
Generalization of Motor Learning Based on Multiple Field Exposures and
Local Adaptation

Nicole Malfait,1 Paul L. Gribble,2 and David J. Ostry1,3

1McGill University, Montreal, Quebec, Canada; 2The University of Western Ontario, London, Ontario, Canada; and 3Haskins
Laboratories, New Haven, Connecticut

Submitted 25 August 2004; accepted in final form 13 January 2005

Malfait, Nicole, Paul L. Gribble, and David J. Ostry. Generaliza-
tion of motor learning based on multiple field exposures and local
adaptation. J Neurophysiol 93: 3327–3338, 2005. First published
January 19, 2005; doi:10.1152/jn.00883.2004. Previous studies have
used transfer of learning over workspace locations as a means to
determine whether subjects code information about dynamics in
extrinsic or intrinsic coordinates. Transfer has been observed when the
torque associated with joint displacement is similar between work-
space locations—rather than when the mapping between hand dis-
placement and force is preserved—which is consistent with muscle- or
joint-based encoding. In the present study, we address the generality of an
intrinsic coding of dynamics and examine how generalization occurs
when the pattern of torques varies over the workspace. In two initial
experiments, we examined transfer of learning when the direction of a
force field was fixed relative to an external frame of reference. While
there were no beneficial effects of transfer after training at a single
location (experiments 1 and 2), excellent performance was observed at
the center of the workspace after training at two lateral locations
(experiment 2). Experiment 3 and associated simulations assessed the
characteristics of this generalization. In these studies, we examined
the patterns of transfer observed after adaptation to force fields that
were composed of two subfields that acted in opposite directions. The
experimental and simulated data are consistent with the idea that
information about dynamics is encoded in intrinsic coordinates. The
nervous system generalizes dynamics learning by interpolating be-
tween sets of control signals, each locally adapted to different patterns
of torques.

I N T R O D U C T I O N

Psychophysical and neurophysiological studies have ana-
lyzed patterns of generalization to identify the variables used
by the nervous system for movement planning and control
(Imamizu et al. 1995). The encoding of information about
dynamics has been studied by examining transfer of learning
across differences in movement direction (Gandolfo et al.
1996; Sainburg et al. 1999; Thoroughman and Shadmehr
2000), amplitude and duration (Goodbody and Wolpert 1998),
and movement path (Conditt et al. 1999). Generalization has
also been examined across different configurations of the same
arm (Ghez et al. 2000; Malfait et al. 2002; Shadmehr and
Moussavi 2000; Shadmehr and Mussa-Ivaldi 1994) and across
limbs (Criscimagna-Hemminger et al. 2003; DiZio and Lack-
ner 1995; Malfait and Ostry 2004; Wang and Sainburg 2004).

Studies that have examined transfer of learning within the
same arm have provided evidence consistent with the idea that
information about dynamics is represented in muscle- or joint-

based coordinates. Specifically, transfer occurs when the rela-
tion between joint displacement and experienced torque re-
mains unchanged over different workspace locations rather
than when the mapping between hand displacement and force
is preserved (Ghez et al. 2000; Malfait et al. 2002; Shadmehr
and Moussavi 2000; Shadmehr and Mussa-Ivaldi 1994). Work
to date has not explained how generalization occurs when the
pattern of torques changes with the configuration of the arm as
is the case simply when forces have constant direction relative
to an external frame of reference (but see Hwang et al. 2003).
Moreover, other studies, notably work on interlimb transfer,
indicate that patterns of generalization can be highly dependent
on the nature of the task (Cardoso de Oliveira 2002; Malfait and
Ostry 2004; Swinnen and Wenderoth 2004) and that information
about dynamics may be represented in extrinsic coordinates (Cris-
cimagna-Hemminger et al. 2003; DiZio and Lackner 1995).

In the present paper, we have used a viscous force field that
acts in a fixed direction relative to an external frame of
reference (Fig. 1A)—this defines a mapping between joint
displacement and torque that varies with the configuration of
the arm. The aim was to assess the generality of intrinsic
coding of dynamics and determine how generalization occurs
when the pattern of torques changes over the workspace. We
test the idea that the nervous system interpolates between
control signals that are locally adapted to different torque
patterns to achieve generalization. In experiment 1, we exam-
ined transfer of learning across two sides of the workspace (left
and right). In experiment 2, we assessed how learning at two
lateral locations (left and right) generalizes to a third interme-
diate arm configuration (center). In experiment 3 and associ-
ated simulations, we used several different composite force
fields to compare the patterns of generalization for purposes of
determining the system of coordinates in which these fields are
learned and the specificity of the learning.

