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Kistemaker DA, Wong JD, Gribble PL. The central nervous
system does not minimize energy cost in arm movements. J Neu-
rophysiol 104: 2985–2994, 2010. First published September 8,
2010; doi:10.1152/jn.00483.2010. It has been widely suggested that
the many degrees of freedom of the musculoskeletal system may be
exploited by the CNS to minimize energy cost. We tested this idea by
having subjects making point-to-point movements while grasping a
robotic manipulandum. The robot created a force field chosen such
that the minimal energy hand path for reaching movements differed
substantially from those observed in a null field. The results show that
after extended exposure to the force field, subjects continued to move
exactly as they did in the null field and thus used substantially more
energy than needed. Even after practicing to move along the minimal
energy path, subjects did not adapt their freely chosen hand paths to
reduce energy expenditure. The results of this study indicate that for
point-to-point arm movements minimization of energy cost is not a
dominant factor that influences how the CNS arrives at kinematics and
associated muscle activation patterns.

I N T R O D U C T I O N

A fundamental question in motor control is how the CNS
coordinates the many kinematic and mechanical degrees of
freedom of the body to control posture and movement (Bern-
stein 1967). Several theories of motor control are based on or
inspired by the idea that the CNS arrives at a set of muscle
activation patterns for a given task by minimizing a cost
function in which minimization of energy cost takes part (e.g.,
Alexander 1997; Cruse 1986; Engelbrecht 2001; Hatze and
Buys 1977; Kashima and Isurugi 1998; Nelson 1983; Rasmus-
sen et al. 2001; Soechting et al. 1995; Todorov 2004; Todorov
and Jordan 2002; Torres and Zipser 2002). Such theories have
been shown to predict kinematic features for movement tasks
in the absence of external loads, like relatively straight hand
paths and bell-shaped velocity profiles. However, at least for
unperturbed arm movements, many motor control theories
predict these same kinematics (e.g., d’Avella et al. 2006; Flash
and Hogan 1985; Uno et al. 1989). In addition, even if
kinematics and muscle activation patterns are in accordance
with energy minimization, it would not represent evidence that
energy cost is minimized by the CNS to generate motor
commands. For example, the motor commands that minimize
energy cost could have been selected over an evolutionary
timescale.

The goal of the present study was to directly test the extent
to which energy cost is minimized by the CNS in the context
of a motor learning task. One of the most well studied motor

learning tasks involves making arm movements while grasping
a robotic device that applies forces to the hand that are
perpendicular and proportional to the hand velocity (Caithness
et al. 2004). Unfortunately, the mechanics of these so-called
curl fields are such that the minimal energy path is similar to
movements in the absence of forces (see METHODS). Therefore
this motor learning task is unsuitable to investigate whether
energy minimization plays a role in the selection of kinematics
and/or muscle activation patterns by the CNS.

In the present study we designed a novel force field
specifically to dissociate the minimal energy path from the
relatively straight paths that subjects produce in the absence
of forces. Importantly, this force field was constructed such
that: 1) there is a continuous negative energy gradient
toward the minimal energy trajectory, 2) forces applied to
the hand never pull or push in the direction of the minimal
energy trajectory, and 3) all possible trajectories are equally
stable. Using this force field enabled us to directly test the
idea that the CNS incorporates energy cost in motor learning
by determining to what extent subjects adapted their move-
ments in the force field to expend less energy.

M E T H O D S

Ethics statement

All subjects reported no history of visual, neurological, or muscu-
loskeletal disorder. Written informed consent was obtained from each
subject prior to participation. All procedures were approved by the
University of Western Ontario Research Ethics Board.

Experimental setup

Subjects made movements while grasping the handle of an In-
Motion robotic manipulandum (Interactive Motion Technologies,
Cambridge, MA; see Fig. 1A). Commanded forces to the robot were
adjusted to compensate for position dependence of the robot arm’s
inertia and to create an isotropic inertial characteristic with a mass of
1 kg. The right arm was supported by a custom-made air sled, which
expelled compressed air beneath the sled to minimize surface friction.
The subject’s arm and the manipulandum were beneath a semisilvered
mirror, which reflected images projected by a computer-controlled
liquid crystal display (LCD) screen. Visual targets were projected that
appeared to lie in the same plane as that of the hand. Positional and
force data were sampled at 600 Hz and were filtered afterwards using
a fourth-order bidirectional Butterworth filter with a cutoff frequency
of 15 Hz. Energy delivered to the robot (Eext) was calculated by

Eext ! !
0

T

Fr ṡdt (1)

where Fr represents the forces measured at the robot manipulandum,
ṡ is the velocity of the hand, and T is the movement time. The maximal
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x-deviation was calculated by taking the largest x-deviation in either
the positive or negative direction between the start and target circle.

