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Wong J, Wilson ET, Malfait N, Gribble PL. The influence of
visual perturbations on the neural control of limb stiffness. J
Neurophysiol 101: 246 –257, 2009. First published July 30, 2008;
doi:10.1152/jn.90371.2008. To adapt to novel unstable environments,
the motor system modulates limb stiffness to produce selective increases
in arm stability. The motor system receives information about the envi-
ronment via somatosensory and proprioceptive signals related to the
perturbing forces and visual signals indicating deviations from an ex-
pected hand trajectory. Here we investigated whether subjects modulate
limb stiffness during adaptation to a purely visual perturbation. In a first
experiment, measurements of limb stiffness were taken during adaptation
to an elastic force field (EF). Observed changes in stiffness were consis-
tent with previous reports: subjects increased limb stiffness and did so
only in the direction of the environmental instability. In a second
experiment, stiffness changes were measured during adaptation to a
visual perturbing environment that magnified hand-path deviations in the
lateral direction. In contrast to the first experiment, subjects trained in this
visual task showed no accompanying change in stiffness, despite reliable
improvements in movement accuracy. These findings suggest that this
sort of visual information alone may not be sufficient to engage neural
systems for stiffness control, which may depend on sensory signals more
directly related to perturbing forces, such as those arising from proprio-
ception and somatosensation.

I N T R O D U C T I O N

The human nervous system can modify the mechanical
behavior of the limb to adapt to task requirements for both
posture and movement. By controlling the level of antagonist
muscle coactivation, the nervous system can adjust mechanical
impedance about a joint and compensate for perturbations
resulting from limb dynamics and external forces (Hogan
1985). Arm stiffness is modulated to compensate for move-
ment environments that feature unstable loads. Burdet et al.
(2001) showed that stiffness was increased only in the direction
of an environmental instability, suggesting that stiffness can be
modulated to efficiently increase limb stability. Reaching
movements with higher levels of stiffness (Burdet et al. 2001;
Shiller et al. 2002) and muscle coactivation (Gribble et al.
2003; Osu et al. 2004) are also associated with decreased
movement variability and reaches to smaller visual reaching
targets. This suggests that stiffness may be used to increase
movement accuracy. It has also been suggested that in-
creased stiffness may reduce the perturbing effects of neu-
romuscular noise (Osu et al. 2004; Seidler-Dobrin et al.
1998; Selen et al. 2006a,b).

Much of the existing work on the neural control of arm
stiffness has been done in the context of unstable force envi-

ronments (e.g., negative elastic force fields) imposed on the
limb by robotic devices (Burdet et al. 2001; Franklin et al.
2003, 2004, 2007a,b). In these tasks, subjects received both
visuals, and proprioceptive and somatosensory information
about the perturbing force environment. Somatosensory signals
from cutaneous receptors and proprioceptive signals from af-
ferents such as muscle spindles and Golgi tendon organs may
provide information about the magnitude and direction of
perturbing forces. In contrast, vision of the limb provides
information about position and thus can provide only indirect
information about perturbing forces, to the extent that devia-
tions from an expected position are related to force perturba-
tions. Thus although changes in stiffness have been observed in
response to both force perturbations and changes to visual task
demands, only one study has been reported examining the
relative importance of visual versus somatosensory and pro-
prioceptive information for the neural control of arm stiffness
(Franklin et al. 2007b).

Here we tested whether stiffness modulation would occur in
response to a purely visual perturbation that approximated the
visual information associated with an unstable force environ-
ment. We compared the extent of stiffness modulation in an
unstable force environment to that in a second environment
defined by a purely visual perturbation. Stiffness was measured
midway through movement, using a position-servo control
method reported previously (Darainy et al. 2007). In a first
experiment, the goal was to establish, using this method, a
selective increase in stiffness similar to that reported by Burdet
et al. (2001) during training in an elastic force field. In a second
experiment subjects performed reaching movements in a novel
environment that was designed as a visual analog of the elastic
force field. Visual feedback of the hand was manipulated to
magnify deviations made perpendicular to movement direc-
tion. In a third experiment we more precisely matched the
visual perturbations of the two environments such that differ-
ences between stiffness resulting from visual and force training
could be more directly compared.

Subjects who trained in the elastic force field showed sig-
nificant increases in arm stiffness only in the direction of
perturbing forces. In contrast, subjects trained in the visual gain
environments showed no accompanying change in stiffness,
despite reliable improvements in movement accuracy. These
findings suggest that this sort of visual information alone may
not be sufficient to engage neural systems for stiffness control,
which may depend in part on afferent signals more closely
related to environmental forces. In the absence of these signals,
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subjects may use other strategies to improve movement accu-
racy.

M E T H O D S

Subjects

Twenty-five right-handed subjects (eight females) between 17 and
35 yr of age (mean age ! 20.1 yr) were randomly assigned to three
experimental groups. Subjects reported no history of visual, neuro-
logical, or musculoskeletal disorder. Written informed consent was
obtained from each subject prior to participation. The UWO Research
Ethics Board approved all procedures.

Apparatus

Subjects performed reaching movements while grasping the handle
of an InMotion2 robotic linkage (InMotion Technologies, Cambridge,
MA) in the right hand. A six-axis force transducer (ATI Industrial
Automation, Apex, NC; resolution: 0.05 N) located inside the handle,
measured forces at the hand. Movements were made in a horizontal
plane along the surface of a desk, at shoulder height (see Fig. 1A). A
custom-built air sled was used to support the subject’s arm against
gravity while maintaining minimal levels of friction between the air
sled and desk. Shoulder straps were used to maintain the subject in a
seated position, keeping the shoulder in place and minimizing trunk
movements. The wrist was braced as well, restricting movements to
shoulder and elbow rotations. The subjects’ view of their arm was
occluded by a mirror placed just above the shoulder. Visual feedback
of hand position was provided on this mirror in real time using a
computer-controlled liquid crystal display projector.