M E T H O D S

Experimental setup

Twenty eight right-handed adults (Edinburgh Inventory) (Oldfield
1971), aged 21–33 yr, participated in the experiments. Subjects were
seated and held the handle of a two-link manipulandum (Interactive
Motion, Cambridge, MA). They made horizontal arm movements
with their right arm supported by an air sled. The shoulder was
restrained and the wrist was braced. Subjects were instructed to move
the handle of the manipulandum to 8-mm-diam targets that were
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mounted on a horizontal panel below the apparatus. Subjects could see
their arm throughout the experiment.

Experimental procedures
Subjects made 12-cm center-out movements in eight different

directions. In experiments 1 and 2, movement directions were 0,
45, . . . , 315° relative to the frontal plane. In experiment 3, movement
directions were 22.5, 67.5, . . . , 337.5°. Participants were trained to
produce movements of 500 � 50 ms. Movements were performed in
three different arm configurations: at the left, center, and right of the
workspace (Fig. 1B). In all three configurations, the initial elbow
angle was 90°, whereas the initial shoulder angle was 90° at the left,
45° at the center, and 0° at the right (shoulder angle was measured
relative to the frontal plane and elbow angle was measured relative to
the upper arm). The robot produced a force field in which the force f
acted parallel to subjects’ frontal plane—along the Cartesian x axis—
and was proportional to the speed of the hand. Specifically, the forces
applied at the hand were fx � ��(vx

2 � vy
2) and fy � 0, where fx, fy,

vx, and vy are respectively the forces (N) and hand velocities (m/s)
along the Cartesian axes. In experiments 1 and 2, the forces were
always to the right, specifically, we used � � �20 N � s � m�1. In
experiment 3, we used composite force fields in which forces were to
the right for some movement directions—� � �20 N � s � m�1—and
to the left for others—� � �20 N � s � m�1. Subjects made
movements in a counterclockwise order, performing cycles of eight
movements each. Forces were experienced only during movement to
the target; at the end of each trial, the hand was brought back by the
robot. To hold inertia constant, subjects were moved relative to the
robot for movements in different workspace locations.

When forces act in a constant direction (Fig. 1A), the associated
pattern of torques varies over the workspace. Using: x � l1 cos �1 �
l2 cos(�1 � �2), y � l1 sin �1 � l2 sin(�1 � �2), where �1 and �2 are,
respectively, shoulder and elbow angle, and l1 and l2 are lengths of
upper and forearm, the transformation from endpoint force to joint
torque is: T � JtF, where J � [�l1 sin �1 � l2 sin(�1 � �2), �l2 sin(�1

� �2); l1 cos �1 � l2 cos(�1 � �2), l2 cos(�1 � �2)] is the configura-
tion-dependent differential transformation matrix—Jacobian matrix.
Figure 2 illustrates the correspondence between forces and torques
over the workspace. In Fig. 2, A and B, the workspace of the hand is
represented in Cartesian space. In Fig. 2A, for each hand position,
vectors represent forces and have components fx and fy. In Fig. 2B, for
each hand position, vectors represent torques the components of
which are the torque at the shoulder and torque at the elbow. The
length of the vectors gives the amplitude of the torques, and their
orientation indicates the distribution of torques between the shoulder
and elbow. One sees that a constant direction force field corresponds
to a torque field that varies across the workspace. Thus if subjects
learn a force field the direction of which is constant—relative to an
external frame of reference—at two different locations this requires
adaptation to two different pattern of torques.

Experiment 1

We first used a procedure previously employed by Shadmehr and
Moussavi (2000) and Malfait et al. (2002) to test whether training in
a single area of the workspace would be sufficient to produce transfer
of learning under conditions in which force direction was constant in
an external frame of reference. Eight subjects were divided into two
groups. Each group learned the force field shown in Fig. 1A at one
side of the workspace and was then tested for transfer at the opposite
location. Subjects in group L learned the field at the left and were then
tested for transfer at the right; locations were reversed for group R.
The experiment consisted of four phases: two familiarization phases
(1 in each location), a training period, and a test for transfer, all
performed within a single day. During the familiarization phases,
subjects learned the task under “null field” conditions (4 blocks of 5
cycles of movements at each location). The training consisted of 10
blocks of five cycles each (400 movements in total, 50 in each
direction). Subjects were tested for transfer across arm configurations.
The transfer test consisted of one block of five cycles at the opposite
location using the same force field as in training. The end of the
training and the transfer test were separated by �2 min.