Force field

Many studies have used curl fields to study motor learning (e.g., see
Caithness et al. 2004). In a curl field, a force is applied at the hand of
a subject that scales with and is perpendicular to the hand’s velocity.
As a consequence, the force applied to the hand does not do work and
is a conservative force field. Thus such a force field has a minimal
energy trajectory that resembles that of the straight trajectory move-
ments in the null field. To address this issue we designed a novel force

field for which the minimum energy path is clearly different from the
slightly curved path that subjects produce in the absence of external
forces. In this study, the forces delivered to the hand of the subject
depended on the y position of the hand (y), the x and y velocities of the
hand (ẋ and ẏ), and a constant b (150 Ns/m2). For outward movements
the commanded forces were

Fy ! b"" ẏ # ẋ# · $ytarget " y$ (2)

The force in the x direction was always zero. The first component in
Eq. 2 (!b · y) produces a pattern of forces such that when a subject
is moving straightforward, the robot is delivering a counteracting
negative force (see Fig. 2A). The second component (b · x) results in

FIG. 1. Experimental setup and minimal energy path. A: targets were projected onto a semisilvered mirror using a liquid crystal display monitor suspended
15 cm above the mirror (not shown). Subjects moved from the red start position to the green target position. Two seconds after reaching the target, start and target
position were swapped and subjects initiated a new movement. B: minimal energy paths (in blue; solid line for outward movements and dashed for inward
movements) and the energy required to move along paths with different left–right curvatures at minimal jerk (movement duration: 400 ms). Color coding
represents the energy needed to follow a given path and shows that there is a continuous negative energy gradient in the direction of the minimal energy path.

FIG. 2. Explanation of the used force field. A: a positive y velocity of the hand (red arrow) results in a counteracting negative commanded force (blue arrow).
B: moving to the right results in an assistive positive force. C: moving outward and to the right under exactly 45° results in no commanded force. D: moving
to the right with a certain speed at the start results in an assistive positive force that is twice as high as a negative counteracting force (E) that results from a
movement to the left with the same speed made halfway between start and target position. F: commanded forces at the target are always zero, irrespective of
the x and y velocities of the hand. Note that the preceding explanation is for outward movements. For inward movements, the commanded force for movements
in the x direction was swapped (compare Eqs. 2 and 3).
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forces that push the hand forward when the subject is moving to the
right (Fig. 2B). The summation of the two components (!ẏ " ẋ)
results in a forceless condition for movements made under a 45° angle
(Fig. 2C). The position-dependent component in Eq. 2 (| ytarget ! y |)
results in forces applied by the robot that are proportional to the y
distance between the hand and target. This ensures that if a subject
moves to the right with a certain speed at the start position (Fig. 2D),
the assisting force is twice as high as the counteracting force when
moving to the left, with the same speed halfway between the start and
target positions (Fig. 2E). In the target position, commanded forces
are always zero (Fig. 2F), irrespective of the velocity of the hand.

The force field for inward movements was identical for outward
movements, except that the direction for the forces in the x direction
was swapped

Fy ! b"" ẏ " ẋ# · $ytarget " y$ (3)

Overall, this force field was organized so that for both outward and
inward movements it was energetically beneficial to move to the right
at the onset of movement and to move forward and left in a later stage.
To provide additional insight in the force field, we calculated the
energy required to move the robot through the force field along
several (minimal jerk) trajectories with different excursions in the x
direction (Fig. 1B). All movement durations were 400 ms. Red lines
represent high energy cost and blue lines indicate low energy cost. It
can be seen that there is a monotonic negative energy gradient toward
the minimum.

Figure 1B also shows the minimal external energy paths for out-
ward (solid blue line) and inward movements (dashed blue line).
These paths are markedly different from the relatively straight hand
paths observed in a null field (see RESULTS). Moving along the minimal
energy path would therefore require a kinematic detour to the target.
Due to the nature of the force field subjects can, but do not need to,
move along the minimal energy path to reduce the energy cost of their
movement. As explained earlier, the commanded assisting (y) forces
for a rightward velocity and the linear scaling of the commanded (y)
forces with the distance to the target result in an energetic advantage
for any small adjustment of their hand path to the right of those
performed in the null field (see also Fig. 1B).

