the velocity profile reached
8% of the peak. Trials with RTs �170 ms (�2%) were excluded to
prevent contamination of the SLR window by voluntary recruitment
associated with very-short-latency responses (Wood et al., 2015). Iden-
tification of erroneous reach trials was done on a single-trial basis using
kinematic criteria in which the initial movement went �5% (5 mm)
toward the incorrect direction.

Receiver-operating characteristic (ROC) analysis. Based on previous
works identifying the SLR (Corneil et al., 2004; Pruszynski et al., 2010),
we also used ROC analysis to detect quantitatively the presence of an SLR.
We first separated the EMG activity for all correct reaches based on visual
stimulus location and performed separate ROC analyses for pro-reach
and anti-reach trials. For every time sample (1 ms bins) between 100 ms
before and 300 ms after the visual stimulus onset, we calculated the area
under the ROC curve. This metric indicates the probability that an ideal
observer could discriminate the side of the stimulus location based solely
on EMG activity. A value of 0.5 indicates chance discrimination, whereas
a value of 1 or 0 indicates perfectly correct or incorrect discrimination,
respectively. We set the thresholds for discrimination at 0.6 and 0.4; these
criteria exceed the 95% confidence intervals of data randomly shuffled
with a bootstrap procedure. The time of earliest discrimination was de-
fined as the time after stimulus onset at which the ROC was �0.6 and
remained above that threshold for at least 8 of the next 10 samples. Based

on the ROC analysis, we defined the SLR epoch as an interval spanning
80 –120 ms after visual onset.

Results
Across all of our subjects performing the pro-reach/anti-reach
task, we found the expected increase in reach RT for anti-reach
versus pro-reach trials (repeated-measures two-way ANOVA,
F(1,36) � 4.89, p � 0.03; Fig. 1B), but no main effect of stimulus
location (F(1,36) � 0.05, p � 0.82) or interaction between stimu-
lus location and trial type (F(1,36) � 0.15, p � 0.70). An SLR was
detectable in seven of our 10 subjects during pro-reach trials
(SLR�) using intramuscular PEC EMG recordings (see below).
In five of our seven subjects, we had two separate intramuscular
recordings and, in all five cases, we were able to detect an SLR on
both recordings. An exemplar example of the SLR is shown in
Figure 2, A and C, illustrating an increase or a decrease in PEC
EMG activity 80 –120 ms (crosses and shaded box) after the pre-
sentation of leftward (StimL, solid) or rightward (StimR, open)
visual stimuli, respectively. The prevalence of the SLR across our
sample (70%) and the recruitment profiles were similar to that
reported previously and, as before, the prevalence of the SLR did
not relate simply to idiosyncratic RTs (Wood et al., 2015). Six of
the 10 subjects also participated in our previous study (Wood et
al., 2015). We saw consistent intrasubject reliability: three sub-
jects were SLR� in both studies, whereas three other subjects
were SLR� in both studies. These three SLR� subjects also did
not exhibit a SLR on anti-trials. Therefore, all subsequent EMG
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Figure 2. Intramuscular EMG results from an exemplar subject. A, EMG activity for correct pro-reach trials separated based on stimulus location. Each row represents activity within a single trial,
with all trials aligned to stimulus onset (black line) and sorted based on reach RT (white squares). Crosses (‡) indicate the SLR epoch. B, EMG activity for correct anti-reach trials (same layout as A).
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analyses were performed only on those seven subjects exhibiting
the SLR on pro-reach trials.

