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Abstract

We recorded muscle activity from an upper limb muscle while human subjects reached towards peripheral targets. We tested the
hypothesis that the transient visual response sweeps not only through the central nervous system, but also through the peripheral
nervous system. Like the transient visual response in the central nervous system, stimulus-locked muscle responses (< 100 ms)
were sensitive to stimulus contrast, and were temporally and spatially dissociable from voluntary orienting activity. Also, the arrival
of visual responses reduced the variability of muscle activity by resetting the phase of ongoing low-frequency oscillations. This lat-
ter finding critically extends the emerging evidence that the feedforward visual sweep reduces neural variability via phase reset-
ting. We conclude that, when sensory information is relevant to a particular effector, detailed information about the sensorimotor
transformation, even from the earliest stages, is found in the peripheral nervous system.

Introduction

The onset of a visual stimulus results in a transient burst of neural
activity that sweeps in a feedforward manner throughout visual cir-
cuits (Boehnke & Munoz, 2008). This response carries information
about the location, but not the identity or task relevance, of the stim-
ulus (Lamme & Roelfsema, 2000). Recurrent activity appears later,
integrating the pure visual response with top-down modulation, and
distinguishing targets from distractors until a unique motor response
is selected (Corbetta & Shulman, 2002). Generally, this process is
described as playing out fully in the cortex until a decision is made
and a movement is planned, after which the motor commands des-
cend to the spinal cord. Here, we demonstrate that even the earliest
stages of visuomotor processing are propagated to the skeletomotor
periphery.
We tested whether the transient visual response is propagated to

muscles in the human upper limb during a reaching task. This has
the potential to explain a wide range of reflexive reaching phenom-
ena, including the manual following response (Saijo et al., 2005),
rapid online correction (Day & Lyon, 2000), and the global effect in
reaching (Wood et al., 2011). We recorded intramuscular activity
from chest muscles while subjects reached to peripheral visual tar-
gets. Consistent with previous reports (Corneil et al., 2004; Pruszyn-
ski et al., 2010), we observed stimulus-locked responses (SLRs) in
human upper limb muscles. These SLRs shared defining features of

the transient visual response: they were sensitive to the contrast of
the stimulus, they were temporally and spatially dissociable from
voluntary orienting, and they were evoked by stimulus offsets
(Gawne, 2002). Together, these findings suggest that the transient
visual response sweeps not only through the central nervous system,
but also through relevant segments of the peripheral nervous system.
Oscillatory dynamics in the electromyographic (EMG) recordings

supported this hypothesis. As sensory information sweeps through
the brain, it resets the phase of ongoing oscillations (Lakatos et al.,
2008), thereby reducing neural variability (Churchland et al., 2010).
Sensory-induced phase resetting selectively modulates the processing
of later recurrent activity (Schroeder & Lakatos, 2009), and the
resulting drop in neural variability may serve as a threshold mecha-
nism for movement initiation (Churchland et al., 2006; Purcell
et al., 2012). Thus, sensory-induced phase resetting appears to play
a role in the transition between sensory selection and the initiation
of voluntary movement (Nicolelis et al., 1995). Here, the SLR
selectively reset the phase of ongoing low-frequency oscillations,
resulting in a reduction in the variability of muscle activity. There-
fore, detailed information about the transformation of a sensory sig-
nal into a voluntary movement command is expressed in upper limb
muscles prior to reaching.

Materials and methods

A total of 15 human subjects (aged 21–41 years; all male) partici-
pated with informed consent, and were paid for their participation.
Six of the subjects participated in both of the experiments reported
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here. All procedures were approved by the University Research Eth-
ics Board for Health Science Research at the University of Western
Ontario. All subjects reported no history of visual, neurological or
musculoskeletal disorder. One of the subjects was left-handed; all
others were right-handed.

Apparatus

Subjects performed reaching movements while grasping the handle
of a robotic manipulandum (InMotion Technologies) with their right
hand (Fig. 1a). A six-axis force transducer (ATI Industrial Automa-
tion, Apex, NC, USA; resolution, 0.05 N), which was located inside
the handle, measured manual forces. The position of the manipulan-
dum in the horizontal plane was sampled at 600 Hz. Subjects sat at
a desk and interacted with the robot in a horizontal plane at shoul-
der height. A custom air sled, secured below the subject’s right
elbow, supported the arm during movements. All stimuli were pre-
sented on a horizontal mirror (placed just below chin height) that
reflected the display of a downward-facing LCD monitor. The mir-
ror occluded the subject’s view of the arm. Real-time visual feed-
back of hand position was provided by means of a small red dot
projected onto the mirror by the LCD monitor. The precise timing
of visual events on the screen was determined with a photodiode.

Muscle electromyography

We recorded EMG activity from the clavicular head of the right
pectoralis major (cPM), a muscle involved in generating torque at
the shoulder joint during whole-arm reaching movements. Record-
ings were made with intramuscular fine-wire electrodes, by the use
of staggered monopolar insertions to characterise cPM recruitment
across multiple motor units. Six insertions (i.e. three channels with
two electrodes each) were spaced ~1 cm apart, typically 1 cm below
(inferior to) the clavicle, with the most lateral insertions being

placed just under the lower clavicular convexity (Fig. 1b). A surface
ground electrode was placed on the left clavicle. EMG data were
recorded with a Myopac Jr system (Run Technologies; low-pass fil-
ter modified to 2 kHz). The EMG data were amplified and sampled
at 4 kHz. Offline, EMG signals were then full-wave rectified and
bin-integrated into 1-ms bins.

