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Abstract In recent studies of human motor learning,
subjects learned to move the arm while grasping a
robotic device that applied novel patterns of forces to
the hand. Here, we examined the generality of force field
learning. We tested the idea that contextual cues asso-
ciated with grasping a novel object promote the acqui-
sition and use of a distinct internal model, associated
with that object. Subjects learned to produce point-to-
point arm movements to targets in a horizontal plane
while grasping a robotic linkage that applied either a
velocity-dependent counter-clockwise or clockwise force
field to the hand. Following adaptation, subjects let go
of the robot and were asked to generate the same
movements in free space. Small but reliable after-effects
were observed during the first eight movements in free
space, however, these after-effects were significantly
smaller than those observed for control subjects who
moved the robot in a null field. No reduction in reten-
tion was observed when subjects subsequently returned
to the force field after moving in free space. In contrast,
controls who reached with the robot in a NF showed
much poorer retention when returning to a force field.

These findings are consistent with the idea that contex-
tual cues associated with grasping a novel object may
promote the acquisition of a distinct internal model of
the dynamics of the object, separate from internal
models used to control limb dynamics alone.

Keywords Human motor learning Æ Multi-joint arm
movement Æ Internal model Æ Force field adaptation Æ
Limb dynamics

Introduction

A remarkable feature of the primate motor system is its
ability to generate skilledmovements under awide variety
of environmental conditions. It has been proposed that a
neural representation of the motor effectors and the
environment is developed when learning to adjust the
control of the arm to suit new mechanical requirements
(Shadmehr and Mussa-Ivaldi 1994; Flanagan and Wing
1997; Conditt and Mussa-Ivaldi 1999; Kawato 1999;
Gandolfo et al. 2000; Gribble and Scott 2002). This
compensatory adjustment is referred to as motor learning
and the corresponding neural representations have been
referred to as internal models (Kawato 1999).

Motor learning has been explored extensively by
observing human subjects adapting to novel dynamics
produced by robotic devices that are grasped in the hand
(Shadmehr and Mussa-Ivaldi 1994; Conditt et al. 1997;
Gandolfo et al. 2000; Bays et al. 2005; Malfait et al.
2005; Mattar and Gribble 2005). It has been proposed
that this kind of motor learning is based on internal
models of dynamics (Shadmehr and Mussa-Ivaldi 1994).
In these studies and those like them, however, it is
important to recognize that the novel dynamics are
transmitted through devices that are grasped in the hand
(for exceptions, see Lackner and Dizio 1994; Sainburg
et al. 1999). Here, we explore the idea that when subjects
learn to compensate for the perturbing effects of novel
force fields produced by such devices, they are learning
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something specific about the grasped object. Under this
framework, when the nervous system is confronted with
a novel force field, sensory cues associated with grasping
the novel object in the hand promote the formation of a
distinct internal model corresponding to the object,
without modifying existing neural representations used
to control the limb on its own.

We tested this possibility directly by assessing trans-
fer of adaptation between force field learning using a
robot, and the same movements of the limb in free space,
produced without grasping the robot. Human subjects
were instructed to reach to targets while grasping the
end of a robotic linkage which applied velocity-depen-
dent rotational forces to the hand. After subjects adap-
ted to the perturbing effects of the forces they were
instructed to generate the same reaching movements
without the robot (and thus in the absence of forces).
Performance of these subjects was compared with that of
a control group, who also underwent force field learning
but subsequently generated movements while still
grasping the robot in a null field.

If learning results in a change to an internal model of
movement dynamics including limb and robot together,
movements subsequently produced in free space would
result in transfer of learning, and would be indicated by
large after-effects. Similarly, after moving in free space
for a period of time and returning to the force field,
transfer of reaching in free space and a reduction in
retention would be expected, and would be indicated by
a reduction in performance in the force field. In contrast,
if learning consists of the acquisition of a distinct
internal model corresponding to the dynamics of the
robot, no transfer and thus no after-effects would be
expected when subjects let go of the robot and produce
movements in free space. Similarly, no reduction in
retention, and thus no reduction in performance would
be observed when subjects subsequently return to the
force field after reaching in free space.

Materials and methods

Subjects

A total of 21 right-handed subjects (12 males, 9 females)
between the ages of 15 and 28 years (mean 22.4 years)
participated in the experiments described here. All sub-
jects reported normal or corrected vision, no history of
neurological, or musculoskeletal disorder and gave their
written informed consent before participation. All
procedures were approved by the University of Western
Ontario Research Ethics Board.