Musculoskeletal model and estimation of metabolic energy

The musculoskeletal model of the arm used consisted of three rigid
segments interconnected by two hinge joints representing the gleno-
humeral joint and elbow joint (see also Kistemaker et al. 2006,
2007a). The arm was actuated by six Hill-type muscle units (two

monoarticular shoulder and elbow muscles and two biarticular mus-
cles; see Fig. 3A). The implemented Hill-type muscle model consisted
of a contractile element (CE), a series elastic element (SE), and a
parallel elastic element (PE), as shown schematically in Fig. 3B.
Activation dynamics was added to describe the relation between
muscle stimulation (STIM) to active state (q). The lengths of the
muscle–tendon complexes (lMTC) and moment arms (arm) were func-
tions of the joint angles. The musculoskeletal model was extended
with a model that allows for the calculation of metabolic energy
expenditure (Umberger et al. 2003). This model takes into account
energy cost related to the active transport of Ca2", contractile state
(isometric, concentric, and eccentric), and differences in muscle type
(parameters taken from Dahmane et al. 2005; Johnson et al. 1973).
Detailed descriptions of the musculoskeletal model, energy expendi-
ture model, and how muscle activation patterns were obtained are
provided in the APPENDIX.

All data analyses and simulations were run under MATLAB.

Experimental protocol

EXPERIMENT 1. Six right-handed male subjects participated in this
experiment. They performed point-to-point movements to visual tar-
gets while grasping the handle of the robotic linkage with their right
hand. Movements (30 cm) were made toward and away from the body
in a horizontal plane along the surface of a desk, at shoulder height
(see Fig. 1A). The subjects’ view of their arm was occluded by the
semisilvered mirror. Visual targets were provided on the mirror using
an LCD monitor. Only when the participant’s hand was within either
the start or the target circle, a small dot representing the hand position
was plotted. Thus on-line feedback about hand position was provided
during the movement. When the target circle was reached, the target
changed color to provide feedback indicating that the movement was
either well timed (between 300 and 500 ms), too slow, or too fast. To
avoid biasing subjects to move along a particular hand path, apart
from the timing aspect, no instructions were given as to how the target
was to be reached. After 2 s, start and target position were swapped
and subjects initiated a new movement toward the original start
position. During the first 150 movements, the commanded forces to
the robot were zero, hereafter referred to as null field (NF). After that,
300 movements were performed while the robot created a force field
(FF), defined by Eq. 2 and 3.

EXPERIMENT 2. In a second experiment we investigated the influence
of practicing to move along the minimal energy path on the motor
behavior of subjects. Another six subjects first made 150 movements in

FIG. 3. Schematic drawing of the muscu-
loskeletal model of the arm and Hill-type
muscle unit. A: %e is elbow joint angle and
%s is shoulder joint angle. B: CE, contractile
element length; lCE, CE length; PE, parallel
elastic element; SE, series elastic element;
lSE, SE length.
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the force field. As in experiment 1, the visual targets were depicted and
the only instruction provided to subjects was to reach the target within the
desired time window. After that, we displayed the minimal energy path
on the semisilvered mirror and asked subjects to make another 150
movements along this path to the target. In this tracking task only, a small
cursor was plotted on the screen representing the subject’s hand during
the entire movement. As in all conditions, feedback was provided about
movement timing by changing the color of the target circle. The subjects
were asked to follow the trajectory as accurately as possible, but no
feedback was provided as to how well the subject was capable of tracking
the minimal energy path. This was done to make the task as simple as
possible while experiencing energetically efficient reaching movements.
After the tracking task, we removed the minimal energy path (and the
feedback of the hand position during the movement) from the display and
instructed the subjects to make another 150 movements as they liked. All
movements in experiment 2 were made in the force field.

EXPERIMENT 3. In a third experiment we tested whether the degree
to which subjects reduced energy cost was simply a function of the
amount of motor training experienced. We asked two subjects to
complete 1,650 movements (#2 h) in the force field. Every 450
movements, subjects were allowed a short rest of 1 min.

R E S U L T S

Experiment 1

Figure 4A shows the average hand paths of subjects for the last
10 trials of 150 trials in the null field and the last of 200 trials in
the force field. Movement speeds in the null field and force field
were not significantly different (mean peak tangential speed 0.99
m/s in NF, 0.96 m/s in FF, P $ 0.15, paired t-test). It was found
that subjects did not change their hand paths (measured as the
maximal deviation in the x direction) during practice in the force
field, but rather continued to move as they did in the null field
(mean $ !8.0 mm in NF, !8.4 mm at the end of force-field
practice, P $ 0.81, paired t-test). Note that even slight changes of
their hand path to the right would have reduced the energy cost.
Figure 4B shows the external energy required for the movements
of the subjects in the null field and force field, calculated using
kinematic data and the recorded forces in the handle of the robot
(see METHODS). A paired t-test of the energy required in the first
and last 10 successful trials in the force field showed that subjects

were not learning to move with less energy over the course of
practice in the force field (mean $ 5.3 J for first, mean $ 5.1 J for
last, P $ 0.33, paired t-test). Thus after practicing in the force field
subjects moved along the same path as that in the null field and
thus used more energy than needed.