Experimental tasks

In both tasks, subjects were instructed to move as quickly as possi-
ble, and to overshoot the target. During piloting, we found that a
higher baseline EMG signal, induced by a constant load force on
the arm, had a beneficial effect on the detectability of the SLR. We
therefore used the robotic arm to generate a constant load force of
5.3 N (5 N to the right; 1.75 N down) opposite to the direction of
the upper left target from the starting position. For comparison,
gravity exerts a constant force of 29.4 N on an outstretched arm
with a mass of 3 kg.

Luminance contrast

Subjects (n = 11) performed a center-out reaching task towards a
single target. A trial started when the subject brought the cursor (a
red dot representing real-time hand position) into a central start-posi-
tion circle and maintained that position for 2.5 s. The start-position
circle then changed color to signal the beginning of the trial. After
1–1.5 s (randomised), the start-position circle disappeared. Exactly
200 ms later, a target appeared 10 cm from the start-position point,
in one of two locations: (i) 160° (i.e. upper left target) from the
start-position point; or (ii) 340° (i.e. lower right target) from the start
position. The 200-ms ‘gap’ was used because of its role in hastening
arm movements (Gribble et al., 2002) and potentiating the visual
grasp reflex (Fischer & Boch, 1983), and the possibility that these
effects could lead to a more reliable elicitation of the SLR.
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Fig. 1. Experimental paradigm. (a) Subjects held the handle of a robotic arm, with their arm supported by an air sled. They viewed both the reach targets and
a cursor representing the real-time position of their hand on a mirror surface that reflected the output of a downward-facing LCD screen. (b) The arrow indicates
the approximate placement of electrodes in the cPM. (c) Trials in the luminance contrast task started with subjects holding the cursor in the central start-position
circle (SP). The SP disappeared 200 ms prior to target (T) onset, after which subjects immediately reached towards the target. (d) Trials in the delay task also
started with the cursor in the SP. A peripheral target then briefly flashed for 150 ms. The SP disappeared either at target onset [black bar; GCND (Go-cue, No
Delay)], or after a 1-s delay [gray bar; Go-cue, Delay (GCDEL)]. SP disappearance was the cue to initiate the reach [reach onset (RO)] towards the location of
the flashed target.
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We used four different levels of target luminance contrast. The
targets were circles filled with different shades of gray against a
white background (383.3 cd/m2). The lowest-contrast target
(370.5 cd/m2) had a Weber contrast ratio of 3.3%. The second low-
est-contrast target (352.4 cd/m2) had a Weber contrast ratio of 8.1%.
The second highest-contrast target (311 cd/m2) had a Weber contrast
ratio of 18.9%. Finally, the highest-contrast target (0.4 cd/m2) had a
Weber contrast ratio of 99.9%. Luminance was measured with a Ko-
nica Minolta CA-100 photometer.

Delayed reaching

Subjects (n = 10) performed an immediate/delayed reaching task.
After a variable inter-trial interval, subjects were presented with a
single target in one of the two locations described in the luminance
contrast task. Targets had a Weber contrast ratio of 99.9%. Subjects
were instructed to initiate the reach only after the disappearance of
the central start-position circle. This could happen either: (i) immedi-
ately, concurrent with target onset; or (ii) 1000 ms after target onset.
Critically, the no delay and delay trials were randomly interleaved. In
both conditions, the target was on the screen for only 150 ms. The
target reappeared momentarily once the hand reached it.

Data analysis

Kinematic analysis

In order to achieve sample-to-sample locking between kinematic and
EMG data, kinematic data were up-sampled from 600 Hz to
1000 Hz with a lowpass interpolation algorithm, and then lowpass-
filtered with a second-order Butterworth filter, with a cutoff at
150 Hz. Reaction time (RT) was calculated as the time from the
appearance of the reach target, as measured by the photodiode
located on the LCD screen (luminance contrast task), or the disap-
pearance of the central start-position point (delay task) to the initia-
tion of the reach. Reach initiation was identified by first finding the
peak tangential hand velocity, and then moving backwards to the
closest previous point at which the velocity profile reached 5% of
the peak. Errors in reach direction were determined by: (i) detecting
suprathreshold velocity bumps prior to RT definition; and/or (ii)
sampling the position of the hand 100 ms after reach initiation. If
the position was not within �45° of the true target location, the
reach was classified as an error and was excluded from analysis. As
the RT distributions with the longest tails extended into the 600-ms
range, RTs slower than 700 ms were also excluded from analysis.

Receiver-operating characteristic (ROC) analysis

ROC analysis was used to determine the presence and timing of
stimulus-locked activity in the cPM muscle recordings (Corneil
et al., 2004; Pruszynski et al., 2010). We separated EMG wave-
forms by target location and target contrast (luminance contrast task)
or delay duration (delay task). These waveforms were then
smoothed with a seven-point (7 ms) running average. For every
sample (1 ms) between 100 ms before and 300 ms after target pre-
sentation (both tasks) or start-position disappearance (delay task),
we calculated the area under an ROC curve. This metric indicated
the probability that an ideal observer could discriminate between a
leftward (cPM as agonist) and rightward (cPM as antagonist) reach-
ing movement, based on the distribution of EMG activity at that
particular sample. A value of 0.5 indicates chance discrimination,
whereas values of 0 and 1 indicate perfect discrimination. We set

the threshold for discrimination at 0.675 (or 0.325 for the opposite
direction), which is similar to (although slightly more conservative
than) what was used in Pruszynski et al. (2010). The time of earliest
discrimination was defined as the time after stimulus onset (lumi-
nance contrast task) or start-position disappearance (delay task) at
which the ROC area surpassed 0.675, and remained above that
threshold for at least five of the next 10 samples.
One of the primary goals of the present study was to test whether

or not the luminance contrast of a target modulates the timing of
stimulus-locked muscle activity. We used the ROC analysis to
address this question. There were two practical hurdles, however.
First, differences between target contrast conditions in the distribu-
tion of RTs meant that any differences in the timing of the earliest
ROC discrimination for a given condition might simply be a func-
tion of the underlying RT distribution. The second practical hurdle
was that RTs were often very fast, even in conditions where no
directional errors were committed (that is, subjects were not merely
guessing). Often, the large burst of muscle activity associated with
the voluntary movement for these earliest RTs overlapped consider-
ably with the temporal range in which stimulus-locked activity
occurs. This had the effect of washing out any potential signature of
the stimulus-locked activity.
We addressed these difficulties by removing trials with the earliest