SLR encodes visual stimulus rather than goal location, but is
attenuated before correct anti-reaches
Figure 2B also shows intramuscular PEC EMG activity from our
exemplar subject during individual correctly performed anti-
reach trials. Note how the visual stimulus on anti-reach trials
continued to evoke a SLR (Fig. 2C, bottom, shaded box). Impor-
tantly, as on pro-reach trials, leftward visual stimuli (solid)
evoked an increase, whereas rightward visual stimuli (open)
evoked a decrease in EMG activity. The SLR recruitment profiles
were the same regardless of whether the subject reached toward
or away from the stimulus and thus reflected stimulus rather than
goal location (Fig. 2D). This interpretation is also clearly sup-
ported by the time-series ROC analyses, in which we separated
EMG activity based on stimulus location (Fig. 2E). For both pro-
reach and anti-reach trials, note how the time-series ROC curves
deflected sharply upward �0.6, yielding discrimination times
(i.e., the first time point when there was reliable separation of
EMG activity after presentation of leftward or rightward stimuli)
of �90 ms after stimulus onset. After �120 ms after stimulus
onset, EMG activity evolved to drive the voluntary motor com-

mand, with the time-series ROC curves for both trial types re-
turning toward chance levels (ROC � 0.5) before diverging to 1
or 0 for pro-reach or anti-reach trials, respectively. This time-
series ROC analysis confirms that the earliest wave of EMG activ-
ity reflected the stimulus location and not the eventual reach goal
direction.

All seven of our SLR� subjects exhibited discrimination
times within 100 ms after stimulus onset for pro-reach trials
(range: 84 –93 ms; Fig. 3D). Four of these subjects also had
similar discrimination times for anti-reaches (anti-SLR�,
range: 85–99 ms top four subjects in Fig. 3). The ROC time
series for the remaining three subjects failed to exceed thresh-
old on anti-reaches, although there were hints of the SLR be-
fore anti-reach trials for subjects S7 and S10 (anti-SLR�,
bottom three subjects in Fig. 3). Further, for all seven subjects,
we observed that the time-series ROC analyses for both pro-
reach and anti-reach trials were in phase 80 –120 ms after
stimulus onset, initially increasing toward threshold and then
briefly decreasing at �0.5. As described previously (Wood et
al., 2015), in subjects with longer-reach RTs, we also observed
a 12–15 Hz oscillation of EMG activity after the SLR. This can
be observed clearly in S2, S3, and S5; note the reversal of mean
EMG activity before the movement-related activity (Fig. 3C)
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and how the time-series ROC analyses dip down after initially
exceeding threshold (Fig. 3D).

Even though the SLR reflected visual stimulus location and
occurred before the larger and later profile of PEC recruitment
related to the goal location (Fig. 3, RTs denoted by white
squares), it was reliably attenuated for anti-reaches compared
with pro-reaches (cf. shaded boxes of Fig. 3C). As a group, for the
seven subjects with an SLR, we observed an interaction between
visual stimulus location and trial type during the SLR epoch,
(repeated-measures two-way ANOVA, F(1,24) � 10.19, p � 0.01).
The overall difference between leftward and rightward SLR mag-
nitude for pro-reaches was reliably greater than anti-reaches
(paired t test, t(6) � 3.83, p � 0.001). When we examined the SLR
response within each subject, all 7 subjects exhibited significantly
greater EMG activity for pro-reach versus correct anti-reach trials
(independent t test, all p � 0.025, Bonferroni corrected) after
leftward visual stimulus and 6 of 7 subjects exhibited significantly
weaker EMG activity (independent t test, p � 0.025, Bonferroni
corrected) after rightward visual stimulus. Importantly, such dif-
ferences in SLR magnitude were not simply related to differences
in preparatory EMG activity for pro-reach versus anti-reach trial
types because there were no differences in a baseline interval in
the 40 ms preceding stimulus onset (repeated-measures two-way
ANOVA, F(1,24) � 0.62, p � 0.44, paired t test, t(6) � 1.01,
p � 0.35).