Apparatus

Subjects grasped the end of the InMotion2 robotic de-
vice (Interactive Motion Technologies) with their right

arm abducted at the shoulder and supported by a cus-
tom fabricated air-sled placed under the upper arm
(Mattar and Gribble 2005). The wrist was immobilized
using an orthotic splint. By moving the robot in a hor-
izontal plane subjects guided the motion of a cursor to a
series of visual targets, which were back-projected using
a computer controlled LCD projector onto a screen
suspended 20 cm above the hand and reflected into view
by a semi-silvered mirror positioned 10 cm below the
screen. This resulted in the perception of virtual targets
floating in the plane of the subject’s hand.

The robot was programmed to apply forces to the
hand during reaching movements to targets. Forces were
velocity-dependent and were applied perpendicular to
the instantaneous direction of hand movement, in a
clockwise (CW) or counterclockwise (CCW) direction
according to the following equation:
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where Fx and Fy are robot generated forces in the left/
right and forward/backward direction, respectively, _x
and _y are hand velocities, k=25 Ns/m, and d=+1.0
(CW) or �1.0 (CCW). Thus forces applied by the robot
were zero at movement start and movement end, and
reached a maximum at peak hand tangential velocity.
Robot forces were controlled using custom software
running under the RT Linux operating system on a
Pentium 4 CPU. Robot handle positions, velocities and
applied forces were sampled at 200 Hz and stored on a
digital computer for analysis.

During trials in which subjects let go of the robot and
moved the limb in free space, a magnetic motion tracker,
flock of birds (Ascension Technologies) attached to the
hand was used to track motion of the limb. Hand
position was sampled at 100 Hz and stored on digital
computer for analysis. Trials in which subjects grasped
the robot were used to verify the correspondence
between robot positions and flock of birds position (see
Results).

Experimental task

Subjects were instructed to move quickly and accurately
between a central start target (corresponding to shoulder
and elbow joint angles of 45� and 90�) and eight targets
spaced equally around the circumference of a circle.
Targets were 24 mm in diameter and were located 10 cm
away from the central start location. Subjects were asked
to complete each movement within a timing window of
200–300 ms. Feedback about movement time was given
on each trial by changing the color of the target.

Subjects were randomly assigned to one of four
groups (Table 1). Following a brief period of familiar-
ization with the robot and the speed requirements of the
task, all subjects performed a block of 16 movements
(B1) while grasping the robot in a null field (no forces).
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The flock of birds sensor was activated during this block
in order to verify the correspondence between flock of
birds and robot positions (see below). All subjects then
let go of the robot and performed a block of 16 move-
ments in free space (B2); the flock of birds sensor was
used to record hand positions. Subjects then performed
a block of 192 movements in a CW or CCW force field
(B3). The flock of birds sensor was not activated during
this block, and positions were recorded using the robot.
A series of 12 randomly occurring catch-trials in which
the force field was unexpectedly turned off were also
used to assess the degree of adaptation during learning.
A second block of 40 movements were then collected in
the same force field (B4), with the flock of birds sensor
activated. This allowed us to re-test the correspondence
between flock of birds and robot position data for
movements in which the robot motors were active (see
below). Three catch-trials were used in B4.

Following force field learning, subjects performed a
block of 40 movements (B5) in free space or while
grasping the robot in a null field. The flock of birds
sensor was activated during this block and recorded
hand positions. Subjects who let go of the robot and
reached in free space were instructed to curl their fingers
into a fist so as to mimic the grasp of the robot handle,
and to produce movements at the same speed as the
previous block of movements in which the robot was
grasped. Finally all subjects then performed a final block
of 40 movements (B6) while grasping the robot in a CW
or CCW force field. Block B6 contained three catch-
trials.

Data analysis

Performance on each trial was characterized by a
measure of movement curvature defined as the maxi-
mum perpendicular distance from a line segment
between start and target locations (Shadmehr and
Brashers-Krug 1997; Thoroughman and Shadmehr
1999; Malfait et al. 2005; Mattar and Gribble 2005).
Other similar measures such as angular error and path
length yielded qualitatively similar results. Individual
curvature scores were collapsed across bins of eight
movements, and differences between group means
were tested using analysis of variance (ANOVA) and
Tukey post hoc tests. Data analyses were carried out
using custom software routines in Matlab (The
Mathworks).