RTs (and, by extension, EMG activity that overlapped with the
range of interest), thus simplifying the process of distinguishing
between the presence and absence of stimulus-locked activity. Spe-
cifically, we removed trials in ascending order of RT while dividing
the remaining trials into ‘early’ and ‘late’ RT groups (Fig. 3a) and
finding the slope of the relationship between the average RT and the
earliest discrimination times for these two groups (Fig. 3b and c).
Whenever the slope of this relationship exceeded 67.5° (i.e. halfway
between unity at 45° and vertical at 90°), we combined the RT
groups and performed the ROC analysis again. Our goal was to
identify an actual peak in the combined ROC function near the dis-
crimination times for the separate ROC functions. This was done to
avoid situations in which one RT group exceeded threshold because
of movement-related activity rather than SLR-related activity. To
find the peak, we first identified the point in the combined ROC
function where three of 10 consecutive frames were above the dis-
crimination threshold. We then defined a window from 10 ms
before to 30 ms after this point, and within that window identified
where the (135-Hz lowpassed) first derivative of the ROC function
dipped below zero. If this peak detection algorithm could detect a
peak in the ROC time course (Figs 3b and 4b), we assumed the
presence of stimulus-locked activity. If (i) the slope of the discrimi-
nation time and RT relationship between the groups failed to exceed
67.5°, or (ii) a peak was never detected in the combined ROC where
the slope did exceed 67.5°, we assumed the absence of stimulus-
locked activity.
Note that, in order for the analysis to reach the stage where the

peak was detected, there had to be prior evidence that the timing of
such a peak would be invariant with respect to RT. Thus, the
latency of the ROC peak was assumed to be a faithful measure of
the latency of stimulus-locked activity, in spite of differences
between the RT distributions between target contrast conditions. We
quantified the magnitude of the SLR for a given subject and contrast
condition by taking the associated latency of the ROC peak and
averaging the EMG activity within an 11-ms window with the peak
latency at the center (i.e. 5 ms before to 5 ms after the peak). To
normalise between electrodes (given the large variability in mean
EMG signal strength between electrodes), we then subtracted a base-
line EMG value, calculated by taking the average of EMG activity
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100 ms prior to stimulus presentation. As we were interested in the
within-subject relationships between SLR magnitudes for the various
contrast conditions, and not patterns of SLR magnitude between
subjects, we normalised the magnitude measures within subjects.
Accordingly, we divided the magnitude score for each contrast con-
dition by the within-subject mean score across all significant contrast
conditions. One subject (s9 from Fig. 2f) had only one significant
SLR condition, and was therefore excluded from the magnitude
analysis. We performed ANOVAs and planned comparisons (using

Welch’s t-test, owing to unequal sample sizes) on the peak latencies
and average SLR magnitudes for the four target contrast conditions.
The P-values for reported t-tests are therefore uncorrected.

Modified ROC analysis for the delay experiment

The approach to characterising the SLR in the luminance contrast experi-
ment emphasised the invariance of ROC detection time with respect to
RT. Specifically, two separate ROC analyses were performed on early

S
lo

pe
 (d

eg
)

Subjects

0

30

60

90

1

0.5

0

slope: 85.1º180

200

220

Discrimination time (ms)

R
T 

(m
s)

0.675

Area under ROC curve

Time from target onset (ms)
e

c

d

f

SLR+SLR–

3.3%8.1%18.9%99.9%
Luminance contrast

a b

E
rr

or
 ra

te
 (%

)

0

5

10

15

20 False start
Wrong direction

Target luminance contrast (%)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

100

0

100

200

300

Good trials
Errors

3.3%
8.1%
18.9%
99.9%

Contrast

Reaction time (ms)

s4 s5 s6 s8 s9 s10 s11s1 s2 s3 s7

0 100 200

40 60 80 100

3.3 8.1 18.9 99.9

200 400 600

20

60

100

–100 0 100 200 300 400

20

60

100

Time from target onset (ms)

Tr
ia

l n
um

be
r

EARLY RT

LATE RT

EARLY RT

LATE RT

Target left

Target right

EARLY
LATE

EARLY

LATE

0

SLR
1 0

Normalised μV
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and late RT trials, and the ROC discrimination times were regressed
against average RT for the two RT bins. This approach was problematic
for the delay experiment, for a number of reasons. First, in the No Delay
condition, RTs were exceedingly long, owing to uncertainty introduced
by the interleaving of ‘immediate’ and ‘delay’ trials. This uncovered the
robust oscillation of the SLR, which was problematic, because the ROC
discrimination could cross threshold at the first, second and, sometimes,
the third cycle of the oscillation. This problematised attempts to relate
ROC discrimination time to RT. Second, in the Delay Stim-locked
epoch, there was no RT. Third, in the Delay Go-locked epoch, the Tar-
get Left and Target Right SLRs oscillated synchronously. As the ROC
analysis was an attempt to discriminate reach direction on the basis of
differences between Target Left and Target Right EMG activity, the in-
phase oscillations were problematic.
To be consistent in analysis across the three epochs, we settled on