Movement task

Subjects were asked to move their limb from a start target to an end
target, both presented visually as mentioned earlier, as filled circles
(diameter ! 25 mm). The start target was positioned 5 cm away from
the subject’s torso, along the subject’s midline. The end target was
located 35 cm away from the start target, also along the midline.
Subjects were instructed to move their limb in a straight, smooth
fashion within a fixed duration of 1,200 " 75 ms. A cursor (a small
filled circle, diameter ! 8 mm) was displayed in real time to represent
the position of the hand. Feedback was given to the subject on a
trial-by-trial basis about movement speed and also when movements
strayed laterally by #2 cm. Each experiment consisted of 11 blocks of
40 movements (440 movements total).

A first group of subjects (n ! 10; 3 females; mean age ! 21.6 yr)
trained in a lateral elastic force field (EFstrong). The goal was to

demonstrate— using our apparatus and method for estimating stiff-
ness—a selective increase in stiffness similar to that reported by
Burdet et al. (2001). The force field was defined by

! Fx
Fy " ! k! x

0 "
where Fx and Fy (Newtons) represent forces exerted by the robot on
the hand in the lateral and forward/backward directions, respectively,
and x (meters) represents the lateral distance of the hand from a line
connecting the start and end targets. The constant k was set to 250
N/m for all subjects in the EFstrong group.

A second group of subjects (n ! 10; 3 females; mean age ! 18.7
yr) trained in a visual analog of the elastic force field, which we refer
to as a visual gain field (VGF). Here, no forces were applied to the
hand but visual feedback of hand position was manipulated using a
positive gain so as to magnify the visual lateral distance of the hand
from the midline. Specifically, we used a gain of 2.0 so that the
distance of the visual cursor away from the midline was twice the
actual distance of the hand from midline. Thus whereas in the elastic
force field the hand was physically pushed in a lateral direction in
proportion to lateral deviation from a straight line, in the visual gain
field no forces were applied by the robot but, rather, the visual
feedback was manipulated to visually magnify lateral deviations of
the hand from a straight line.

A third group of subjects EFweak (n ! 5; 2 females; mean age !
19.9 yr) experienced a similar force field as subjects in the EFstrong
group, but forces were reduced (k ! 125 N/m) so that the initial lateral
hand path deviations before training matched those observed by
subjects in the VGF group.

For all three groups, subjects initially performed 160 movements
(four blocks of 40 movements) in a baseline environment, in which
neither the force nor the visual perturbations were applied. Following
this, subjects performed 280 movements (seven blocks of 40 move-
ments) in the elastic force or visual gain field.

In all cases adaptation was quantified by changes in movement
accuracy over the course of training. To characterize movement
accuracy we measured the mean perpendicular distance (mPD) over
the middle portion of movement. The mPD was defined as the mean
absolute perpendicular deviation made from a straight line connecting
the start and end targets over the middle 2 cm of movement (see Fig.
1B). The location of this measure was selected to coincide with the
location of stiffness measurement (see following text). Individual
scores were averaged across bins of 10 movements, except during the
initial learning stages, where the first 5 single movements are reported
separately.

Statistical analysis of kinematic differences were assessed using
split-plot ANOVA (group $ training) and post hoc tests.
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FIG. 1. Experimental apparatus. A: subjects performed seated
reaching movements while grasping the handle of the robotic
device. Vision of the limb was occluded; 35-cm movements
were made along the subject’s midline beginning (in green) 5
cm away from the body. B: accuracy was characterized by
measuring the mean absolute perpendicular deviation in the
center of the movement. Two sample movements are shown in
blue and green.
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Stiffness estimation during movement

Estimation of endpoint stiffness was made using position-servo
control using a method reported previously by Darainy et al. (2007).
Briefly, stiffness was estimated by perturbing the hand a specified
distance away from an on-line estimate of the trajectory the hand
would have taken during an unperturbed movement, and measuring
the restoring forces at the robot handle (as well as taking account of
forces expected due to limb dynamics). A detailed description of the
procedure is presented in APPENDIX A.

Perturbations occurred on randomly selected trials at a rate of 20%.
This value was chosen to coincide with other studies (Darainy et al.
2004, 2006, 2007; Lametti et al. 2007) and to balance the need for an
adequate number of stiffness measurements with the potential of
influencing subject’s behavior. Stiffness was estimated both at the end
of the baseline (block 4) and learning conditions (block 11). All
stiffness estimation trials were run in the absence of any force field.
Subjects were instructed not to respond in any way to the perturba-
tions. Visual feedback of the hand was removed during stiffness
measurement perturbations. Perturbations lasted 500 ms and force
signals were estimated during a 50-ms time window that was selected
on a per-trial basis about 250–300 ms after the perturbation onset, at
which point the restoring forces were judged to be stable (e.g., see
Fig. 2C). This delay between perturbation start and restoring force

estimation was necessary to ensure that the hand was moved the full
distance away, and that force signals had stabilized, and is similar to
times reported in other recent studies of stiffness during movement
(Darainy et al. 2007; Gomi and Kawato 1996, 1997).

Twelve-millimeter (12.0 " 0.1 mm) position-servo perturbations
were applied in eight directions spanning 360° (0, 45, 90, 135, . . . ,
315°). Stiffness was estimated using a total of 24 measurements, 3 in
each of the eight directions. Coefficients for the robot’s position-servo
controller were set at 6,000 N/m and 240 Ns/m, respectively. Positions
of the robot handle and robot control signals were sampled and
commanded, respectively, at 600 Hz.