Experiment 2

Generalization across workspace locations has been observed when
the pattern of torques remains constant (Ghez et al. 2000; Malfait et
al. 2002; Shadmehr and Moussavi 2000; Shadmehr and Mussa-Ivaldi
1994). When the torque field varies with the arm configuration,
training in a single location may not provide a basis for generalization
elsewhere. In this study, we tested the idea that subjects can generalize
learning about a constant force direction (in extrinsic coordinates)
when they are provided with multiple exposure locations. Four sub-
jects participated in the second experiment. The experiment involved
training at both the left and the right followed by a transfer test in the
center. The force field for all three locations was the same as in
experiment 1 (see Figs. 1A and 3A). The experiment consisted of four
sessions each on a different day. On the first day, subjects trained
under “null field” conditions at each location (3 blocks of 5 cycles).
On the next two days, subjects trained in the force field at the left and
right, respectively. Two subjects trained at the right on the first day
and two trained at the left. In each training session, subjects did five

FIG. 1. A: subjects made center-out movements to 8 targets. Forces were
applied at the hand in proportion to hand speed and always acted parallel to the
frontal plane. B: 3 different arm configurations were used: left, right, and
center. In experiment 1, subjects adapted to the force field at the left or the right
and were then tested for transfer at the opposite location. In experiments 2 and
3, subjects learned the field at both the left and the right and were tested for
transfer at the center.

FIG. 2. Torque variation across the workspace of the limb. The figure
shows the region that may be reached by the hand, represented in Cartesian
space. A: for each hand position in the smaller plot, each vector has compo-
nents fx and fy and represents the force applied at the hand. B: for each hand
position in the larger torque plot, the components of each vector are the torque
at the shoulder and the elbow (counterclockwise moments are considered
positive).
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blocks of 10 cycles in the force field (400 movements in total, 50 in
each direction). On the fourth day, subjects first performed three
blocks of 10 cycles at each of the lateral locations and were then tested
for transfer at the center using the same force field as in the training
conditions (1 block of 10 cycles). The end of the training and the
transfer test were separated by �2 min.

Experiment 3

The purpose was two-fold. It was to identify the coordinate system
in which the transfer of learning observed in experiment 2 occurs—
that is, when the pattern of torque changes with the configuration of
the limb. It was also to test the idea that generalization involves
interpolation between the control signals associated with different
patterns of torques—each learned in a different workspace location.
To test this idea, we compared the patterns of generalization induced
by two different training conditions. Sixteen subjects participated in
the third experiment. As in experiment 2, subjects trained at the left
and the right and were then tested for transfer at the center. Subjects
were divided into two groups. Subjects of group E learned the same
force field at both locations; subjects of group I adapted to a different
force field in each arm configuration (E and I refer to extrinsic and
intrinsic, respectively). The force fields that were used are shown in
Fig. 4, A and B (boxes 1 and 2). As in experiments 1 and 2, forces
always acted parallel to the frontal plane, but this time each force field
was divided into two subfields: for four movement directions the
forces were to the right—� � �20 N � s � m�1—whereas for the other
directions, the hand was pushed left—� � �20 N � s � m�1. All
subjects were tested at the center with the same field (Fig. 4C). The
organization of the experimental sessions was the same as in exper-
iment 2 except that during the familiarization phase (1st day) “force-
field catch trials” were introduced to assess the effect of the field
before any learning.

Data analysis

Hand positions were sampled at 200 Hz, low-pass Butterworth
filtered at 20 Hz, and numerically differentiated. Because the fields
had perturbing effects that differed depending on the direction of the
movement, we used three distinct measures of kinematic error: the
initial angular deviation (IAD), the path length (PL), and the tangen-
tial velocity variation (TV). The initial angular deviation was defined
as the angular distance between the vector from the center to the target
and the vector from the center to the position of the hand at peak
tangential velocity (Sainburg et al. 1999). The length of the hand path
in Cartesian space was computed, after re-sampling the position
curves to 101 time points, as � dsi, where dsi � �[(xi �1 � xi)

2 �
(yi �1 � yi)

2], with the index over time i � 1, . . . , 100. To compute
variation in the velocity profile, we compared the tangential velocity
curves observed in the transfer tests, tvo, with a tangential velocity
template tvt obtained, for each subject, by averaging the tangential
velocity curves (re-sampled to 101 points) of the last five cycles of the
familiarization phase—while no forces were applied by the robot;
specifically: � (tvoi � tvti)

2, with the index over time i � 1, . . . , 101.
The start and end of movement were defined by 5 or 10% of
maximum tangential velocity depending of the error index that was
computed; 5% was used for the positional indices, and 10% was used
for the velocity profile index.