a technique that does not regress early and late RT with discrimina-
tion times, and that does not rely on running the ROC with Target
Left vs. Target Right. To justify not using the RT bins, we point to
previous reports (Corneil et al., 2004; Pruszynski et al., 2010), and
the infrequency of having the regression of RT with discrimination
times of early, non-voluntary activity fail to meet the slope threshold
for SLR significance in our own dataset. At this point, we consider
it a well-established empirical finding that when there is SLR activ-
ity, it remains temporally invariant with respect to RT.
Our modified approach involved running the ROC analysis sepa-

rately for Target Left and Target Right EMG data. The EMG data
were evaluated against a noise vector with the same mean and stan-
dard deviation as the baseline activity for the recording being ana-
lysed. This was done for each time point in the recording. The
resulting ROC function was lowpass-filtered (50-Hz cutoff) to pre-

vent spurious spikes from passing threshold, which was set to �3
standard deviations of the first 150 ms of the ROC function. We
then identified the peak in the ROC function corresponding to the
voluntary activity. If both the Target Left and the Target Right ROC
functions surpassed threshold prior to the voluntary activity, the
SLR was scored positively. If only one of these passed threshold, it
was scored negatively, to be conservative.

Evaluating SLR spatiotemporal features

To characterise the temporal relationships between Target Left and
Target Right SLR activity in the various epochs of the delay experi-
ment, we treated the SLRs effectively as sine waves, and used the
phase as a proxy for the relative timing of the SLR peaks. We took
the within-subject average EMG trace around the SLR (i.e. a win-
dow starting at 50 ms and ending just before the voluntary activity,
which was typically between 150 and 250 ms) for a given condi-
tion, and found the Fourier basis function within the 10–15-Hz band
that gave the best fit for both movement directions. We then calcu-
lated the difference in phase between the two fits. We used this as
an indirect measure of reciprocal contraction of agonist and antago-
nist muscles (inferred from the relationship between Target Left and
Target Right fits), which would correspond to p radians of phase
difference in the limit, or co-contraction, which would correspond to
a lack of phase difference between agonist and antagonist.

Spectral analysis

In Fig. 4c–e, we show examples of emergent 10–15-Hz oscillations
in mean EMG traces at the time of the SLR. For all Fourier
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transforms, FFT length was set to the number of samples and NFFT
to the next power of 2 above FFT length. For the time–frequency
plots, the window size was 100, the overlap was 90, and each seg-
ment was windowed with a Hamming window. In Fig. 4, the power
spectra are evaluated on the mean EMG trace. In Fig. 6, the power
spectra are evaluated on a given epoch, with all trials appended
together in a single vector.

Phase resetting analysis

To characterise phase resetting in the EMG data, we used EEGLAB

(Delorme & Makeig, 2004) and custom MATLAB scripts to calculate
event-related spectral perturbation (ERSP) and inter-trial phase
coherence (ITPC). As ERSP is a baseline-normalised spectrogram, it
indicates spectral perturbations introduced by a time-locked experi-
mental event. For n trials, if Fk(f,t) represents the spectral estimate
of the kth trial at frequency f and time t, the ERSP is computed as:

ERSPðf ; tÞ ¼ 1
n

Xn

k�1

jFkðf ; tÞj2 ð1Þ

where |●| represents the complex norm. Fk(f,t) was computed by
use of a Morlet wavelet transform. Window size decreased and
number of cycles increased linearly with frequency, from three
cycles in a 389-ms window at the lowest frequency (8 Hz) to 10.5
cycles in a 175-ms window at the highest frequency (60 Hz).
The ITPC measure indicates the degree of inter-trial phase synchro-

nisation at frequency f and time t. This measure has been referred to as
the ‘phase locking factor’ (Tallon-Baudry et al., 1996), and is com-
puted as (using the same conventions as in Eqn 1):

ITPCðf ; tÞ ¼ 1
n
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power spectra plots for four other subjects, with the same conventions as in d.
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The ITPC measure can take values between 0 (absence of phase
synchronisation) and 1 (perfect phase synchronisation). Statistical
significance was assessed by bootstrapping confidence intervals for
median spectral estimates within SLR (100–150 ms) and baseline
(100–50 ms pre-stimulus) windows.

Results

Luminance contrast determines the latency and magnitude of
SLRs

Subjects reached towards a single target possessing one of four lev-
els of target luminance, selected to span the full range of visual con-

trast (Fig. 1c). Center-out reaching movements were directed to one
of two target locations: upper left and lower right (Fig. 5c), corre-
sponding to a voluntary contraction and relaxation, respectively, of
the cPM. When target contrast was higher, RT was shorter (ANOVA:
P < 10�17) (Fig. 2a). Increasing target contrast had no effect on
false starts, but led to fewer directional errors (P < 10�8) (Fig. 2b).
The SLR appeared (in the intensity plots such as those in Fig. 2c)

as a vertical band of increased contraction or relaxation preceding
the voluntary movement-related muscle activity. We used ROC
analysis to determine the presence, latency and magnitude of the
SLR in each subject. Trials were equally divided into ‘early’ and
‘late’ RT bins (Fig. 2c). A separate ROC analysis was performed on
the two different RT bins (Fig. 2d). When the slope of the relation-

Ta
rg

et
 le

ft 
- t

ar
ge

t r
ig

ht
S

LR
 p

ha
se

 d
iff

er
en

ce

0

π

2π

no delay delay
stim-lock

delay
go-lock ~0 phase diff

π phase diff

2

π
2

Target Left fit
Mean EMG

Target Right fit

13 Hz, phase diff: 2.61 rad

100 150 200 250 70 90 110 130 150 70 90 110 130 150

15 Hz, phase diff: 3.77 rad 12 Hz, phase diff: 0.08 rad

No-Delay
stimulus-locked

Delay
stimulus-locked

Delay
go-locked

0.
1 

μV

Time from stim onset (ms) Time from go-cue (ms)Time from stim onset (ms)

a

b

Co-relaxation

Reciprocal contraction

S
tim

-lo
ck

ed

G
o-

lo
ck

ed Go-cue

cPM contraction cPM relaxation
pD relaxation pD contraction

cPM relaxation
pD relaxation

c

No delay target left
No delay target right

Delay go target left
Delay go target right

S
LR

 p
ha

se
 d

iff
er

en
ce

(D
el

ay
-N

o 
D

el
ay

)