Example stiffness measurement

Figure 2 shows an example of a typical position servo, in this case
made toward the body—that is, in the direction opposing movement.
The window over which restoring forces were measured is indicated
by gray vertical lines. Figure 2A shows the major axis of movement.
The perturbation is shown in red. The change in position (dx) is shown
in Fig. 2B. Note that the positional perturbation is smooth and stable
over the hold phase of the perturbation. Measured forces at the handle
are shown in Fig. 2C, illustrating the smooth and stable force signals
we observed during the estimation window. Figure 2D shows a
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FIG. 2. Representative position servo. A: an example position servo displacement, shown in red, made in the negative direction, opposite to movement
direction. B: changes in position during the perturbation. Note the change in Y in the negative direction (red) and no change in X (blue). C: force signals during
perturbation. D: a set of position displacements for one stiffness measurement and the corresponding restoring forces, in E.
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collection of 24 dx measures, resulting from three perturbations in
each of eight directions. Note that the positional servos are realized
with very high accuracy and little variability. Figure 2E shows the
measured dF values. Note that dF values cluster according to the
direction of the applied perturbation and the magnitudes are opposite
to the positional perturbation. Leftward perturbations result in restor-
ing forces measured to the right and vice versa. This provides some
additional confidence that the position servos and the estimates of dx
and dF were reasonable. In addition we carried out cross-validation
tests to assess the magnitude of errors in the estimation of the hand
position (see APPENDIX A). APPENDIX B describes a number of other
controls to test the sensitivity of stiffness estimates.

R E S U L T S

Experiment 1: selective increase in stiffness in a elastic
force field

Subjects in the elastic field EFstrong (n ! 10) first performed
reaching movements in a baseline condition (no forces) and
subsequently trained in the elastic force field. Movements were
very straight at baseline (mPD ! 5.01 " 0.47 mm) and were
subsequently highly perturbed during initial exposure to the
elastic field (mean PD ! 22.8 " 2.84 mm). Through training,
subjects learned to attenuate the effects of the force field and
performed straighter reaches by the end of training (mPD !
13.2 " 4.2 mm). Figure 3A shows changes in mPD across
training.

To assess how limb stiffness changed in response to expo-
sure to the elastic force field, stiffness was estimated in both the
baseline period and at the end of elastic field training. Table 1
shows stiffness matrices for each EFstrong subject. Mean R2

values representing how well the estimated stiffness matrices
fit the measured force data were 0.88 for baseline and 0.89
post-EF training. The left column shows stiffness matrices for
movements in the baseline condition (no forces) and the right
column shows stiffness matrices after subjects trained in the
elastic field. Note that for every subject, Kx,x (stiffness in x for
perturbations in x), was greater following exposure to the
elastic field. A MANOVA was performed to test for statisti-
cally reliable changes to elements of the stiffness matrix before
versus after elastic field training. The omnibus MANOVA test
for EFstrong subjects reached significance [F(1,18) ! 22.37;
P % 0.001]; post hoc tests showed that the only statistically
significant difference was component Kx,x [F(1,18) ! 51.07;
P % 0.001; stiffness in the same direction as the elastic force
field].

Figure 4A shows stiffness ellipses for each EFstrong subject.
Baseline stiffness is represented in black; stiffness after
EFstrong training is shown in blue. Clear changes in the magni-
tude of stiffness can be seen in the lateral direction. Figure 5A
shows mean values across subjects of the four elements of
the stiffness matrix. A clear change in Kx,x is observed, in
the absence of changes in other elements of the stiffness
matrix.

Experiment 2: visual gain condition

A second group of subjects (n ! 10) trained in a visual gain
field (VGF subjects). Subjects’ movements were initially visu-
ally perturbed, showing large apparent deviations in response
to the increase in visual gain in the lateral direction. Deviations
of observed (visually perturbed) hand position for the first

movement in the visual gain field were initially 9.28 " 2.76
mm and were significantly larger than mPD in the baseline
condition [4.34 " 1.17 mm; F(1,18) ! 10.62; P ! 0.01]. By
the last 10 trials of training, observed mPD was reduced to
4.78 " 1.74 mm. Associated with this visual error was a
physical deviation of the hand, hidden from subjects’ view.
The magnitude of this deviation was half as large, or 2.39 mm
(given the visual gain of 2.0). Mean physical hand deviation in
the baseline condition prior to VGF training was 4.34 mm; thus
accuracy was increased by 44.9% following training in the
VGF [F(1,18) ! 19.82; P ! 0.002]. Figure 3B shows changes
in mPD across training for VGF subjects. Clear increases in
movement accuracy over training can be seen.

Table 2 shows stiffness matrices for each VGF subject. No
consistent changes in stiffness were observed. Figure 4B shows
stiffness ellipses for each VGF subject; baseline stiffness is
shown in black and stiffness following VGF training is shown
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FIG. 3. Performance across training. Mean absolute deviation in the middle
of movements (mean perpendicular distance [mPD]), as a function of move-
ment number, for electric force field (EF) subjects (A) and visual gain field
(VGF) and EFweak subjects (B). The gray box highlights movements 161–165
(the first 5 movements after 4 blocks of baseline trials), which are averaged
across single movements, and depict initial performance in the divergent field;
all other data points represent averages across 10 movements. Vertical bars
represent 1SE. Note that baseline errors for all groups and errors for the
EFstrong and EFweak conditions reflect actual hand position; errors in the VGF
condition reflect observed hand position, in which lateral deviations have been
amplified by a factor of 2 (see METHODS).
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in red. Mean R2 values for the goodness of fit of estimated
stiffness matrices to measured force data were 0.90 at baseline
and 0.92 post-VGF training. In contrast to subjects receiving
EFstrong training, no consistent changes in stiffness are seen.
Figure 5B shows mean stiffness matrix elements collapsed

across subjects. Again, stiffness values at baseline and follow-
ing training are similar. A MANOVA was performed on the
four elements of the stiffness matrices to test for significant
changes in stiffness for VGF subjects; this test did not reach
statistical significance [F(1,18) ! 1.39; P ! 0.30]. Thus

TABLE 1. Stiffness matrices before and after training in an elastic force field (EFstrong)

Format for Entries

Kx,x " SE Kx,y " SE

Ky,x " SE Ky,y " SE

Subject Baseline EFstrong

1 &260.730 20 38.561 13 &544.500 33 87.493 24
11.965 22 &64.645 18 &17.100 24 &45.144 16

2 &198.130 24 83.527 13 &517.660 53 53.881 21
&16.372 18 &28.751 22 &17.171 46 &52.391 18

3 &134.540 19 12.149 24 &415.680 30 &8.7876 39
&32.875 17 &93.833 15 &61.410 30 &48.862 27