SLR generates a transient force toward the visual stimulus for
both pro-reaches and anti-reaches
Previous studies of fast visuomotor responses generated dur-
ing online corrective movements have quantified force pro-
files (Saijo et al., 2005; Franklin and Wolpert, 2008; Gallivan et
al., 2016). To better compare our SLR results with these pre-
vious studies, we also examined whether the SLR on the PEC
muscle was associated with a transient force toward the visual
stimulus on both pro-reach and anti-reach trials. To analyze
this, we separated our 10 subjects into those exhibiting the SLR
on pro-reaches (SLR�; 7 subjects) or not (SLR�; 3 subjects)
and determined the mean force profile for each subject indi-
vidually across the four different conditions, segregated by
task (pro-reach vs anti-reach) and stimulus direction (left-
ward vs rightward). We found that only SLR� subjects exhib-
ited a profile in which forces diverged 110 –150 ms after
stimulus onset for leftward versus rightward stimuli (Fig. 4A).
The timing of this divergence is consistent with the SLR epoch
if we accounted for a 30 ms electromechanical delay (Norman
and Komi, 1979). Further, consistent with EMG activity dur-
ing the SLR epoch, there was a reliable interaction between
stimulus direction and trial type for the mean force 110 –150
ms after stimulus onset (repeated-measures two-way ANOVA,
F(1,24) � 26.18, p � 10 �4), with pro-reaches exhibiting a
greater force difference for leftward versus rightward stimuli
compared with anti-reaches (paired t test, t(6) � 8.55,
p � 0.001). In contrast, the force profiles of SLR� subjects did
not diverge in the 110 –150 ms interval in either the pro-reach
or anti-reach trials (Fig. 4B, repeated-measures two-way
ANOVA, F(1,8) � 1.52, p � 0.25, paired t test, t(2) � �1.02, p �
0.41). Therefore, the force profiles can be used as a crude
proxy for the SLR on a group-level basis.

Trials with a larger SLR were associated with shorter-RT
pro-reaches, but longer-RT anti-reaches
Next, we determined whether the magnitude of the SLR re-
lated in some way to the ensuing reach behavior. We first

investigated the correlation between the magnitude of the SLR
and the ensuing RT on a single-trial basis, doing so separately
for pro-reach and anti-reach trials. Figure 5, A and B, shows
data from the subject in Figure 2, plotting reach RT against the
mean EMG activity during the SLR epoch. As reported previ-
ously (Pruszynski et al., 2010) for what were by our definition
pro-reaches (i.e., visually guided reaches), we observed a neg-
ative (r � �0.31, p � 0.05) or positive (r � 0.30, p � 0.01)
correlation for leftward or rightward stimuli, respectively (Fig.
5A; recall that EMG activity during the SLR epoch decreased
after rightward stimuli, hence the positive correlation). In
other words, larger magnitude SLRs preceded shorter RTs for
pro-reaches. Remarkably, such relationships reversed on cor-
rect anti-reach trials, with positive (r � 0.23, p � 0.05) or
negative (r � �0.31, p � 0.01) correlations emerging for left-
ward or rightward stimuli, respectively (Fig. 5B). Therefore,
larger-magnitude SLRs preceded longer RTs for correct anti-
reach trials. The reversed correlations between SLR magnitude
and RT can also be seen in the individual EMG traces in Figure
2, A and B; note how EMG recruitment in the SLR epoch
becomes more pronounced going from the longest (top) to
shortest (bottom) RTs for leftward pro-reaches, but dimin-
ished when going from the longest to shortest RTs for right-
ward anti-reaches (when the subject moved away from the
leftward stimulus).

We observed such correlation reversals in SLR magnitude and
RTs for pro-reaches versus anti-reaches across our seven SLR�
subjects (Fig. 5C). We performed nonparametric bootstrapping
analyses to determine the reliability and the reversal of these val-
ues. If there was no underlying structure to the correlation coef-
ficients across the four different trial types, we would expect our
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observed mean correlation coefficients to fall within the distribu-
tion constructed by randomly assigned trial types (10,000 times).
Instead, we found that all 4 observed means were reliably differ-
ent from the bootstrapped distributions (all p � 0.05). In addi-
tion, the observed differences in correlation coefficients between
leftward and rightward stimuli for both pro-reach and anti-reach
trials were also reliably greater than the differences obtained from
the bootstrapped distributions (p � 0.0005 and p � 0.0011 for
pro-reach and anti-reach trials, respectively). This relationship
between SLR and ensuing RT was once again not simply a conse-
quence of baseline EMG activity before stimulus onset because
we did not find any reliable correlation between mean EMG ac-
tivity 40 ms preceding stimulus onset with ensuing reach RT for
any of the 4 conditions (all p � 0.09, comparing observed corre-
lations to a bootstrapped distribution) or any reliable difference
in correlation coefficient between leftward and rightward stimuli
(p � 0.15 and p � 0.20, for pro-reach and anti-reach trials,
respectively). These results suggest that the influence of cognitive

control on the SLR is such that it reflects stimulus priority, with
larger SLRs being beneficial for pro-reaches, but detrimental for
anti-reaches; this pattern is similar to what has been observed in
the oculomotor system (Kristjánsson et al., 2001).