Target left
(contraction)

Target right
(relaxation)

50 ms

0

π

2π
2

π
2

2π
S2 S3

S6 S10

S4
ed

Fig. 5. Spatiotemporal relationships between SLRs. (a) Fourier fits to mean EMG trace (single subject shown here) at the time of SLR revealed reciprocal timing
(anti-phase) between Target Left (top row) and Target Right (bottom row) SLRs for both Stim-locked epochs, and synchronous timing (in-phase) for the Delay
Go-locked epoch. (b) Group-level phase differences between Target Left and Target Right SLR fits, for the three epochs. Blue circles are individual subjects. Error
bars are between-subject SEMs. (c) Hypothesised agonist–antagonist relationships. Anti-phase fits suggest peripheral tuning (reciprocal contraction of agonist and
antagonist muscles), whereas in-phase fits suggest a holding response (co-relaxation or co-contraction). pD, posterior deltoid. (d) For the five subjects with signifi-
cant SLRs in both the No Delay and Delay Go-locked epochs, the No Delay Target Left fit is out of phase with the other fits. (e) The synchronous Delay Go-
locked SLRs are attributable to a delayed Target Left SLR (relative to No Delay SLRs for Target Left movements). Colors represent different subjects.

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 42, 1919–1932

Visual responses reset muscle oscillations 1925



ship between average RT and the earliest ROC discrimination time
for the early and late trials exceeded a predetermined threshold
(67.5°), we took it as evidence that activity was locked to the stimu-
lus rather than to voluntary RT (Fig. 2e). Of the 11 subjects who
participated in the luminance contrast experiment, seven showed an
SLR in at least one of the contrast conditions (Fig. 2f). In a separate
analysis, we regressed moving-window averages of ROC discrimina-
tion time and RT. The results of this supplemental analysis fully
agreed with the results presented here (Fig. S1). Anecdotally, the
ability to detect the SLR was correlated with the subject’s body
type; subjects with low muscle mass and low body fat most reliably
produced recordings with an SLR. Given that all insertion needles
were of identical length, penetrations went deeper into the muscles
of thinner subjects. As previously suggested (Pruszynski et al.,
2010), it is possible that the SLR is preferentially propagated to dee-
per muscle tissue (i.e. closer to the blood supply), where there is a
higher concentration of slow-twitch fibers (Singh et al., 2002).
Slow-twitch fibers are recruited earlier than fast-twitch fibers (Henn-
eman, 1957), and are therefore more likely to mediate the low-
latency activity of the SLR.
We then compared the latencies of the first peaks past threshold

in the ROC time course for each contrast condition. SLRs appeared
sooner when target contrast was higher (F3,14 = 117.2, P < 10�9

(Fig. 3). Whenever SLRs were detected, we defined a 10-ms win-
dow (i.e. 5 ms before and after the ROC peak) within which we
integrated EMG activity, and then compared across target contrast
conditions in order to test for differences in magnitude. SLRs had a
larger magnitude when the target contrast was higher (F3,13 = 14.18,
P < 0.001) (Fig. 3).

SLRs are spatially and temporally dissociated from voluntary
orienting

In a separate experiment, subjects performed an instructed delay task
in which they reached towards the location of a briefly flashed
(duration, 150 ms) high-contrast target that appeared in one of the
same locations as in the luminance contrast task (i.e. upper left or
lower right). The imperative stimulus was the disappearance of the
central start-position circle. This go-cue was given at one of two
times: (i) no delay, concurrent with stimulus presentation; or (ii)
delayed 1000 ms after stimulus presentation (Figs 1d and 4a and b).
Critically, these two conditions were randomly interleaved. Note
that, except in rare instances of abnormally fast RTs in the No
Delay condition, the target had already disappeared by the time
when subjects started reaching towards it. RTs and error rates for
this experiment are shown in Fig. S2.
Using a modified ROC analysis, we characterised SLRs in three

separate EMG epochs: (i) No Delay; (ii) Delay Stim-locked (i.e.
onset of target); and (iii) Delay Go-locked (i.e. disappearance of the
start-position circle). The most consistent SLR was observed in the
No Delay condition, with nine of 10 subjects showing an SLR. In
the Delay conditions, seven of 10 subjects showed an SLR locked
to the target onset, and five of 10 subjects showed an SLR locked
to the go-cue (i.e. the disappearance of the central start-position cir-
cle). In summary, we found that the SLR appeared whenever the
subject treated a visual event as an imperative stimulus, regardless
of whether that visual event was a spatially informative target onset
or a spatially uninformative offset of a central start-position marker.
Furthermore, these SLRs appeared even when voluntary movements
were suppressed.
During initial viewing of the raw data from this task, we noticed

that the SLRs in the Delay Go-locked epoch were temporally syn-

chronous rather than reciprocal between the Target Left and Target
Right movements. To statistically validate this observation, we took
advantage of the fact that the SLR oscillated within the 10–15-Hz
range (Fig. 4c–e), allowing us to treat the SLRs effectively as sine
waves. We took the within-subject average EMG trace around the
SLR for a given condition, and found the Fourier basis function
within the 10–15-Hz band that gave the best fit for both the Target
Left and Target Right movements. We then calculated the difference
in phase between the Target Left and Target Left fits (Fig. 5a). We
used this as a measure of reciprocal contraction between agonist and
antagonist muscles (inferred from the relationship between Target
Left and Target Right fits), which would correspond to p radians of
phase difference in the limit, or co-contraction of the muscle pair,
which would correspond to a lack of phase difference between Tar-
get Left and Target Right fits (Fig. 5c).
There was a significant effect of delay condition (i.e. No Delay;