4 &201.870 17 56.742 11 &536.010 49 120.610 50
17.181 14 &44.367 11 &18.531 53 &73.824 49

5 &157.200 22 13.200 22 &386.920 33 75.421 29
&42.818 23 &66.120 23 &52.310 37 &54.075 38

6 &214.660 13 86.388 20 &610.120 48 114.300 33
&27.087 18 &16.110 12 &51.268 46 &16.939 34

7 &218.170 23 79.687 27 &678.790 75 48.019 64
&16.809 20 &54.243 22 21.182 65 &33.203 67

8 &218.930 19 98.208 16 &485.970 55 53.640 46
1.9269 18 &71.792 23 &60.955 52 &66.440 39

9 &168.380 27 &10.667 18 &265.830 31 9.0853 44
&18.385 23 &54.920 19 &35.599 34 &45.092 35

10 &171.830 14 24.229 21 &498.710 48 33.976 33
6.8877 21 &26.809 26 13.859 40 &60.036 31
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FIG. 4. Stiffness ellipses. Stiffness ellipses for subjects in
all groups: EFstrong (n ! 10, blue) and VGF (n ! 10, red).
Ellipses in black represent baseline stiffness for each subject;
colored ellipses represent stiffness at the end of the respective
training condition.
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although VGF subjects successfully reduced lateral movement
variability, stiffness did not change.

To further investigate the nature of the observed increased
movement precision in the visual gain condition we tested
whether movements were adapted using on-line feedback con-
trol and/or changes to feedforward motor planning. To inves-
tigate changes in on-line feedback control, we examined move-
ment precision in visual-gain catch trials, in which the cursor
indicating limb position was extinguished throughout the
movement. If subjects were using on-line visual feedback
control to improve precision in the visual gain condition, then
in catch trials in which vision was removed, movement
precision ought to decrease. No statistically reliable differ-
ences in mPD were observed between catch trial without vision
(mean ! 5.7, SD ! 1.2) and trials with vision [mean ! 5.9,
SD ! 1.1; F(1,18) ! 0.13; P ! 0.7]. This result suggests that
on-line feedback control was not a significant contributing
factor to changes in movement precision.

To test for potential changes in feedforward motor planning
as a result of training in the visual gain field, we examined the
variability of the initial portion of movement. For each move-
ment we measured the direction of a vector between hand
position at movement start and hand position at peak tangential
acceleration. This initial portion of movement is presumably
determined by the initial movement plan and is not affected by
on-line feedback control. The SD of the initial movement
vector was significantly reduced after training in the visual gain
field (mean ! 1.67, SD ! 0.53) compared with the baseline
condition [mean ! 2.36, SD ! 0.80; F(1,18) ! 5.14; P !
0.036]. This supports the idea that improvements in precision
in the visual gain field were mediated by movement planning
mechanisms, not by on-line feedback control. We also com-
pared movement precision in baseline catch trials to catch trials
in the VGF. Since visual feedback was eliminated during catch
trials, any changes in movement precision cannot be attributed
to on-line visual feedback control, but ought rather to depend
on movement planning. Catch-trial mPD was significantly
reduced in the VGF (mean ! 2.74, SD ! 0.74) compared with
the baseline condition [mean ! 3.40, SD ! 1.3; F(1,18) !
5.18; P ! 0.046]. Finally, we also examined the number of
lateral direction changes in baseline catch trials compared
with VGF catch trials and found no significant difference
[F(1,18) ! 0.352; P ! 0.57]. Taken together these analyses
suggest that improvements to movement accuracy in the
visual gain field were mediated not by on-line feedback
control, but by feedforward movement planning mecha-
nisms.

Experiment 3: elastic field condition matched for kinematic
error to the visual gain condition

It can be seen in Fig. 3 that the magnitude of the initial
perturbation in the EFstrong field was larger than that in the
VGF field. Thus it is possible that no changes in stiffness were
observed in the VGF group because the visual perturbation was
not large enough. To rule this out, we tested a third group of
subjects (n ! 5) who were trained in a weaker divergent field
(EFweak). The magnitude of the elastic coefficient (125 N/m)
was chosen to match the magnitude of the initial perturbation
in movement curvature to that observed in the VGF field. No
significant difference was observed between mPD in the first
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bars represent 1SE.
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movements in the VGF and EFweak conditions [F(1,13) ! 0.95;
P ! 0.35]. It should be noted that we also experimented with
larger visual gains (e.g., 4.0) but we found that subjects tended
to ignore the visual feedback when it was perturbed to such a
large extent.

Subjects were initially perturbed by the weaker force field
relative to baseline and were able to adapt and reduce the
magnitude of positional deviations following training. Figure
3B shows mPD as a function of training in the EFweak field. For
the first trial of exposure in the EFweak field, mPD was
increased to 11.6 " 7.2 mm compared with baseline of 4.1 "
1.4 mm and, by the end of training, mPD was reduced to 5.6 "
2.4 mm.

Table 3 shows stiffness matrices calculated for EFweak sub-
jects. Mean R2 values for goodness of fit of stiffness matrices
to measured force data were 0.87 at baseline and 0.92 after
training in EFweak. Consistent increases in the lateral stiffness
element Kx,x can be seen for all subjects. Figure 5C shows
mean values of the stiffness matrix across subjects. Baseline

stiffness is shown in black. A MANOVA performed on all four
stiffness matrix elements reached significance [F(1,8) ! 5.53;
P ! 0.044] and the sole statistical difference was found in Kx,x
[F(1,8) ! 7.48; P ! 0.026]; thus only stiffness in the lateral
direction was increased during training in the divergent field
EFweak. A t-test performed on the Kx,x matrix elements showed
a statistically significant difference between EFstrong and
EFweak [F(1,13) ! 15.6; P ! 0.002]. Since EFstrong subjects
increased their stiffness more than EFweak subjects, adaptation
was proportional to the environmental stability.