SAS GLM and MIXED procedures were used to run multi- and
univariate repeated measures analyses of variance. Training condition
(E vs. I), order of training, and initial movement direction in the
transfer test were between subjects factors, and movement direction,
workspace location, and sets of trials (initial and final training and
transfer) were within subject variables. For post hoc comparisons, P
values were compared with � levels adjusted by using a Bonferroni-
Holm sequential procedure. In the following, main effects and inter-
actions that are not reported were not significant at � � 0.05.

Predicted patterns of generalization in experiment 2

This study tests whether transfer will be observed if subjects are given
multiple exposures (in different locations) to force fields that are constant
in direction in extrinsic coordinates. Transfer of learning is predicted by
both extrinsic and intrinsic coding hypotheses (see Fig. 3). If the nervous
system “switches” to an extrinsic system of reference to encode the
direction of the force field, subjects should expect the same force field
at the center as at the sides. Under the hypothesis of intrinsic coding,
subjects would expect a specific pattern of torque—rather than a
specific force field. The expected pattern of torques is found by
considering the correspondence between forces and torques. For each
configuration—left, right, and center—Fig. 3A illustrates the forces
that are associated with the different center-out movements. Figure 3B
gives the torques associated with shoulder and elbow displacement for
the same set of movements. In this figure, a joint path that involves
primarily elbow flexion is highlighted. When we zoom in on this
movement (below), it may be seen that the torques associated with this
joint path act primarily about the shoulder at the left, whereas at the
right the torques are more equally distributed to both joints. At the
center the torque vectors have an intermediate orientation. The exact
relationship between torques at the left, right and center is as follows.

In general, for a force field in which no forces are applied along the
y-Cartesian axis, that is fy � 0, the torques at the shoulder and at the
elbow are �1 � �l1 sin �1 � l2 sin(�1 � �2) fx and �2 � l1 cos �1 �
l2 cos(�1 � �2) fx, respectively. If we set fx � 1, and define �1 and �2

as joint angles for movements at the right, we then have at the right

FIG. 3. While the force field is identical at the left, right, and center, the
pattern of torque changes with the configuration of the arm. The figure shows
motion paths and associated forces and torques at the left, right, and center. A:
hand positions and associated forces in Cartesian space for movements with
straight hand paths and bell-shaped velocity profiles. B: corresponding patterns
of torque associated with joint rotations, represented in joint space. Note that
joint paths that are identical in the different arm configurations correspond to
different hand paths in each location of the workspace (highlighted in A and B).
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�R1 � � l1 sin �1 � l2 sin��1 � �2	

�R2 � l1 cos �1 � l2 cos��1 � �2	

at the left

�L1 � � l1 sin��1 � �/2	 � l2 sin��1 � �/2 � �2	 � � l1 cos �1 � l2 cos��1

� �2	

�L2 � l1 cos ��1 � �/2	 � l2 cos��1 � �/2 � �2	 � � l1 sin �1 � l2 sin��1 � �2	

and at the center

�C1 � � l1 sin��1 � �/4	 � l2 sin��1 � �/4 � �2	

� � l1
sin �1 cos �/4 � cos �1 sin �/4� � l2
sin��1 � �2	 cos �/4 � cos��1

� �2	sin �/4�

� �2/2� � l1
sin �1 � cos �1� � l2
sin ��1 � �2	 � cos��1 � �2	�

�C2 � l1 cos ��1 � �/4	 � l2 cos ��1 � �/4 � �2	

� l1
cos �1 cos �/4 � sin �1 sin �/4� � l2
cos��1 � �2	 cos �/4 � sin��1

� �2	 sin �/4�

� �2/2�l1
cos �1 � sin �1� � l2
cos��1 � �2	 � sin��1 � �2	�

By substitution and reordering, we have: �C1 � �2/2(�R1 � �L1) and

�C2 � �2/2(�R2 � �L2); that is, the torque vector at the center is TC

� �2/2(TR � TL).
Thus on the assumption that dynamics learning and generalization

occur in intrinsic coordinates, one would predict that subjects who
learn two distinct torque fields, at the left and the right, would perform
well in a transfer test at the center because they would be expecting a
pattern of torques intermediate to those experienced during training.