Delay Stim-locked; Delay Go-locked) on phase difference
(F2,18 = 15.25, P = 10�4, g2 = 0.63 (Fig. 5b). Phase differences
between Target Left and Target Right fits for the Delay Go-locked
condition [M = 0.46 rad, standard error of the mean (SEM) = 0.17]
were different from those in the No Delay condition (M = 2.63 rad,
SEM = 0.32, t12 = 4.78, P < 0.0005) and the Delay Stim-locked
condition (M = 2.92 rad, SEM = 0.31, t10 = 6.12, P < 0.0005). The
phase difference in the No Delay and Delay Stim-locked conditions
did not differ (P = 0.53). In other words, SLRs in the No Delay and
Delay Stim-locked conditions were characterised by reciprocal con-
traction (that is, phase differences between Target Left and Target
Right fits were closer to p than to 0), whereas SLRs in the Delay
Go-locked condition were characterised by synchronous contraction
(that is, phase differences were closer to 0 than to p). The synchro-
nous contraction observed in the Delay Go-locked epoch was attrib-
utable to an initial relaxation rather than contraction (i.e. phase
reversal) in the Target Left SLR (Fig. 5d and e), which indicates
that the SLR for this epoch was an initial co-relaxation followed by
oscillations of co-contraction and co-relaxation.

Behavioral correlates of SLRs

Kinematic evidence of the SLR was assessed with spatial position
and force measurements from the manipulandum. We found no evi-
dence of the SLR in the spatial position of the hand. This was prob-
ably attributable to: (i) the degrees of freedom intervening between
the chest muscles and the hand; and (ii) the inertia of the robot arm,
which should dampen small fluctuations in movement. However,
there was evidence of the SLR in the force measurements. We cal-
culated force rates (i.e. first derivative of force) for x-forces and
y-forces during stimulus-locked epochs. To avoid overlap between
voluntary forces and SLR-related forces, we used an RT cutoff (i.e.
including only trials with manual RT of > 270 ms) for the No
Delay trials (as Delay trials had no RT in the stimulus-locked
epoch). Target Left and Target Right x-force rates were significantly
different for both No Delay (P = 0.0187) and Delay (P = 0.0019)
trials during a 150–200-ms post-stimulus window, but not during a
baseline (15–65 ms post-stimulus) window (P > 0.5 (Fig. 6). The
same was true for y-force rates; No Delay (P = 0.0019) and Delay
(P = 0.0448) trials were different during the 150–200-ms window,
but not during the baseline window (P > 0.3).
There were two unexpected features of this bump in the force

rates: it was in the opposite direction of the voluntary force rate pro-
files, and, at 150 ms, it was later than the first wave of the SLR in
the EMG recordings. Also, because this bump occurred just prior to
the onset of force rates pertaining to the voluntary reach, we investi-
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gated whether this oppositely oriented bump could be attributable to
an interaction torque. That is, if the shoulder/chest exerts a torque
on the humerus in the direction of the target for the voluntary move-
ment, it might cause the hand to briefly move in the opposite direc-
tion before the tricep/bicep compensates for that torque.
To address this, we extended the RT cutoff of the No Delay trials

by 50 ms (i.e. we discarded RTs of < 320 ms). This pushed back
the average time of initiating voluntary forces by 50 ms. If the sepa-
ration of Target Left and Target Right conditions at 150 ms was
merely an early stage of the voluntary movement forces (e.g. an
interaction torque), we would expect to see that separation delayed
by 50 ms also. If it was stimulus-locked, we would expect it to
remain at 150 ms. We observed the latter. The x-force and y-force
rates of the two target direction conditions were significantly differ-
ent during the 150–200-ms window (P = 0.0027 and P = 0.0274,
respectively), but not during the baseline window (P = 0.95 and
P = 0.54, respectively). Moving the RT cutoff even further to
370 ms had no effect on these statistics or the timing of the SLR

bump at 150 ms. These analyses rule out the idea that the bump at
150 ms is related to voluntary movement. Instead, they suggest that
the bump is stimulus-locked.
In our EMG recordings, the first ‘rebound’ of the SLR was often

more pronounced than the initial wave of excitation or suppression,
particularly in Target Right trials (Fig. 4). We suggest that the bump
in force rate at 150 ms is the rebound of the SLR. This is supported
by four observations: (i) the timing of the bump remained
unchanged with respect to the voluntary RT; (ii) the bump also
occurred in the Delay Stim-locked condition, where there was no
voluntary movement; (iii) the direction of the bump was opposite to
the direction of the target; and (iv) the relationship between target
direction and SLR magnitude was the same for the forces and the
EMG traces (i.e. strong rebound in the Target Right direction, and
weaker SLR and rebound in the Target Left direction). Although
kinematic evidence of the SLR has been observed in macaque neck
muscle activity (Corneil et al., 2008; Chapman & Corneil, 2011),
our results are the first to demonstrate a behavioral correlate of the
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SLR in humans. A similar analysis of the luminance contrast experi-
ment (reported in Fig. S3) supported this conclusion.