We performed the same analyses of catch-trial mPD and
initial movement vector variability for EFstrong and EFweak
subjects, to determine whether EF training resulted in changes
to feedforward commands comparable to those observed fol-
lowing VGF training. Unlike the VGF, we did not find statis-
tically reliable changes in catch-trial mPD following EF
training, for either group [EFstrong baseline ! 4.1 " 1.6 mm;
posttraining ! 2.81 " 1.2; F(1,18) ! 1.98, P ! 0.21;

TABLE 2. Stiffness matrices before and after training in a visual gain field (VGF)

Format for Entries

Kx,x " SE Kx,y " SE

Ky,x " SE Ky,y " SE

Subject Baseline VGF

1 &306.610 37 23.782 39 &286.400 23 83.420 17
&21.646 23 &22.041 28 33.652 11 &46.619 15

2 &232.490 13 62.716 17 &255.640 10 93.436 22
&3.7041 12 &30.358 9 5.8446 13 &22.684 23

3 &278.430 33 102.400 43 &283.270 19 131.330 34
26.397 29 &50.604 36 16.730 15 &74.459 41

4 &199.610 22 59.338 25 &197.660 20 43.623 37
18.541 26 &28.709 26 31.692 14 &25.865 41

5 &237.390 20 61.819 44 &285.840 19 115.930 28
23.802 20 &49.996 20 56.402 18 &59.138 28

6 &170.440 14 24.160 29 &214.480 20 85.030 25
7.3909 13 &17.706 18 22.946 19 &36.420 36

7 &235.570 20 38.389 19 &243.390 20 24.135 23
33.516 17 &24.803 19 &32.543 11 &18.283 27

8 &172.100 35 82.761 30 &158.260 21 49.458 20
&7.4639 38 &87.885 34 16.362 27 &48.810 17

9 &173.730 14 34.029 18 &186.350 17 66.282 23
9.3762 16 &41.246 20 2.2754 19 &20.348 20

10 &173.040 15 108.030 30 &192.720 24 110.620 27
&5.3094 16 &54.597 22 12.642 16 &78.945 25

TABLE 3. Stiffness matrices before and after training in a weaker elastic force field (EFweak )

Format for Entries

Kx,x " SE Kx,y " SE

Ky,x " SE Ky,y " SE

Subject Baseline EFweak

1 &265.340 25 19.513 29 &368.580 26 25.724 27
&38.692 31 &24.036 26 &25.793 22 &46.674 25

2 &280.370 13 45.138 27 &416.630 31 18.378 31
1.652 24 &86.550 19 &6.2744 32 &34.701 35

3 &268.940 19 70.482 22 &364.510 23 32.721 27
&22.009 23 &6.0979 22 &41.633 24 &8.2444 20

4 &146.130 26 69.825 26 &267.720 31 69.566 20
26.519 25 &42.399 12 34.337 31 &36.035 18

5 &167.660 22 15.981 19 &270.370 30 &19.926 31
&1.0455 25 &22.319 18 22.505 28 &13.324 25
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EFweak ! 3.4 " 1.6 mm; posttraining ! 2.80, SD ! 0.8 mm;
F(1,8) ! 1.90, P ! 0.28].

To measure changes in the initial movement vector resulting
from EF training, a set of zero force, no-vision catch trials were
analyzed. We found no statistically reliable changes in the SD of
these movement vectors for either EF group [EFstrong baseline !
1.60 " 1.3; training ! 2.1 " 1.3; F(1,18) ! 1.27; P ! 0.3. EFweak
baseline ! 1.8 " 1.1; training ! 1.9 " 1; F(1,8) ! 0.016; P !
0.9]. Taken together, these analyses suggest that feedforward
changes to movement planning did not occur for EF subjects.

We also compared force signal variability during stiffness
perturbation trials (250–300 ms after perturbation onset) be-
tween VGF and EF subjects. Modulation of voluntary or
involuntary responses could result in an increased SD of the
force signal. No statistically reliable differences were found
between EFstrong, VGF, and EFweak groups in the Y force signal
[EFstrong SD ! 0.20 " 0.06 N; VGF SD ! 0.23 " 0.04 N;
EFweak SD ! 0.25 " 0.07 N; F(2,22) ! 1.60; P ! 0.225]. We
did find a small but statistically reliable difference in the SD of
the force signal in the X direction for EFstrong subjects [SD !
0.48 " 0.13 N; F(2,22) ! 8.49; P ! 0.002] compared with
both EFweak (SD ! 0.32 " 0.05 N) and VGF (SD ! 0.33 "
0.04 N); no difference was found in X force variability be-
tween VGF and EFweak [F(2,13) ! 0.025, P ! 0.87]. This
slight increase in X force signal variability for EFstrong subjects
may indicate some role for voluntary or involuntary feedback
mechanisms as a result of EFstrong training; alternatively, this
increase in variability may simply result from the greater
magnitude of force (increase in mean) measured in the X
direction for these subjects.

D I S C U S S I O N

We investigated the effects of a purely visual perturbation to
assess the role of vision in stiffness control. Our results show
that a novel visual task resulting in increased movement
precision is not sufficient for the motor system’s use of stiff-
ness control. In this perturbing environment the nervous sys-
tem uses other methods of motor adaptation to effect the
observed increase in movement accuracy. Previous research
has shown that the motor system can adapt limb stiffness for
movements made in an unstable force environment (Burdet
et al. 2001; Franklin et al. 2003, 2004, 2007a). In these studies,
information about the environmental instability was available
from both visual and proprioceptive signals. Our results imply
that the increase in stiffness measured in the preceding studies
may not be a response to the visually perceived error, but rather
may depend on proprioceptive and somatosensory signals
related to the forces perturbing the limb.

There are a number of implications of these results. First, our
results show that changes to movement accuracy may be
observed in the absence of changes in limb stiffness. Although
limb stiffness and cocontraction have been linked to movement
variability in other studies (e.g., Gribble et al. 2003; Lametti
et al. 2007; Osu et al. 2004; Selen et al. 2006; Shiller et al.
2002) our results imply that movement accuracy and stiffness
may be independently controlled in some tasks but not others.
This should have important implications for models of motor
control that include central control of both movement and cocon-
traction (Feldman 1986; Flash and Gurevich 1997; Gribble and
Ostry 2000; Gribble et al. 1998; Kistemaker et al. 2007a,b).