Results

Figure 1a shows mean performance across subjects who
learned a CW force field and then reached in free space
(G1, see Table 1), and subjects who reached in a null
field with the robot after force field learning (G2). A
split-plot ANOVA was used to test for differences in
movement curvature between G1 and G2 over the six
experimental blocks. No differences between were pres-
ent during the first block of 16 movements in a null field
(B1, P>0.05), during the second block of 16 movements
in free space (B2, P>0.05), or during the third and
fourth blocks of movements in the CW force field (B3,
B4, P>0.05). When subjects in G2 then reached with the
robot in a null field (B5), they showed large after-effects
in a direction opposite the initial perturbing effects of the
force field. The mean of the first eight movements in null
field for G2 was significantly different than the mean of
the last eight movements in the CW force field (P<0.01,
see Fig. 1b), and was also significantly different than the
mean of the last eight movements in the null field prior
to force field learning (B1; P<0.05). In contrast, a
smaller but nevertheless statistically reliable after-effect
was observed for subjects in G1, who let go of the robot
and reached in free space. Mean curvature over the first
eight movements in B5 was significantly larger than the
last eight movements in B4 for the same subjects
(P<0.01), but was significantly smaller than the after-
effect (B5) of subjects in G2 who reached with the robot
in a null field (P<0.01). In addition the mean curvature
of the first eight movements in free space was signifi-
cantly different than the last eight movements made in
free space, prior to force field learning (B2; P<0.05).

Similarly, when subjects returned to the CW force
field (B6), subjects in G1 who let go of the robot in B5
and reached in free space showed significantly greater
retention of the CW forces than subjects in G2 who
maintained a grip on the robot in B5. Mean curvature
for the first eight movements in B6 was significantly
smaller for subjects in G1 than for those in G2
(P<0.01). Moreover, performance of subjects who let
go of the robot in B5, when returning to the CW force
field in B6, was not different than their performance in
the last few trials of the CW force field (B4). Mean
curvature for subjects in G1 for the first eight move-
ments in B6 was not significantly different than for the
last eight movements in B4 (P>0.05). In contrast mean
curvature for subjects in G2 who maintained a grip on
the robot in B5 was significantly greater for the first
eight movements in B6 compared to the last eight
movements in B4 (P<0.01).

To explore the nature of the after-effect observed in
B5 when subjects reach in free space, we tested two
additional groups of subjects who trained on an oppo-
site (CCW) force field. If the after-effect is indeed related
to previous training, its direction should be opposite
when the direction of forces is opposite. In contrast if
the small after-effect is due to some non-specific aspect

Table 1 Subject groups and experimental design

B1 (16) B2 (16) B3 (192) B4 (40) B5 (40) B6 (40)

G1 N=6 NF FS CW FF FS CW FF
G2 N=5 NF FS CW FF NF CW FF
G3 N=5 NF FS CCW FF FS CCW FF
G4 N=5 NF FS CCW FF NF CCW FF
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of letting go of the robot (e.g. some effect of the reduced
inertia on the limb), it may remain the same.

Figure 2a shows the results for groups G3 and G4,
who trained in a CCW force field. In general, the same
pattern of results was observed as for subjects who
trained with CW forces. The same statistical tests
described above for the subjects who learned CW forces
were conducted, and the results of all tests were the
same. Importantly, the small after-effect was again
observed in B5, and for subjects who learned a CCW
force field, the direction of the after-effect changed. This
suggests the after-effect is not a non-specific result of

letting go of the robot, but instead is a reflection of the
previously learned forces.

Catch-trial performance

Performance on catch-trials was examined as another
way of assessing the degree of adaptation during learn-
ing, and as a way of assessing retention of force field
adaptation as subjects returned to the force field after
reaching either in free space or in a null field. Large
curvature on catch-trials indicates that subjects are ac-
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Fig. 1 a Movement curvature
for subjects who performed
reaching movements in free
space after CW force field
learning (gray) and control
subjects who performed the
same movements while grasping
the robot in a null field (black).
Means of eight consecutive
movements are plotted; shaded
regions indicate one standard
error of the mean. b Mean
curvature for subjects reaching
in free space and subjects
reaching in a null field, for the
last eight movements in the CW
force field (B4), first eight
movements in free space or null
field (B5), and first eight
movements when returning to
the CW force field (B6). Vertical
bars indicate one standard error
of the mean
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tively compensating for forces; low curvature on catch-
trials would indicate that subjects are no longer
compensating for the forces.