Arrival of the SLR reduces variability in muscle activity

Long RTs in the No Delay epoch revealed stimulus-locked low-fre-
quency (10–15 Hz) oscillations following the SLR (Fig. 4c–e).
Spectral analysis demonstrated that these low-frequency oscillations
were present in chest muscle activity throughout the entire experi-
ment (Fig. 7; see Fig. S4 for a supplemental wavelet analysis). The
exact range of oscillation frequencies observed for both experiments
was 10–14 Hz. We assumed that, if the SLR was resetting the oscil-
lation phase, the ITPC of 10–15-Hz oscillations would be selectively
increased around the time of the SLR (i.e. ~100 ms post-stimulus).
Even though the phase locking of the oscillations is plainly visible

in the multiple SLR bands of the intensity plots in Fig. 4, we vali-
dated this observation with spectral decomposition of the EMG sig-
nal. By comparing ERSP (Eqn 1) and ITPC (Eqn 2), it is possible
to establish whether stimulus-induced phase resetting has occurred,
and whether or not it can be attributed to increases in spectral
power.
In all stimulus-locked conditions, we observed a selective low-fre-

quency (10–20 Hz) increase in ITPC, but not in ERSP, starting at
~100 ms. To statistically assess this effect, we used 95% confidence
intervals to compare inter-subject median ITPCs and ERSPs for a
baseline (100–50 ms pre-stimulus) and SLR (100–150 ms post-stim-
ulus) window (Fig. 8). Across all subjects (including those who
showed no evidence of SLR), there was a separation between SLR
and baseline median ITPC only in a low-frequency band (~10–
20 Hz). In the Delay Stim-locked conditions, where the EMG signal
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is less likely to contain very low frequency (i.e. < 5 Hz) fluctuations
attributable to the voluntary movement, there was a clear peak in
the SLR-related ITPC increase at ~15 Hz. There were no differences
between SLR and baseline ERSP, suggesting that the ITPC
increases at the SLR were not attributable to event-related increases
in spectral power. These effects were far more pronounced when we
performed this analysis only on those subjects who showed prior
evidence of the SLR. A supplementary analysis, in which we evalu-
ated the instantaneous circular variance of phase between trials,
agreed with this main analysis (Fig. S5). We conclude that the SLR
results in a resetting of the phase of the ~10–14-Hz tremor oscilla-
tions in the EMG recordings. In other words, the arrival of the
visual information in the SLR results in a reduction in the variability
of muscle activity.

Discussion

We have demonstrated that the peripheral nervous system provides
a readout of the transformation of visual inputs to motor outputs.
Low-latency SLRs were sensitive to target contrast, they were spa-
tially and temporally dissociable from voluntary orienting, and they
were elicited by stimulus onsets and offsets. Furthermore, the visual
transient reduced the variability of muscle activity by resetting the

phase of intrinsic oscillations, similarly to what has been described
throughout the central nervous system.

Dissociation of stimulus detection and voluntary orienting in
limb muscle activity

SLRs in human limb muscles have been reported previously (Prus-
zynski et al., 2010), but key features of these responses were contrary
to what would be expected of a visual transient; they failed to appear
when a voluntary movement was suppressed, and when the go-cue
was a stimulus offset. However, Pruszynski et al. used a blocked
design, resulting in repetition of trial types. Their null results can be
explained by another established feature of the visual transient: that it
extinguishes with repetition (Boehnke et al., 2011). Here, we ran-
domised the trial order, and found that an SLR inexorably followed
(and was spatially tuned to) target onset or start-position offset, even
when the voluntary reach was suppressed. This spatial and temporal
dissociation between the SLR and voluntary orienting, aside from
being a key feature of the visual transient response, is consistent with
previous findings of SLRs in the neck muscles of non-human pri-
mates (Corneil et al., 2008; Chapman & Corneil, 2011).
During the Delay Go-locked epoch, the Target Left and Target

Right SLRs were synchronous rather than reciprocal. Synchronous
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SLRs in a single muscle acting as agonist or antagonist are consis-
tent with co-contraction (or co-relaxation) of an antagonistic muscle
pair (Fig. 5c), and although they are also consistent with a temporal
lag for the Target Left (agonist) SLR, an interaction between move-
ment direction and delay condition is improbable. Furthermore, even
if co-contraction is assumed, it is unclear whether it should be inter-
preted as a spatially untuned SLR or a spatially tuned SLR towards
an imperative stimulus that requires only the maintenance of the
hand at its current position. Given overwhelming evidence that the
SLR is spatially tuned in all other circumstances, we argue that co-
contraction in the Delay Go-locked SLR is a spatially tuned
response towards a centrally located imperative stimulus. This is fur-
ther evidence that stimulus detection is dissociated from voluntary
orienting in limb muscle activity.

An orienting reflex in human upper limb muscles

The visual transient observed here resembles the orienting reflex,
which is a constellation of involuntary muscle responses that rapidly
align the eyes, head and forelimbs towards a salient stimulus (Hess
et al., 1946). It is associated with pursuit and prey-capture behav-
iors, and it has been well preserved throughout vertebrate evolution,
as shown by its presence in fish (Preuss et al., 2014), frogs (King
et al., 1999), rodents (Dean et al., 1986), and cats (Sokolov, 1963).
It is mediated by a pathway from the superior colliculus (SC; optic
tectum in non-mammals) to the reticular formation (Dean et al.,
1989). In non-human primates, it is probably mediated by tectoretic-
ular projections from intermediate and deep layers of the SC that
carry arm movement control signals (Werner et al., 1997a,b; Stup-
horn et al., 1999, 2000; Song et al., 2011; Philipp & Hoffmann,
2014).
Limb control projections from the SC, such as SC cephalomotor

projections (Gandhi & Sparks, 2007), may lack the strong gating by
reticular omnipause neurons that saccadic burst generator cells
receive (Corneil & Munoz, 2014). This is consistent with our obser-
vation of contrast sensitivity in the latency and magnitude of the
SLR. As early as the retina, increased luminance contrast of visual
inputs results in higher firing rates and lower, less variable transduc-
tion latencies (Shapley & Victor, 1978). This effect is preserved
throughout early visual processing areas in the form of a transient
visual onset response (Boehnke & Munoz, 2008; Pooresmaeili et al.,
2010; Marino et al., 2012; Tanaka et al., 2012). A lack of strong
gating in the tectoreticulospinal pathway would allow this contrast-
sensitive transient response to propagate directly onto the limb mus-
cles. Our finding adds to the nascent literature demonstrating con-
trast-based effects on transient visual responses in the peripheral
nervous system. For example, a recent report has shown that tran-
sient pupil responses are modulated by luminance contrast (Wang
et al., 2014).