Many previous studies of stiffness modulation have been
conducted using unstable, divergent force fields (e.g., Franklin
et al. 2007a). Although it may not be immediately clear why
subjects would increase stiffness in response to a purely visual
manipulation, it should be noted that several studies have been
reported in which subjects modulate limb stiffness in response
to changes in visual task constraints such as target size (Gribble
et al. 2003; Osu et al. 2004; Selen et al. 2006). The lack of such
changes in stiffness in the present study implies that for the
task studied here, in which visual feedback was similar to that
present in divergent force field tasks, the visual information
was not sufficient to elicit changes in limb stiffness. The role of
visual information in the neural control of limb stiffness seems
to be rather task specific. The benefits of increasing stiffness in
the context of divergent force field tasks may be more clearly
defined. Indeed, stiffness increases may be the only practical
option available to the nervous system for increasing perfor-
mance in an unstable force environment.

In a recent article, Franklin et al. (2007b) reported that
subjects are capable of learning to reach in novel force fields
and, in addition, are capable of modulating limb stiffness, in
the absence of visual feedback. This is an important demon-
stration of the influential role of proprioceptive and somato-
sensory signals for limb stiffness modulation, but does not
address the potential role of visual signals, when present.
Although stiffness modulation can occur in the absence of
vision, this does not preclude the possibility that visual signals
(especially signals related to a perturbation) may be utilized in
determining neural control signals for limb stiffness. The
present study thus addresses the complementary question of
whether perturbation-related visual signals, when present, play
a role in the neural control of limb stiffness. In contrast to other
tasks involving visual manipulations of various types (Gribble
et al. 2003; Osu et al. 2004; Selen et al. 2006), in the task
studied here, visual signals alone are not sufficient to elicit
changes in limb stiffness.

It has been recently shown that stiffness control is used in
parallel with adaptation to novel dynamics (Franklin et al.
2003; Thoroughman and Shadmehr 1999). Our results show
that increases in movement accuracy can occur in the absence
of stiffness change, which in turn suggests that other motor
strategies, such as the refinement of movement control signals,
can be used independent of stiffness control. This is consistent
with the idea that the motor system generates independent control
signals for stiffness and for movement (Feldman 1986; Flanagan
et al. 1993; Gribble and Ostry 1998; Gribble et al. 1998).

The specific mechanism by which the motor system aug-
ments movement accuracy, in the absence of stiffness control,
is unclear, although the data from the present studies allow us
to discuss a number of possibilities. It may be that the in-
creased visual information about movement variability, avail-
able in the visual gain condition, allowed for the refinement of
control signals for movement. Indeed, follow-up analyses of
the data from experiment 2 (see RESULTS) support the idea that
improvements in movement precision in the visual gain field
were based on changes to the precision of feedforward control
signals, rather than changes in on-line feedback control.

The idea that movement control signals are modified in
response to visual perturbations of movement trajectories is
supported by previous work by Flanagan and Rao (1995). In
their experiment, arm movement trajectories were displayed
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visually to subjects in a shoulder–elbow joint-space coordinate
system rather than in a Cartesian hand-space coordinate sys-
tem. With practice subjects learned to produce movements that
were straight in the visually presented joint space, despite the
fact that the corresponding arm movements were in fact highly
curvilinear. In our study, the increased perception of movement
curvature may have resulted in a similar process of adaptation
in which subjects were able to utilize the visually amplified
information about lateral hand position to further refine feed-
forward control signals for movement.

Our findings are important in relation to other investigations
of stiffness control in the absence of external forces. Recent
work has demonstrated increases in stiffness at the end of
movement to match accuracy constraints such as target size or
shape (Gribble et al. 2003; Lametti et al. 2007; Osu et al. 2004;
Selen et al. 2006b); however, these investigations have focused
on changes at movement end. Lametti et al. (2007) showed that
higher stiffness levels at the end of movement were associated
with greater endpoint accuracy and this relationship was inde-
pendent of movement direction. Gribble et al. (2003) showed
that when reaching to visual targets, subjects increased tonic
electromyographic (EMG) levels at shoulder and elbow mus-
cles at the end of movements for small targets compared with
larger targets. Osu et al. (2004) observed greater levels of EMG
activity in elbow muscles that corresponded with lower move-
ment variability, but notably, differences in variability were
found only at movement end. Selen et al. (2006a) reported that
elbow-joint stiffness during the final portion of single-joint
elbow movements was correlated with endpoint accuracy. In
contrast, the current study focused on assessing stiffness during
movement. We observed no changes in stiffness during the
middle portion of movement in response to adaptation to a
visual perturbation. It may be that in the absence of external
perturbing forces, stiffness control is used conservatively in select
circumstances, such as in endpoint control (Selen et al. 2006b).

Stiffness values estimated in the current study are compara-
ble to those reported in the literature for human planar arm
movements. A broad range of stiffness estimates have been
reported for longitudinal (outward) multijoint reaching move-
ments. Frolov et al. (2006) reported anisotropic stiffness el-
lipses with maximal stiffness in the transverse direction. Mah
(2001) reported stiffness values that varied greatly depending
on the point at which stiffness measurements were performed.
Stiffness values reported in the current study are similar to
those reported by Frolov et al. (2006) and Mah (2001), al-
though stiffness magnitudes here are generally higher. This
may reflect the higher movement speeds in the current study
(Gerritsen et al. 1998; Suzuki et al. 2001). Stiffness estimates
reported by Burdet et al. (2001) and Franklin et al. (2003) are
comparable to those reported in the current study. Stiffness in the
lateral direction (Kx,x) ranged from about 150 to 400 N/m in both
Burdet et al. (2001) and Franklin et al. (2003), whereas in this
study Kx,x ranged from 146 to 307 N/m. Estimated stiffness along
the axis of movement (Ky,y) was higher in these studies than in the
current study, with values ranging from about 180 to 300 N/m in
comparison to 16–93 N/m in this study. Again, this may reflect
differences in movement speed between the current study and
previous reports. Darainy et al. (2007) reported anisotropic stiff-
ness estimates during outward reaches, similar to Frolov et al.
(2006). We used the same movement distances and speeds of
Darainy et al. (2007) and we found very similar magnitudes of

limb stiffness. The average values of the four elements of the hand
stiffness matrix were [&208.2, 60.0; 39.2, &47.2] N/m in Darainy
et al. (2007), compared with [&206.2, 69.2; 21.7, &50.9] N/m in
this study. It should be noted that although in the present study we
used only three perturbations per direction, our estimates of
stiffness were similar to those reported by Darainy et al. (2007),
who used six perturbations per direction.