Split-plot ANOVA was used to test for differences in
mean curvature across subject groups and movement
blocks. Figure 3a shows mean catch-trial performance
for subjects in groups G1 and G2 who learned a CW
force field. At the beginning of learning (block B3),
movement curvature for the first catch-trial was close to
zero, indicating little adaptation had taken place at that
time. No differences were observed between movement
curvature on the first catch-trial in B3 for subjects in

groups G1 compared to G2 (P>0.05). By the end of
training, curvature on catch-trials was significantly
higher, indicating adaptation to the forces. For both
subjects in groups G1 and G2, the mean curvature for
the last catch-trial in B4 was significantly larger than for
the first catch-trial in B4 (P<0.01 in both cases). The
magnitude of curvature on catch-trials at the end of
block B4 was the same for subjects in groups G1 and G2
(P>0.05).

When returning to the force field (B6) after subjects
had either reached in free space (group G1) or reached
while grasping the robot in a null field (group G2), a

16 32 224 264 304 344

CCW FF

−20

−10

0

10

20

P
D

 (
m

m
)

Movement Trial 

B1 B2 B3 B4 B5 B6

0

5

5

10

−10

15

−15

20

−20

−25

B4
last 8

movements

B5
first 8

movements

B6
first 8

movements

P
D

 (
m

m
)

n.s.

p < .01

p < .01

n.s.

CCW FF

p < .01

p < .01

p < .01

FS (G3)
NF (G4)

FS (G3)

NF (G4)

A

B

Fig. 2 a Movement curvature
for subjects who performed
reaching movements in free
space after CCW force field
learning (gray) and control
subjects who performed the
same movements while grasping
the robot in a null field (black).
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movements are plotted; shaded
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different pattern of catch-trial performance was
observed. For subjects in G1 who reached in free space
in B5, the magnitude of curvature on catch-trials was the
same as at the end of learning, in B4. This indicates
retention of the CW force field learning. For subjects in
G1, no difference was observed between the mean catch-
trial at the end of B4 and the first catch-trial at the
beginning of B6 (P>0.05). In contrast, for subjects who
were reaching while grasping the robot in a null field in
B5, the magnitude of curvature on catch-trials when
returning to the force field in B6 was significantly
reduced. This indicates poorer retention of the CW
forces after having reaching in a null field. For subjects
in G2 who grasped the robot in B5 and reaching in a null
field, the mean magnitude of curvature on the catch-trial
at the beginning of B6 was significantly smaller than at
the end of B4 (P<0.01).

The same pattern of results was observed for subjects
in G3 and G4 who trained in a CCW force field
(Fig. 3b). The results of all statistical tests were the same
as for subjects who trained with CW forces.

Control tests

It should be noted that the free space condition is
accompanied by a sudden reduction in inertia due to the
absence of the robot (the effective mass of the robot’s

endpoint is roughly 400 g). It is possible that this inertial
reduction may cause a systematic bias in movement
curvature. To control for this possibility, we compared
performance of subjects in block B1, in which they
moved in a NF while grasping the robot, and B2, in
which they let go of the robot and reached in free space.
For each group, a paired-samples t test was used to test
differences in mean curvature in B1 and B2. For all four
groups tested (G1–G4), no significant differences were
observed between the mean movement curvature in B1
and in B2 (P>0.05 in all cases). Moreover, if a reduction
in inertia affects movement curvature, the resulting
change should be constant in its direction and magni-
tude. Figures 1 and 2 both show that during B5 the
direction of the small after-effects in free space vary with
the direction of previous FF learning (see Figs. 1, 2).