Similar SLR magnitudes accompanied erroneous anti-reach
trials and correct pro-reach trials
Up to now, we have only considered the SLRs for correctly
performed anti-reach trials. If the SLR is truly an indicator of
cognitive control, then we should expect that the SLR is also
informative when subjects erroneously reach toward, rather
than away from, the visual stimulus on anti-reach trials. Two
of the seven SLR� subjects generated a sufficient number of
erroneous anti-reach trials to permit the following analyses
(�20% error rate for both subjects, producing �20 erroneous
trials per direction). For these two subjects, we compared SLR
magnitudes across three different trial types: correct pro-
reach, correct anti-reach, and erroneous anti-reach trials (Fig.
6). For both subjects, we found reliable differences between
the three conditions for both leftward and rightward stimuli
(repeated-measures one-way ANOVA, all p � 10 �7). For the
leftward visual stimulus, the SLR magnitude was significantly
greater on erroneous (black) than correct (green) anti-reach
trials (independent t test, p � 10 �7 and p � 10 �5, Bonferroni
corrected, for S3 and S8, respectively), but not significantly
different between the SLRs on erroneous anti-reach and cor-
rect pro-reach (red) trials (independent t test, p � 0.09 and
p � 0.88, respectively). Similarly for rightward visual stimu-
lus, significantly stronger SLRs were observed for erroneous
versus correct anti-reach trials (independent t test, p � 0.01
and p � 0.01, respectively; recall that the SLR is a decrease in
EMG in this direction, so stronger SLRs produce greater de-
creases in EMG activity), but similar magnitude SLRs were
observed on correct pro-reaches and erroneous anti-reaches
(independent t test, p � 0.30 and p � 0.11, respectively).
Therefore, as observed for visual responses in previous neuro-
physiological studies during the pro-saccade/anti-saccade task
(Everling et al., 1998; Everling and Munoz, 2000), the SLR on
erroneous anti-reaches resembled that before correct pro-
reaches. These results further support the idea that the SLR
can be used as an indicator of cognitive control on a trial-by-
trial basis.

Surface EMG recordings can also detect the SLR
To date, almost all of the previous studies on the SLR in hu-
mans or nonhuman primates have relied on intramuscular
EMG recordings (Corneil et al., 2004; Chapman and Corneil,
2011; Goonetilleke et al., 2015; Wood et al., 2015). Reliance on
intramuscular recordings may hinder widespread examina-
tion of the SLR in variety of paradigms in both healthy and
patient populations. One study that detected SLRs with intra-
muscular recordings (Pruszynski et al., 2010) reported that
surface EMG recordings were “almost universally unsuccess-
ful,” with only four detectable SLRs of 108 recordings. They
suggested that intramuscular electrodes may be recording
from slower (but first-recruited) motor units located deeper
in the muscle. In sharp contrast, we were able to detect the SLR
(using the same criteria as described in Materials and Meth-
ods) with surface EMG recordings in six of the seven SLR�
subjects. Figure 7 shows surface recordings from our exemplar
subject, which are directly comparable to the intramuscular
recordings shown in Figure 2. Although surface recordings
were noisier, such recordings still exhibited all of the same
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characteristics observed with intramuscular recordings.
Across all 6 of these subjects, SLRs were significantly attenu-
ated before correct anti-reaches compared with pro-reaches
(paired t test, t(5) � 3.11, p � 0.05). The correlation between
SLR magnitude and ensuing RT were reversed for pro-reaches
versus anti-reaches for both leftward and rightward stimuli