The various methodological differences in measuring multijoint
stiffness likely contribute to the different stiffness estimates
reported in the literature. Several previous studies used force
perturbations (Frolov et al. 2006; Gomi and Kawato 1997; Mah
2001), which require estimation of inertia and viscosity param-
eters in addition to stiffness. In contrast, other studies (includ-
ing the current study) have used servo-controlled position
perturbations, which require only estimation of stiffness (Bur-
det et al. 2001; Darainy et al. 2007; Franklin et al. 2003). Some
studies used a fiberglass cuff to attach the arm to the manipu-
landum (Burdet et al. 2001; Franklin et al. 2003; Gomi and
Kawato 1997), whereas others required subjects to grasp a
handle (Darainy et al. 2007; Mah 2001). Another methodolog-
ical variable that could affect stiffness measurements is the
frequency at which stiffness measurement perturbations were
applied within the set of movements. The rate at which per-
turbation trials are performed balances the length of time
required to estimate stiffness with the potential for motor
adaptation, since the perturbations themselves could result in
behavioral changes. In this study, test perturbations were ap-
plied at a frequency of 20% (the same as in Darainy et al.
2007). It should be noted that others have applied perturbations
much more frequently: at 40% (Mah 2001) and also 50%
(Burdet et al. 2001; Franklin et al. 2003).

It should be noted that one additional difference between the
visual gain field and unstable elastic field—tested here and by
Burdet et al. (2001)— is that the forces in the elastic field are
unstable. That is to say, small errors lead to increased forces on
the hand, which in turn lead to larger errors, and so on. No such
instability was present in the VGF experiments. Despite this,
the learning rate in the VGF was comparable to that in the
elastic field. The specific role of stability and the corresponding
need for appropriate compensation may be assessed in future
experiments. It should also be noted that the lack of stiffness
modulation in the VGF task studied here does not rule out the
possibility that, in other tasks, visual signals may play a more
significant role in driving stiffness adaptation.

In summary, we have shown that although subjects selec-
tively increase limb stiffness in response to an unstable elastic
force field applied to the limb, they do not modulate stiffness
in response to a similar, purely visual perturbation, despite
successfully increasing movement accuracy. Although stiff-
ness control has been linked to movement accuracy in previous
studies, our results imply that stiffness and movement variabil-
ity may be independently controlled in a task-specific manner.

A P P E N D I X A

The equation of motion of the two-joint planar arm can be ex-
pressed as

I'q(q̈ " C'q̇, q( ! #'q̇, q, t( " #ext

where q is the angular position of the shoulder and the elbow. The arm
components (inertial I and Coriolis-centrifugal C) are equal to the
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muscle torque t, and any external torque text (in this case, the external
torque is applied by the torque motors in the robotic linkage). For
small deviations, this equation can be linearized

I$q̈ "
$Iq̈

$q
$q "

$C

$q̇
$q̇ "

$C

$q
$q !

$#

$q̇
$q̇ "

$#

$q
$q " %#ext

Consider a small, pure positional deviation, where

$q̈ ! $q̇ ! 0

This linearized equation reduces to

#$Iq̈

$q
"

$C

$q$$q &
$#

$q
$q ! #ext

Thus torque at the joints from a small perturbation is equal to the
sum of a dynamics component (inertial and Coriolis-centrifugal) and
the joint stiffness, &($#/$q)$q. This relationship can be translated to
hand (i.e., Cartesian) coordinates and forces using the Jacobian
matrix, leaving

)F ! &
dFa

dx
)x " Kx)x

Thus the stiffness matrix Kx is a function of three terms: the change
in force )F, change in position )x, and dFa/dx, the contribution of
dynamics to restoring forces. This dynamics component (dFa/dx))x
may be computed numerically (Burdet and Osu 1999) on a per subject
basis, using measurements of limb-segment lengths and estimates of
limb-segment masses and moments of inertia from anthropometric
data (Winter 2005). Note that change in force )F is equal to the
recorded force minus an estimate of force at the handle that would be
exerted if there was no perturbation

)F ! Fact & Fest

where Fact can be read from the force transducer and Fest must be
estimated. Likewise, the perturbation distance )x is

)x ! xact & xest

where xact is the instanteneous position of the hand and xest is an
estimate of the position of the hand that would be expected if there
had been no perturbation.

After accounting for (dFa/dx))x

)F ! Kx)x

where the stiffness matrix Kx is calculated by linear regression. In this
study, perturbation of the hand to the desired location was realized in
100 ms using a minimum-jerk trajectory to maximize smoothness
(Burdet et al. 2000), and estimates of restoring force were made
following another 150 ms to allow any position oscillations to cease,
and force signals to stabilize.

Estimates of the X and Y components of hand position were made
using autoregression (AR). AR models compute the next output of a
time series from a linear weighting of the past n time samples. For an
estimate x̂t of the position signal x at time t

x̂t ! %
i!1

n

rixt&i " '

where n is the order of the model, ri for i ! 1:n are the AR coefficients,
and ' is the residual. To calculate all r, the means of both signals were
subtracted and a standard least-squares method was used in MATLAB
(The MathWorks). Thus the on-line estimation for x was

x̂t ! x! " %
i!1

n

rixt&i

where x! is the mean of x over the prediction window and xt&i is the
zero-mean adjusted signal. Selection of both the order and sampling
rate of the AR model was done to maximize model fit. Previously an
eight-order model was used at 75 Hz (Darainy et al. 2007); here we
used the same parameters. Thus predictions of position were based on
the preceding 100 ms of movement. The middle 500 ms of the
movement was predicted using the AR model, centered midway
between the start and end targets.