It is possible that changes in movement curvature ob-
servedwhen subjects let go of the robot and reached in free
space (B5) may have been due to differences in movement
speed. To test this possibility we compared mean peak
tangential velocity of movements in which subjects
reached in free space, tomean peak tangential velocity for
those controls who reached while grasping the robot in a
NF (G1 vs. G2 and G3 vs. G4). Independent samples t
tests showed no significant differences betweenmean peak
tangential velocity in the first eight trials of B5 between
G1 and G2 (mean=0.3314 m/s, SE=0.0153 m/s and
mean=0.3691 m/s, SE=0.0473 m/s, respectively,
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Fig. 3 a Performance on null
field catch-trials for subjects
who were trained in a CW force
field in blocks B3 and B4. Mean
curvature for the first catch-trial
in B3 (beginning of training),
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P>0.05) or between G3 and G4 (mean=0.3375 m/s,
SE=0.0606 m/s and mean=0.3703 m/s, SE=0.0190 m/
s, respectively, P>0.05).

Finally, we tested the possibility that recorded posi-
tions (and thus measures of movement curvature)
recorded using the flock of birds system, which is based
on electromagnetics, may have been distorted due to the
nearby presence of the robotic linkage, which has many
metal parts. To test this we compared mean curvature
measurements computed using robot positions to those
computed using flock of birds positions in block B1, in
which both systems were actively recording data. For
each of the four subject groups (G1–G4) we used paired-
samples t tests to compare mean curvature in B1 com-
puted using robot positions to those computed using
flock of birds positions. In all cases no significant dif-
ferences were observed between robot-based and flock of
birds curvature measurements (P>0.05 in all cases).

The possibility also exists that measurements using
the flock of birds system may have been distorted spe-
cifically during those movements in which the robot was
actively producing forces, due to increased electromag-
netic radiation from the robot motors. To test for this
possibility we compared mean curvature measurements
based on robot positions to those based on flock of birds
positions, during block B4, in which both systems were
actively recording position data, and during which the
robot was actively producing forces. We used paired-
samples t tests to compare mean curvature in B4 using
robot-based measurements to those based on flock of
birds positions. For each of the four subject groups, no
significant differences were observed between robot-
based and flock of birds curvature measurements
(P>0.05 in all cases).

Discussion

Here we tested the idea that the sensory and motor cues
associated with grasping a novel object in the hand
would promote the acquisition of a new internal model
of dynamics of the object, without disrupting the exist-
ing internal model used to control the limb alone.

When subjects who were trained in a CW or CCW
force field let go of the robot and reached to targets in
free space, we observed significantly reduced after-effects
compared to controls who performed movements while
still grasping the robot in a null field. Nevertheless, after-
effects were still present, indicating some degree of
carryover of force field learning to free space reaching.
In contrast, when subjects who reached in free space
subsequently returned to the force field, no significant
change in performance was observed. This indicates that
subjects who reached in free space did not suffer any loss
in retention. In contrast, subjects who reached in a null
field while grasping the robot showed significant reduc-
tions in performance when subsequently returning to the
force field, indicating a lesser degree of retention as a

result of moving in a null field. Performance on catch-
trials showed a similar pattern: full retention of force
field adaptation for subjects that reached in free space,
and significant decreases in retention for subjects who
reached in a null field while still grasping the robot.

These results are not compatible with a scheme in
which a single neural representation of movement
dynamics incorporating the limb and robot together, is
modified as a result of learning. If this were the case,
performance of subjects who reached in free space after
learning a novel force field should be the same as for
subjects who reached in a null field. The present results
are consistent with a framework in which force field
learning is based on the acquisition of a new internal
model of object dynamics, distinct from that already in
existence for controlling the limb. Indeed, it has been
shown that stereotyped patterns of muscle activation
associated with compensating for interaction torques
due to limb dynamics are particularly resistant to
adaptation, even after several hundred training trials
(Koshland et al. 2000; Debicki and Gribble 2004;
Debicki and Gribble 2005).

Grasping an object with the hand may be a powerful
contextual cue that aids in the acquisition of a distinct
model of object dynamics. The myriad changes in
somatosensory, proprioceptive and haptic information
associated with grasping the robot handle may represent
a powerful contextual cue that allows the motor system
to switch, to a greater extent, between different models
of dynamics. In addition the sensory consequences of the
sudden decrease in inertia associated with letting go of
the robot handle may also play a similar role. When
control subjects moved in a null field while still grasping
the robot handle, the absence of these changes may have
resulted in a persistence of the most recent model of
dynamics, namely that associated with the recently
learned forces (Mattar and Ostry 2005).