Linking physiological tremor to sensorimotor integration

We observed a resting 10–14-Hz oscillation in upper limb muscles.
This oscillation, also known as physiological tremor (typically 8–
12 Hz), is found in healthy populations (Sch€afer, 1886). Physiologi-
cal tremor appears to be the result of a combination of mechanical
resonance (Vernooij et al., 2013), signaling lags in the stretch reflex
loop (Lippold, 1970), and central oscillatory generators (Hallett,
1998). Phase resetting of pathological tremor and voluntary rhyth-
mic movement have previously been induced by mechanical pertur-
bation (Britton et al., 1992) and motor-evoked potential via
transcranial magnetic stimulation (Pascual-Leone et al., 1994). Here,

we report a novel demonstration of phase resetting of healthy physi-
ological tremor by a visual stimulus.
The functional relationship between physiological tremor and the

upper limb orienting reflex (e.g. resetting of tremor phase by the
SLR) demonstrated here is not surprising, given the shared pathway
of both mechanisms. The tectoreticulospinal orienting reflex path-
way (for the upper limb) runs from SC to contralateral pontomedul-
lary reticular formation (PMRF) cells (Sooksawate et al., 2013) that
encode arm movements (Davidson et al., 2007; Hirschauer & Bu-
ford, 2015) and the stimulus-locked adjustments in posture that
compensate for such movements (Schepens et al., 2008). Many tec-
torecipient PMRF cells also receive convergent inputs from the cau-
dal fastigial nucleus (Takahashi et al., 2014), which is a cerebellar
output nucleus essential for the regulation of posture (Sprague &
Chambers, 1954). Critically, physiological tremor, which is associ-
ated with the maintenance of posture, originates in a network that
includes the cerebellum and the PMRF (Williams & Baker, 2009;
Williams et al., 2010). In summary, the PMRF integrates low-
latency sensorimotor information from the SC with tremorogenesis
and postural control signals from the cerebellum. This anatomical
linkage (along with our discovery of a functional linkage) between
the visual transient and physiological tremor suggests a role of the
latter in sensorimotor integration. One possible role, given that tre-
mor oscillations also appear in afferent (dorsal root ganglia) signals
(Baker, 2006), is the facilitation of heightened accuracy in sensed
limb position prior to movement.
The SLR reset the phase of the 10–14-Hz oscillations, consistent

with previous findings of sensory-induced phase resetting (Kazant-
sev et al., 2004; Reimer & Hatsopoulos, 2010; Holtzman & J€orntell,
2011; Romei et al., 2012; Jutras et al., 2013) and variability reduc-
tion (Cohen & Maunsell, 2009; Churchland et al., 2010) throughout
the central nervous system. But what is the functional significance
of stimulus-induced phase resetting? We list three possibilities. First,
it can serve as an extended marker of the exact timing of a sensory
event (Wu et al., 2011). Second, a visual transient can enhance sen-
sory responses by resetting the phase so that the subsequent detailed
sensory information arrives in phase with the event-locked oscilla-
tion (Lakatos et al., 2007). Third, a phase reset can reduce the
latency and temporal variability of information transfer, especially
when the oscillation is at a low frequency (Llin�as, 2009). Given
these features, sensory-evoked phase resetting is an ideal mechanism
for hastening a reflexive online correction to a perturbation or unex-
pected stimulus (Aoi et al., 2013; Ito, 2013; Llin�as, 2013).

The functional significance of the SLR

In humans, involuntary corrective muscle responses can occur
within 80–100 ms of a visual perturbation or a jump in target loca-
tion (Saijo et al., 2005; Fautrelle et al., 2010; Perfiliev et al., 2010),
and these fast corrections are dissociable from slower, voluntary cor-
rections (Day & Brown, 2001). The fast online correction is medi-
ated by a spinal circuit that modulates ongoing corticospinal drive,
and it is abolished by lesions in the reticulospinal tract (Alstermark
et al., 1990; Pettersson et al., 1997; Pettersson & Perfiliev, 2002).
Given that our results implicate a tectoreticulospinal pathway for the
SLR, a tempting hypothesis is that the SLR is a modulatory signal
that has significant kinematic repercussions only when it is modify-
ing ongoing corticospinal drive; it may represent the first step in a
two-stage process of online reach trajectory modification (Gomi,
2008; Fautrelle & Bonnetblanc, 2012). In contexts prior to voluntary
reach initiation (e.g. in the present study), where the corticospinal
drive is absent, this corrective signal may express itself as nothing

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 42, 1919–1932

1930 D. K. Wood et al.



more than a brief, stimulus-locked pulse of muscle activity. It is also
possible that the SLR is a vestigial orienting reflex pathway that
was more critical to survival for our evolutionary antecedents than it
is for us.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Fig. S1. Alternative SLR latency analysis for the luminance contrast
task.
Fig. S2. Error rates and reaction times for the instructed delay task.
Fig. S3. Manual forces during the luminance contrast experiment.
Fig. S4. Wavelet analysis of instructed delay EMG data.
Fig. S5. Alternative analysis showing that the SLR resets the phase
of oscillatory activity.
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