Forty baseline movements were recorded for each subject and used
to calculate the AR coefficients in advance of stiffness measurement.
These movements were performed following a familiarization and
training period not shorter than 100 movements, after which time
consistently accurate and well-timed movements were observed.

Cross-validation tests of the AR model

Prediction error of the AR model was determined by cross-valida-
tion using unperturbed movements. The AR model was used to predict
a 50-ms segment of hand position signals (located at the point in the
trajectory at which stiffness would have been estimated had these
been perturbed movements), for a set of 40 unperturbed movements
(for which the entire trajectory was known). The mean prediction
error of the AR model for both x and y position signals was small;
mean " SD of the prediction errors in [X, Y] were [&0.503 " 2.4,
0.33 " 4.1] mm. Mean absolute prediction error at the end of the
stiffness estimation window (after 300 ms) was [1.8 " 1.5, 4.5 "
2.18] mm, resulting in mean absolute tangential error of 4.9 mm.
Positional prediction errors here compare favorably with other re-
ported prediction errors of about 1 cm (Burdet et al. 2000). Moreover,
we observed no particular bias in the estimates of hand position that
may result in biased estimates of stiffness matrix elements.

An estimation of the unperturbed force signal Fest was made using
simple correlation. The estimated force signal over the perturbation
window was chosen from the set of 40 baseline unperturbed move-
ments as the force signal most correlated with the force signal for
perturbed movements during the time window 50 ms before and 150
ms after perturbation end. Cross-validation using this method resulted
in very accurate estimates: mean " SD force prediction errors in [Fx,
Fy] were [0.13 " 0.21, &0.21 " 0.25] N; mean absolute force errors
at the end of the 300-ms prediction window were [0.25 " 0.16,
0.37 " 0.21] N. An AR model was also tested for force estimation,
but it did not perform as well as the correlation method. The AR force
model was sensitive to biases in the force transducer that changed
between experimental blocks (i.e., each 40 movement set).

A P P E N D I X B

Force signal measurement controls

To control for the possibility that voluntary feedback affected
estimations of restoring force, precautionary measures were taken to
determine that force signals were stable, not highly sensitive to the
selected time window, and not contaminated by voluntary reactions.
First, control experiments were performed in which subjects were
explicitly instructed to attempt to intervene after a perturbation,
contrary to directions provided to experimental subjects. Voluntary
reaction responses were clearly visible in perturbed trials, character-
ized by a continuous increase in restoring force. This allowed the
identification of any trials suspected of intervention. SDs of the force
signal #1 N during a window 250–300 ms after perturbation onset
were identified as intervened trials and removed, which applied to
%2% of trials.
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Second, the stability of force signals was measured over the
estimation time window. Stable force signals (i.e., no sudden or
continuous changes in force) would also argue against voluntary
intervention. During the force estimation window on perturbed trials,
force signal SD was measured to be [0.28, 0.21] N. In comparison,
unperturbed movements show variability during this time window of
[0.16, 0.17] N, which shows that the variability during stiffness
estimates is somewhat larger, but close to the unperturbed condition,
and still quite small. Force signal SD was also measured in an adjacent
time window (300–350 ms) and was found to be [0.35, 0.25] N; thus
signal variability is relatively small.

Another way to increase our confidence in stiffness estimates was
to perform stiffness measurements in both time windows (250–300
and 300–350 ms) and compare the results. Stiffness measurements
thus were performed at an adjacent time window (300–350 ms) and
close agreement between the two stiffness calculations would suggest
that stiffness matrix measurements are stable over a period of 100 ms.
Stiffness matrices for the two adjacent windows were [&206.2, 69.2;
21.7, &50.9] and [&210.2, 45.1; 8.9, &54.3] N/m. These analyses
show that force signals during this time window are relatively stable,
especially for matrix components Kx,x and Ky,y, and stiffness matrix
estimates are very similar over a 100-ms time window. Combined, the
observed small change in force signals during the estimation window
and consistent stiffness estimations for two consecutive windows
spanning 100 ms suggest that measurements of force are reliable and
unlikely to reflect effects of voluntary correction.

Stiffness matrix sensitivity analysis: sensitivity to estimation
error for restoring forces

To determine the sensitivity of matrix estimates to errors in force
estimation, stiffness matrices were recalculated by adding Gaussian
noise to all 24 dF measurements, and recomputing the stiffness
matrix. The dF values were calculated for two adjacent time windows
(250–300 and 300–350 ms) and these data were used to calculate
mean and SD of signal variance. This difference between means of
two adjacent time windows is some representative measure of the
signal variability during the estimation period. Means and SDs were
calculated separately for each of the eight pulse directions, to capture
direction-dependent variability in force measurements. Stiffness ma-
trices were recomputed 1,000 times with random noise added to all 24
dF values recorded for one stiffness estimate, randomly chosen. The
recomputed matrices resulted in SDs of [17, 14; 14, 11] N/m, showing
that the effects of variations in recorded restoring forces to the overall
stiffness matrix are relatively small.

Stiffness matrix sensitivity analysis: sensitivity to estimation
error of position servos

To determine the sensitivity of matrix estimates to errors of the
position estimation, stiffness matrices were recalculated by adding
Gaussian noise to position estimates. The dP values were recalculated
by adding the mean " 1SD values obtained from cross-validation (see
earlier text), where errors in the X and Y position prediction were
found to be &0.503 " 2.4 and 0.33 " 4.1 mm, respectively. Again,
these recomputed matrices resulted in SDs of [15, 10; 15, 13] N/m,
which shows that the variations in the positional prediction do not
greatly affect the overall stiffness estimates.
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