Experiment 2

Since the subjects did not learn to move using less energy in the
force field, we conducted a second experiment to investigate what
would happen after the subjects practiced to move along the
minimal energy path. Figure 5A shows the average hand paths of
the last 10 movements in the three sessions of all successful trials
(arrival at target within 300–500 ms). Similarly, Fig. 5B shows
the average force profiles for all three sessions (in addition to
those obtained during the null field session of experiment 1).
Figure 5C shows the external energy delivered to the robot. As
can be appreciated from these figures, it was found that before and
after practicing to move along the minimal energy path, subjects
performed reaching movements as described earlier. Maximum
x-deviation after practice was not significantly different from that
before practice (mean $ !6.4 mm before practice, mean $ !6.5
mm after practice, P $ 0.42, paired t-test). Moreover, there were
no significant differences in the external energy delivered by the
subjects before and after practice (mean $ 5.1 J before, mean $
5.4 J after, P $ 0.08, paired t-test). Yet, the external energy
delivered by the subjects when they were asked to follow the
minimal energy path was significantly less (2.7 J; P % 0.001) than
that when they were free to choose a hand path (5.4 J). Thus even
after experiencing hand paths that required significantly less
energy to reach the target, subjects moved using more energy
when they were free to choose a hand path.

Experiment 3

In a third experiment we examined whether minimization of
energy cost simply required more practice in the force field.
We asked two subjects to complete 1,650 movements (#2 h) in
the force field. Every 450 movements, subjects were allowed a
short rest of 1 min. A paired t-test showed no significant

FIG. 4. Average hand paths and required energy per trial in null field and force field. A: average hand trajectories of the last 10 trials after null field practice
(black) and force field practice. No significant change in hand paths, as measured in maximal deviation in the x direction, was observed. B: energy per trial for
all practice trials meeting the timing criterion (between 300 and 500 ms).
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differences in the maximum x-deviation of the first and last 10
movements in the force field (mean $ !7.2 mm first, mean $
!6.9 mm last, P $ 0.31, paired t-test). Thus even after
extensive practice in the force field, subjects did not learn to
move using less energy.

For an overview of the main statistical findings refer to
Table 1.

Arguably, if the CNS minimizes energy it minimizes the
total metabolic energy spent by muscles and not external
energy. This metabolic energy depends not only on mechanical

work done by the muscles (equal to the external energy), but
also on several physiological processes within the muscle. To
investigate the influence of these factors, we used a detailed
musculoskeletal model of the human arm (Kistemaker et al.
2006, 2007b), extended with a model that allows for the
calculation of metabolic energy expenditure (Umberger et al.
2003) to simulate the arm movements observed. It was found
that for the movements observed in the force field, metabolic
energy was mainly determined by the external energy delivered
to the robot: the metabolic energy was roughly 4.5-fold the
positive work done by the muscles (equivalent to external
energy), which is in line with physiological data (Abbate et al.
2002; Zarrugh et al. 1974). The metabolic energy cost in reality
can be even higher because the muscle activation patterns of
the musculoskeletal model have limited cocontraction of an-
tagonist muscles. To conclude, if subjects did not minimize
external energy in the force field, they also did not minimize
metabolic energy.

D I S C U S S I O N

Several motor control theories propose that the minimization
of energy cost might play an important role in how the CNS
arrives at muscle activation patterns and associated kinematics
(e.g., Alexander 1997; Cruse 1986; Engelbrecht 2001; Hatze
and Buys 1977; Kashima and Isurugi 1998; Nelson 1983;
Rasmussen et al. 2001; Soechting et al. 1995; Todorov 2004;
Todorov and Jordan 2002; Torres and Zipser 2002). We
directly tested this idea by exposing human subjects to a
specific force field that has a minimal energy trajectory that is
markedly different from those observed in a null field. In
addition, the force field was constructed such that there is a
continuous negative energy gradient to the minimal energy
path. It was found that subjects could quickly learn how to
reach in the force field. However, subjects did not adopt hand
paths to those requiring less energy, but rather moved just as
they did in the null field. Simulations using a detailed model of
the human arm showed that metabolic energy was not mini-
mized in the force field. From these results we conclude that
minimization of energy is not an important factor that influ-
ences how CNS arrives at kinematics and associated muscle
activation patterns.