( p � 0.037 and p � 0.0142, respectively). For the two subjects
with sufficient erroneous anti-reach trials, the SLRs preceding
anti-reach errors resembled those of pro-reach trials (inde-
pendent t test, all p � 0.1), but were significantly stronger than
those preceding correct anti-reach trials (independent t test,
all p � 0.05). Our successful detection of the SLR may be

Pro-
Anti-
Errors

60

30

60

30

400 μV

S
or

te
d 

Tr
ia

ls
 (#

) ‡‡

S8

A StimL ReachL StimR ReachR

0 100 200 0 100 200

30

60

30

60

Error
Trials

‡‡
B StimL ReachR StimR ReachL

0 100 200 0 100 200

C

100

200

300

Time Aligned to Stimulus Onset (ms)

E
M

G
 A

ct
iv

ity
 (μ

V
)

Stim Left Stim Right

0 100 200 0 100 200

500 μV60

30

S3
0 100 200

60

30

0 100 200

‡
StimL ReachL StimR ReachR‡

30

60

0 100 200

30

60

0 100 200

Error
Trials

‡
StimL ReachR StimR ReachL‡

150

300

450

Time Aligned to Stimulus Onset (ms)

Stim Left Stim Right

0 100 200 0 100 200

Figure 6. SLR magnitudes were similar on pro-reach and erroneous anti-reach trials. A–C, Data from the two subjects, S3 and S8, with enough erroneous anti-reach trials. Same format
as in Figure 2 is shown, except erroneous anti-reach trials are displayed on top of correct anti-reach trials or shown in black. See Materials and Methods for how erroneous trials were
detected.

A

100 μV

StimL ReachL‡

30

60

S
or

te
d 

Tr
ia

ls
 (#

)

S8
0 100 200

60

30

‡
StimR ReachR

0 100 200

B

Time Aligned to Stimulus Onset (ms) 
0 100 200

‡
StimL ReachR

30

60

30

60

‡
StimR ReachL

0 100 200

C Mean EMG Activity

0 100 200

50

100

0 100 200

A
re

a 
U

nd
er

 th
e 

R
O

C
 C

ur
ve

D ROC Analysis
1

0

.5 Threshold

83 ms

0 100 200

1

0

.5 100 ms

0 100 200
Time Aligned to Stimulus Onset (ms) 

100

50

Figure 7. SLRs can be detected with surface EMG recordings. Surface EMG recordings from the exemplar subject are shown using the same format as in Figure 2. A, B, Single-trial EMG activity from
pro-reach and anti-reach trials, respectively. C, Average EMG activity (mean � SEM) for the four different trial types. D, Time-series ROC analysis.

Gu et al. • Cognitive Control Affects Fast Visuomotor Reflex J. Neurosci., August 3, 2016 • 36(31):8273– 8282 • 8279



related to a combination of the posture adopted by the subject,
the robotic manipulandum used, or the application of a con-
stant load to increase background EMG activity on the muscle
of interest. Regardless, demonstrating the efficacy of surface
recordings will help to broaden the study of the SLR, particu-
larly in clinical populations.

Discussion
Our results demonstrate that a fast visuomotor response, the
SLR, can provide a window into the integration of visual input
with cognitive control in humans. Here, by having subjects reach
either toward (pro-reach) or away (anti-reach) from a peripheral
visual stimulus, we showed that the initial recruitment of an up-
per limb muscle encodes the location of the visual stimulus, with
subsequent muscle recruitment evolving to drive the task-
appropriate command. SLR magnitude attenuated when subjects
correctly reached away from the stimulus. Furthermore, SLR
magnitude correlated with ensuing reach RT, but such correla-
tions were reversed when subjects moved either toward or away
from the visual stimulus. Overall, our results bear remarkable
resemblance to neurophysiological recordings of visual responses
from the frontal eye fields (FEFs) and the intermediate layers of
the superior colliculus (SC) in nonhuman primates performing
pro-saccades/anti-saccades (Everling et al., 1999; Everling and
Munoz, 2000). Accordingly, the SLR may provide a new way of
assessing how sensory input is integrated with cognitive control
on a trial-by-trial basis in humans.