Previous work on retention of force field learning
suggests that subjects who adapted to novel force fields
showed significant retention many months after initial
training (Shadmehr and Brashers-Krug 1997). Presum-
ably, the many contextual cues associated with the
experimental task, including the grasp of the hand
around the robot, were sufficient to promote the recall of
the previously learned force field. Moreover, both nor-
mal and amnesic subjects showed after-effects related to
the previously learned force field when they returned to
reach with a robot several hours following initial train-
ing (Shadmehr et al. 1998).

A recent study of motor learning using a robotic
device to deliver forces to the limb suggests that the
sensory cues associated with internal model acquisition
may not be limited to the hand. Subjects who learned to
move in a novel force field while grasping a handle
showed complete transfer of learning when they released
their grasp and the load was applied to the arm segments
directly (Davidson et al. 2005). This suggests that when
the load was applied to the hand or to the arm segments
directly, the same neural representation of the load was
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used to control movement. The sensory signals
associated with the robotic exoskeleton pressing against
the skin, were likely sufficient cues to promote the use of
the same internal model of dynamics. In the present
study the sudden absence of any sensory cues related to
the force field presumably acted as a strong contextual
cue.

Different kinds of contextual cues may have differing
effects on the ability of the motor system to switch be-
tween models of dynamics. Changes in limb posture, but
not other cues less related to the motor requirements of
the task, have been shown to promote a reduction in
interference when learning to move in different force
environments (Gandolfo et al. 1996). The nature of
training may also affect the ability to acquire multiple
representations of dynamics. Training schemes in which
different force fields were presented in random order
were better at promoting the acquisition of multiple
models of dynamics than those in which forces were
presented in consecutive blocks or in regularly alter-
nating trials (Karniel and Mussa-Ivaldi 2002; Osu et al.
2004). Monkeys that were trained for several months
using color cues associated with different force fields
were able to successfully alternate between tasks with
little or no loss in performance (Krouchev and Kalaska
2003).

Patterns of grip force adjustments during object
manipulation tasks suggest that the motor system is
capable of rapidly compensating for the inertial effects
of grasped objects (Flanagan and Wing 1997). It has
been proposed that this ability is based on distinct neural
representations of object dynamics that are used to
predict load forces of moved objects. These predictions
presumably enable the nervous system to produce
appropriate grip forces in parallel with limb movement
commands, avoiding the problems associated with sen-
sory feedback delays (Wolpert and Flanagan 2001). A
more recent study of grip force modulation during ob-
ject manipulation is consistent with the idea that the
motor system is capable of acquiring distinct neural
representations of grasped objects. Subjects first lifted
two objects that looked the same but had different
masses. As in previous studies, with practice, subjects
predictively scaled grip forces to match load forces
associated with object motion. When subsequently
asked to lift both objects when stacked on top of each
other, subjects were able to scale grip force appropri-
ately for the sum of the load forces. This is consistent
with the idea that two distinct neural representations of
the two objects were combined in order to estimate the
load forces associated with the combined object
(Davidson and Wolpert 2004).

We have shown here that subjects who returned to a
force field after having reached in free space were able to
fully retain their previous learning without retroactive
interference from free space reaching. This is clearly
consistent with the view that a model of robot dynamics,
distinct from the existing model of limb dynamics, is
acquired during training. However, when first letting go

of the robot and reaching in free space, after-effects
related to the previous training, although significantly
smaller than those of controls, were still present. This
indicates that some (reduced) aspect of training is
carried forward even when subjects are no longer
grasping the robot. This observation is not inconsistent
with the idea that a separate model of robot dynamics is
acquired during learning. In a recently proposed scheme
for motor learning that is based on multiple represen-
tations of dynamics it is suggested that multiple internal
models, each based on different previously acquired
sensory-motor learning experiences, may be combined in
a continuous fashion for a given motor task (Kawato
1999; Haruno et al. 2001). The output of existing rep-
resentations of dynamics may be combined in a weighted
fashion depending partly on signals related to task
context. In the experiments described here the major
change in contextual cue from block B4 to B5 was that
subjects no longer grasped the robot handle. However,
many other contextual cues remained the same for the
subject—e.g. the movement targets, the arm posture, the
movement speed, and the overall task requirements and
goals. The results presented here are consistent with a
view in which the grasp of the robot handle is one of
many potential contextual cues that are capable of dif-
ferently weighting neural representations of limb
dynamics and distinct neural representations of object
dynamics.
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