It can be ruled out that a high difficulty in adopting a curved
hand path in the force field prevented subjects from adjusting
their paths to those requiring less energy. First of all, subjects
needed only about 15 trials to adapt to the force field. In

FIG. 5. Average hand paths, force profiles, and required energy per trial
before, during, and after training with minimal energy trajectory. A: average
hand paths of the last 10 of 150 movements that subjects made in the first force
field session (red), with the instruction to track the minimal energy path in the
force field (green) and in the subsequent session in which again no instructions
were given as to how the target had to be reached (blue). No significant
differences were found before or after practice with the minimal energy path.
B: average profiles of the external forces delivered to robot of the last 10 trials
in the null field (black) and force field before (red), during (green), and after
(blue) training with the minimum energy trajectory. Subjects delivered a peak
force of about 7 N to move in the null field and about 36 N in the force field
(data were not aligned at peak force, so individual peak forces were somewhat
higher). Note that the force patterns in the tracking task were more variable
than those in the other tasks. C: external energy for all successful trials in the
3 sessions of experiment 2. Subjects did not move with less energy after
practice with the minimal energy path.
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addition, in experiment 2 subjects could easily produce move-
ments similar to the minimal energy path that required signif-
icantly less energy than that of the straight hand paths. Finally,
due to the nature of the force field, subjects did not need to
move along the minimal energy path that required a kinematic
detour to reduce the energy cost; any small adjustment of their
hand path to the right would do so (see also Fig. 1B). During
their normal movement variability in the force field, subjects
experience substantially different energy cost values (see Fig.
4B). However, despite having experienced paths requiring less
energy as part of their normal variability in movement paths,
subjects did not adapt their hand paths, not even after pro-
longed practice trials.

Arguably, one might suggest that energy is not minimized
because the change in energy cost experienced during the
trial-to-trial variability is too small. To assess this, we plotted a
histogram of the calculated energy cost of every successful trial in
the first experiment, minus the mean energy cost and normalized
for the mean energy cost in the null field (&E; Fig. 6). In other
words, &E is the change in energy cost experienced over
different trials, expressed relative to the mean energy cost of
moving in the null field. This figure shows that within their
normal movement variability in the force field ('1SD), sub-
jects experience a range in energy cost that is about 3.2-fold the
energy it costs for them to move in the null field. This means
that if subjects are not minimizing energy cost for arm move-
ments in this force field because of small experienced differ-
ences in energy cost, this would be all the more true for
movements in a null field (or free space).

In this study, we changed the minimal energy hand path
of planar 2df reaching movements. As stated earlier, be-
cause subjects did not change their hand paths at all this
must mean that energy expenditure is very unlikely to
substantially contribute to adaptive motor control, at least in
planar arm movements. In our opinion, this result also
implies that it is improbable— but not impossible—that for
more complex arm movements the CNS would minimize
energy cost. This claim is supported by an experimental
study of Flanders et al. (2003) that measured three-dimen-
sional (3D) whole arm pointing movements while holding
onto a gyroscope that introduced complex dynamics. It was
found that subjects gradually returned to movements similar

to those in free space and, from their analyses, it was
concluded that the observed gradual change in movement
patterns did not lead to significant changes in peak kinetic
energy. A similar conclusion was reached by Hermens and
Gielen (2004): model simulations in which peak mechanical
work was minimized were not in agreement with experi-
mental data on 3D reaching movements in free space.
Nevertheless, it remains to be established that for more
complex movements, such as 3D movements under the
influence of gravity, the CNS does not minimize energy to
acquire new muscle activation patterns.

The results of this study are in contradiction with previous
work proposing that minimization of energy, or related
variables, underlies the specification of kinematic features
of reaching movements in several environments (e.g., Al-
exander 1997; Cruse 1986; Hatze and Buys 1977; Rasmus-
sen et al. 2001; Soechting et al. 1995). As explained in
METHODS, for movements in free space and, for example, in

TABLE 1. Overview of the main statistical results

Experiment 1 NFend FFbegin FFend P value

max x-dev, mm !7.10 ('3.5) !7.60 ('4.2) 0.80
Energy, J 5.49 ('0.49) 5.23 ('0.42) 0.33
Energy, J 0.34 ('0.06) 5.23 ('0.42) %0.001*
vmax, m/s 1.01 ('0.24) 0.99 ('0.37) 0.06