Influence of task instruction on visual processing
Previous work has shown that visual representations can be mod-
ulated by task instruction as early as the lateral geniculate nucleus
(McAlonan et al., 2008), with such modulation being ubiquitous
throughout visual and oculomotor areas in striate, extrastriate,
parietal, frontal cortices, and the SC (Wurtz and Goldberg, 1972;
Goldberg and Bushnell, 1981; Moran and Desimone, 1985; Colby
et al., 1996). Our results show that the human SLR is also modu-
lated by task instruction, with trial-by-trial fluctuation in SLR
magnitude correlating with aspects of the ensuing behavioral re-
sponse. Many neurophysiological results have reported similar
trial-by-trial correlation between the magnitude of the visual re-
sponse with ensuing RT (Lee et al., 2010; Marino et al., 2012;
Galashan et al., 2013; Sharma et al., 2015). Furthermore, the
strength of single-trial correlations between SLR magnitude and
ensuing RT are comparable to that observed previously for cor-
relations between activity of neurons in the FEFs and SC with
saccadic RT (Dorris et al., 1997; Everling and Munoz, 2000).
Indeed, the relationship between the SLR and ensuing RT is
particularly noteworthy because it marks the first time to our
knowledge that a direct, within-trial measurement of visual
encoding has been reported in healthy humans using nonin-
vasive measurements.

As mentioned above, the SLR recorded from the human limb
exhibits many of the same characteristics as seen for visual re-
sponses in the oculomotor system during interleaved pro-
saccade and anti-saccade trials. Although there have been
neurophysiological investigations of pro-reach and anti-reaches,
such studies were not designed to assess the effects of task instruc-
tion on the processing of the initial visual stimulus. Some studies
have used a variation of a stimulus–response compatibility task,
in which a different peripheral visual stimulus instructed the sub-
jects to make pro-reaches versus anti-reaches (Georgopoulos et
al., 1989; Crammond and Kalaska, 1994; Zhang et al., 1997).
Other studies have provided the task instruction and stimulus

simultaneously, but required subjects to withhold movement on-
set for a proscribed delay period (Gail and Andersen, 2006; Gail et
al., 2009; Klaes et al., 2011). Our results strongly imply that many
of the lessons learned from the oculomotor system about contex-
tual processing of visual information extend to the reaching sys-
tem, providing one uses a similar task structure.

SLR has a visual, not goal-directed, nature
The fact that the SLR encodes the visual stimulus and not the
motor goal is inconsistent with the involvement of the cortico-
spinal system for the SLR. First, although transient visual re-
sponses have been reported in reach-related areas such as
primary motor (Kwan et al., 1981), premotor (Weinrich and
Wise, 1982), and parietal cortices (Snyder et al., 1998; Cui and
Andersen, 2011), the latencies of such responses in nonhuman
primates exceed 100 ms and therefore are too late to be driving
the SLR in humans. Furthermore, the central observation that the
SLR encodes the location of the visual stimulus is inconsistent
with involvement of the motor cortices: although preparatory-
period or delay-period activity in primary, premotor, and pari-
etal cortices can encode multiple potential reaching targets (Cisek
and Kalaska, 2005; Cui and Andersen, 2011), even in the context
of an anti-reaching task (Klaes et al., 2011), such activity remains
divorced from muscle recruitment in the periphery up until the
subject makes a commitment to move (Tanji and Evarts, 1976;
Kaufman et al., 2014). Based on these considerations, it seems
unlikely that the SLR arises from signals relayed along a direct
corticospinal pathway.