Experiment 2 FF1end FFtend FF2end

max x-dev, mm !6.50 ('3.6) !6.10 ('1.2) 0.77
Energy, J 5.00 ('0.58) 5.23 ('0.66) 0.054
Energy, J 2.70 ('0.55) 5.23 ('0.66) %0.003*

Experiment 3 NFend FFend

max x-dev, mm !7.20 ('2.8) !6.90 ('2.6) 0.31

NFend $ average ('SD) of last 10 successful trials in the null field; FFbegin $ first 10 trials in force field; FFend $ last 10 trials in force field; FF1end $ last
10 trials in force field before tracking task; FFtend $ last 10 trials in tracking task; FF2end $ last 10 trials in force field after tracking task; max x-dev $ maximal
x-deviation of the hand; vmax $ maximal hand velocity. *Significant P value.

FIG. 6. Histogram of change in energy experienced over trials. The change
in energy (&E) was calculated by subtracting the energy cost per trial from the
mean energy cost and dividing by the mean energy cost to move in the null
field. The depicted range denoted by '&FF equals '1SD of the energy cost in
the force field normalized for the mean energy cost in the null field. Included
are all successful trials in the first experiment. Energy cost in the null and force
fields, respectively: 0.34 J ('0.07) and 5.41 J ('0.55).
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the often studied curl field (a force field for which the forces
applied to the hand are perpendicular and proportional to the
velocity of the hand; e.g., see Caithness et al. 2004),
minimal energy paths are essentially the same (relatively
straight hand paths). Thus such conditions are not adequate
to investigate whether energy minimization actually takes
part in acquiring new motor skills. On the other hand, the
main result of this study is not necessarily at odds with
studies that suggest that tasks like walking and running
(Alexander 1991; Margaria 1976; Zarrugh and Radcliffe
1978) are, under normal circumstances, performed in an
energetically efficient way. Although the present results
suggest that such minimization of energy cost is not under
the immediate control of the CNS, it is quite possible, for
example, that energetic cost of movements has decreased
over a long timescale due to evolutionary pressure. The
results of this study raise the question: If energy cost is not
a dominant factor in adaptive control of reaching move-
ments, what is? Other factors like stability (Balasubrama-
nian et al. 2009), control effort (Todorov and Jordan 2002),
and minimizing (endpoint) variance due to signal-dependent
noise (Harris and Wolpert 1998) are candidates for further
research.

A P P E N D I X : M U S C L E M O D E L A N D M E T A B O L I C
E N E R G Y E X P E N D I T U R E M O D E L

Muscle model

ACTIVATION DYNAMICS. Activation dynamics was modeled ac-
cording to Hatze (1977; see also Kistemaker et al. 2005) and
related muscle stimulation (STIM) to active state (q) in two
steps. A first-order dynamic system related the free Ca2"

concentration (relative to its maximum value; 'rel) to STIM.
Subsequently, an algebraic relation described how active state
q depends on 'rel and (via () on CE length relative to its
optimum at maximal q (lCE_rel)

'̇rel ! m · "STIM " 'rel# (A1)

q !
q0 # "( · 'rel#3

1 # "( · 'rel#3 (A2)

where ( is a function of lCE_rel

( ! c · )
"k " 1#

"k " lCE_rel#
lCE_rel (A3)

where ), k, c, m, and q0 are constants (see Table A1).
The original equations of Hatze are simplified for clarity.

For a graphical representation of the STIM–q relationship as a
function of lCE_rel, see Fig. A1A. It was previously shown that
this model of activation dynamics is capable of adequately

describing the shifts in optimum lCE at submaximal muscle
stimulations (Kistemaker et al. 2005).

CONTRACTION DYNAMICS. Contraction dynamics was modeled
by relating the contraction velocity (vCE) to lCE

vCE ! f"lCE, q, %# (A4)

The contraction velocity was derived from the difference
between the isometric force (Fisom), calculated using the force–
length relationship, and the actual force to be generated by the
CE (FCE). Assuming that the mass of the muscle was negligible
with respect to the force it is producing, FCE equaled the
difference between the force of SE (FSE) and that of PE (FPE).
The concentric (vCE % 0 or FCE % Fisom) and eccentric (vCE #
0 or FCE # Fisom) parts of the force–velocity relationship were
modeled separately. The concentric part was described based
on the classic Hill equation, which was solved for vCE_rel (the
time derivative of lCE_rel)

vCE_rel !
brel

* "FCE_rel " q · Fisom_n#
FCE_rel # q · arel

* (A5)

where FCE_rel $ FCE/FMAX and Fisom_n $ Fisom/FMAX. Based on
experimental results (Stern Jr 1974), maximal contraction velocity
was made dependent on Fisom_n by setting: arel

* $ arel · Fisom_n

when lCE # lCE_opt and arel
* $ arel when lCE * lCE_opt. Further-

more, based on experimental results of Petrofsky and Phillips
(1981) for low values of q, maximal contraction velocity was
made dependent on q by setting

brel
* ! brel$1 " 0.9% q " qcrit

q0 " qcrit
&2' (A6)

where q % qcrit and brel
* $ brel when q + qcrit. Values for the

constants arel, brel, and qcrit are given in Supplemental Table S1.1

The eccentric part of the force–velocity relationship was
modeled using a hyperbola. To prevent numerical problems, a
hyperbola with a slightly slanted asymptote was used (for the
sake of conciseness, it was not solved here for vCE_rel)

"FCE_rel # p3 # p4 · vCE_rel#"vCE_rel # p1# ! p2 (A7)

The parameters p1, p2, p3, and p4 were calculated using four
criteria: 1) the concentric and eccentric curve are continuous;
2) based on Katz (1939), the derivative of FCE_rel with respect to
vCE_rel at vCE_rel $ 0 of the eccentric curve was twice that of the
concentric curve; 3) the asymptote had a value of 1.5q · Fisom_n at
vCE_rel $ 0; and 4) and arbitrary small value for the slope of the
asymptote. Note that the calculated parameters were functions of
Fisom_n such that both parts of the force–velocity relationship
depended on Fisom_n and FCE_rel. See Supplemental Fig. S2, C and
D for a graphical representation of the force–velocity relationship
at different values of q and lCE_rel.

Normalized isometric force (Fisom_n) was modeled as a
second-order polynomial with an optimum at lCE_rel $ 1 and
two zero-crossings at lCE_rel $ 1 ' width

Fisom_n ! "a · lCE_rel
2 # 2a ˙ lCE_rel " a # 1 (A8)

where a $ 1/width2. For a graphical representation of the
isometric force–length–stimulation relation, see Fig. A1B.

1 The online version of this article contains supplemental data.

TABLE A1. Muscle nonspecific parameters

Parameter Value Parameter Value

m 11.30 width 0.66
c 1.37e-4 arel 0.41
) 5.27e4 brel 5.20
q0 5.00e-3 qcrit 0.03
k 2.90
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The passive force–length characteristic of the PE was mod-
eled to depend quadratically on lCE_rel (note that lPE $ lCE)

FPE ! kPE · $max %0, lCE_rel "
lPE_0

lCE_opt
&'2

(A9)

where lPE_0 $ 1.4lCE_opt and kPE was chosen such that FPE $
FMAX at lCE_rel $ 1 " width. The passive force characteristic of
the SE was modeled to depend quadratically on lSE

FSE ! kSE · (max "0, lSE " lSE_0#)2 (A10)

kSE was chosen such that at FMAX SE is at 104% of lSE_0. For a
graphical representation of the force–length relationships of the
elastic components see Fig. A1, A and B. The muscle parameters
FMAX, lSE_0, and lCE_opt were obtained from the literature (Murray
et al. 1995, 2000; Nijhof and Kouwenhoven 2000). FSE and FPE
were calculated using the muscle tendon complex length (lMTC)
and lCE. Parameter values are listed in Table A2.

lMTC was modeled as a second-order polynomial depending
on elbow (%e) and shoulder angle (%s)

lMTC"%e, %s# ! a0 # ale%e # a2e%e
2 # a1s%s (A11)

Values of a1e, a2e, and a1s were based on cadaver data literature
(Murray et al. 1995, 2000; Nijhof and Kouwenhoven 2000),

obtained using the tendon displacement method (see Grieve et al.
1978); values for a0 representing lMTC at %e $ %s $ 0 (and width;
see Eq. A11) were chosen such that the optimum angle for
maximal isometric moment was consistent with the literature
(Kistemaker et al. 2007a). Moment arms were calculated by
taking the partial derivative of lMTC to %e and %s

arme"%e# !
, lMTC

,%e
! ale # 2a2e%e (A12)

arms"%s# !
, lMTC

,%s
! als (A13)

Energy expenditure model

Umberger’s energy expenditure model was previously
explained and described in full detail elsewhere (Umberger
et al. 2003). The variables used in this model are identical to
those used in the musculoskeletal model. A brief description
of the full model is in the following text; note that the
formulation and naming are slightly reformatted for conve-
nience.