SLR is potentially mediated though a reticulospinal pathway
An alternative descending motor pathway for the SLR is the re-
ticulospinal pathway (Lemon, 2008), which is very important for
postural control and orienting of the trunk (Lawrence and
Kuypers, 1968). The reticulospinal pathway is thought to have a
comparatively weaker effect on motoneurons than the cortico-
spinal pathway (Riddle et al., 2009), which is consistent with the
relatively small magnitude of the SLR. The reticulospinal path-
way has also been implicated in online corrective reach move-
ments, which can be initiated within 150 ms after stimulus
displacement (Carlton, 1981; Saunders and Knill, 2004; Saijo et
al., 2005; Franklin and Wolpert, 2008), can occur without per-
ception of stimulus displacement (Goodale et al., 1986), and per-
sist even in a subject with a complete agenesis of their corpus
callosum (Day and Brown, 2001). Our results resemble those
reported by Day and Lyon (2000), who studied online corrective
movements in healthy subjects who had to point either toward
(pro-trials) or away from (anti-trials) a displaced stimulus. They
reported two distinct phases in subjects’ hand trajectory: an early
(�160 ms) small component that invariably moved toward the
displaced visual stimulus on both pro-trials and anti-trials, which
they attributed to the reticulospinal pathway, and a later (�160
ms) component that corresponded to the task goal. When con-
sidered alongside these findings, our results strongly imply that
the SLR is relayed to the motor periphery via the reticulospinal
system.

Potential sources for task-dependent modulation of the SLR
Assuming that the SLR is relayed through a reticulospinal path-
way and given that its short latency precludes processing in motor
cortices, presumably, some node between the retina and reticular
formation must be modulated by task-related signals before the
arrival of visual information. Within the brainstem, the SC is an
obvious candidate and we have emphasized the similarity be-
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tween our results and SC activity on anti-saccade trials (Everling
et al., 1998, 1999). The SC receives extensive projections from
frontal and parietal cortices that convey task-related signals and
the SC is itself strongly interconnected with premotor centers for
orienting eye, head, and limb and torso movements (for review,
see Corneil and Munoz, 2014). Visual neurons in the SC respond
within 50 ms of stimulus onset (Wurtz and Goldberg, 1972) and
a subset of these neurons are active only before reaches, not sac-
cades (Song and McPeek, 2015). The SC is also thought to medi-
ate SLRs on neck muscles in primates (Rezvani and Corneil, 2008;
Chapman and Corneil, 2011), which bears many similarities to
the limb SLR shown here. In addition, neurons in intermediate
and deep SC are active before reaching movements (Werner,
1993), with the activity of such neurons correlating well with
EMG activity on upper limb muscles (Werner et al., 1997; Stu-
phorn et al., 1999). Electrical stimulation within the SC can also
evoke limb movements in both cats and primates (Cowie et al.,
1994; Courjon et al., 2004; Philipp and Hoffmann, 2014). Finally,
human fMRI experiments have reported reach-related BOLD ac-
tivity in the deep layers of SC that is distinct from saccade-related
activity (Linzenbold and Himmelbach, 2012; Himmelbach et al.,
2013). The SC appears to be a logical node where cognitive con-
trol could influence the vigor of short-latency visual signals that
are destined for the reticular formation.

SLR as an alternative biomarker for the fast
visuomotor response
Although neurophysiological studies are required to prove that
the tectoreticulospinal system provides the substrate for the SLR,
and perhaps online corrections more generally, there are a num-
ber of important implications for our findings. First, the SLR can
be detected even though the subject started from a static posture
and evolves well in advance of voluntary movement (Fig. 3).
Attributing different components of muscle recruitment to dif-
ferent descending pathways during online corrective movements
is far more complicated, both because of the ongoing muscle
recruitment accompanying the initial movement and because the
voluntary component of the corrective movement is itself expe-
dited due to an already-made commitment to move (Cluff and
Scott, 2015). Studying the SLR from a static posture may, some-
what paradoxically, simplify the study of the fast visuomotor re-
sponse. Perhaps more fundamentally, it is clear that SLR
magnitude is modulated by top-down control, with such modu-
lation being quantifiable at a trial-by-trial resolution that is un-
precedented for human studies. Therefore, our ability to detect
the SLR with surface recordings is particularly encouraging be-
cause the SLR may provide a novel and accessible biomarker with
which to better understand how visual input integrates with cog-
nitive control in both clinical (Chan et al., 2005; Antoniades et al.,
2013) and developmental (Luna et al., 2015) studies in humans.
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