The total metabolic energy was calculated by integrating the
following rate of metabolic energy liberation (Ėmet) term

Ėmet ! ḣAM # ḣSL # ẇCE (A14)

where ḣAM is the activation/maintenance heat, ḣSL is the
shortening/lengthening heat, and ẇCE is the rate of work
done by the CE.

ḣAM is linearly related to the percentage of fast twitch fibers
(%FT, data obtained from Dahmane et al. 2005; Johnson et al.
1973; see Supplemental Table S2)

ḣAM ! AAM · S"1.28 · %FT # 25#
when lCE * LCE_opt

ḣAM ! AAM · S"1.28 · %FT # 25# · "0.4 # 0.6FISO#
when lCE - LCE_opt (A15)

where

S ! 1.25

AAM ! STIM0.6 when STIM - q

AAM ! "STIM # q#0.6 when STIM * q

ḣSL depends on the muscle type, on the shortening (.S_ST and
.S_FT) and lengthening heat coefficient (.L), and on the relative
contraction velocity (vCE_rel). For shortening (vCE_rel * 0)

TABLE A2. Muscle-specific parameters

Muscle FMAX, N lCE_opt, m lSE_0, m lPE_0, m a0, m a1e, m a1s, m a2e, m %FT, %

MEF 1,422 0.092 0.172 0.129 0.286 !0.014 0.0 !3.96e-3 50.3
MEE 1,549 0.093 0.187 0.130 0.236 0.025 0.0 !2.16e-3 42.9
BEF 414 0.137 0.204 0.192 0.333 !0.016 !0.030 !5.73e-3 54.5
BEE 603 0.127 0.217 0.178 0.299 !0.014 0.030 !3.18e-3 64.7
MSF 838 0.134 0.039 0.187 0.151 0.0 0.030 0.0 53.6
MSE 1,207 0.140 0.066 0.196 0.232 0.0 !0.030 0.0 64.7

MEF, monoarticular elbow flexor; BEE, biarticular elbow extensor.

FIG. A1. A: q(t) for STIM $ 0.3 and lCE_rel $ 0.6, 0.8, 1.0, 1.4 (longer
lCE_rel $ higher q). B: isometric force–length characteristic for STIM $ 0.05,
0.1, 0.15, 0.3, 1 (higher STIM $ higher force). C: force–velocity characteristic
for lCE_rel $ 1.0 and q $ 0.1, 0.4, 0.7, 1.0 (higher STIM $ higher FCE_rel).
Note that at q % 0.3, maximal shortening velocity scales with q. D: force–
velocity characteristic for STIM $ 0.2 and lCE_rel $ 1.0, 1.4, 0.8, 0.6 (in order
of highest maximal FCE_rel). Note that at lCE_rel #1, maximal shortening
velocity scales with Fisom_n. Maximal shortening velocity of the lower force–
velocity characteristic in D is diminished because at this STIM and lCE_rel, q is
%0.3 (see C).

2992 D. A. KISTEMAKER, J. D. WONG, AND P. L. GRIBBLE

J Neurophysiol • VOL 104 • DECEMBER 2010 • www.jn.org

 on D
ecem

ber 15, 2010
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/


ḣSL ! ".S_ST · vCE_rel"1 " %FT/100#
" .S_FT ˙ vCE_rel"%FT/100# (A16a)

where

.S_ST !
100

vCEmaxST
.S_FT !

153

vCEmaxFT

and for lengthening (vCE_rel # 0)

ḣSL ! .L · vCE_rel · A · S when lCE * LCE_opt

ḣSL ! .L · vCE_rel · A · S · Fisom when lCE - LCE_opt

(A16b)

where

.L ! ḣSL ! 4.S_ST

ẇCE is the rate of work done by a muscle scaled with its
mass (m)

ẇCE ! "
FCE · vCE

m
(A17)

The state derivatives of the metabolic energy expenditure
model are numerically integrated for each time step together
with those of the musculoskeletal model described earlier.

Muscle activation patterns

Muscle activation patterns were found by optimizing the
following cost function

J ! k1"pdes " pend#2 # k2ṗend
2 # k3p̈end

2 # k4Emet (A18)

where k1–4 represents the optimization parameters; pdes is the
desired endpoint of the hand; p, p˙end, and p¨end represent the
end position, velocity, and acceleration of the hand; and Emet is
the metabolic energy spent by the muscles. In the case of a
simulated force field, forces at the hand of the musculoskeletal
model were added that were identical to the commanded forces
to the robot manipulandum. Muscle activation patterns were
found by numerical optimization using a Trust–Region–
Reflective constraint optimization implemented in MATLAB.
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