Patterns of generalization permit a dissociation of extrinsic
versus intrinsic coding in experiment 3

Figure 4, A and B, shows the force fields (1 and 2) that were used
to train subjects in groups E and I, respectively. Boxes 3 and 4 give the
associated patterns of torques. Learning in extrinsic versus intrinsic
coordinates should result in different patterns of transfer. If learning
occurs in extrinsic coordinates, subjects of group E (Fig. 4A) should
be well prepared for the transfer test at the center because the force
field at the left (box 1) and the right (box 2) are identical to that in the
center (box in Fig. 4C). With extrinsic coding, subjects of group I
(Fig. 4B) would be expected to perform well for movement directions
3, 4, 7, and 8 in which the forces have same orientation at both
training locations (boxes 1 and 2). For the other directions—1, 2, 5,
and 6—little transfer to the intermediate position would be expected.

To understand the predictions for intrinsic coding, one has to
consider the representations in joint space. In Fig. 4, A and B, 3 and
4 show the torque fields at the left and at the right, respectively. The
pattern of torques that subjects might expect at the center can be found

FIG. 4. Subjects were divided into 2 groups: groups E and I. All subjects were tested for transfer of learning at the center of the workspace. In all panels,
conditions that were actually experienced by the subjects are plotted in boxes, whereas the plots labeled “expected” forces and torques were not actually
experienced but correspond to patterns predicted on the assumption that learning occurred in intrinsic coordinates. Boxes 1 and 2 present the patterns of forces
applied at the hand. Boxes 3 and 4 show the associated patterns of joint torque. A: subjects of group E learned the same force field at the left (1) and the right
(2). B: subjects of group I adapted to different force fields at the left (1) and the right (2). C: the box shows the force field used for the transfer test at the center.
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as in the preceding text. The “expected torques” can be converted into
“expected forces.” These are shown in Fig. 4C for both training
conditions. One can see that, for group I, expected forces at the center
(Fig. 4C, right) are identical to the force field that is actually used in
the transfer test. Thus if adaptation and generalization occur in
intrinsic coordinates, good performance would be expected in all
directions. In contrast, for group E, the conversion of expected torques
to expected forces (Fig. 4C, left) gives a pattern that is similar to the
transfer test for directions 3, 4, 7, and 8 but different for directions 1,
2, 5, and 6.

In summary, if learning occurs in extrinsic coordinates, subjects of
group E should do better on the transfer test whereas if learning
occurs in intrinsic coordinates, subjects of group I should do better.

Simulation of experiment 3

We tested the idea that generalization involves an interpolation
between control signals by comparing empirical data from experiment
3 with simulated patterns of generalization. We simulated center-out
movements (12 cm in length and 500 ms in duration) that were
performed under the same conditions as in experiment 3. For the
simulations, we used a model of two-joint planar arm movement in
which the control signals are based on the � version of the equilibri-
um-point hypothesis (Feldman 1986; Feldman et al. 1990). According
to the model, muscle force depends on the difference between mus-
cles’ actual length and centrally specified threshold lengths � for
motoneuron activation as well as on length- and velocity-dependent
afferent feedback and reflex delays. Continuous time-varying shifts in
joint equilibrium angles produce the simulated movements. Force-
field learning was simulated as an iterative procedure that consists of
trial-by-trial adjustments to the values of individual muscles �s on the
basis of the difference between desired kinematics and actual joint
displacements (see Gribble and Ostry 2000 for a detailed description
of the learning algorithm).

Six muscle groups were modeled: single-joint elbow and shoulder
flexors and extensors (biceps long head and triceps lateral head and
pectoralis and deltoid), and a double-joint flexor and extensor (biceps
short head and triceps long head). Musculo-skeletal geometry was
estimated from anatomic sources (An et al. 1981, 1989; Winters and
Woo 1990). Muscle-force-generating ability varied with estimates of
physiological cross-sectional area (Winters and Woo 1990). Equations
of motion relating accelerations to joint torques were obtained using
Lagrangian methods (Hollerbach and Flash 1982). The muscle model
was a variant of that described by Zajac (1989); it included activation
and contraction dynamics and passive muscle stiffness. For each
muscle, it also included modeled neural inputs (�s), length- and
velocity-dependent afferent feedback, and reflex delays. The model
also included an independent co-contraction command for changes in
impedance at a given position or during movement (see Gribble et al.
1998 for details).

Preliminary simulations were run in the absence of external forces
with the arm model positioned at the left and the right. This generated
modeled control signals that compensated for the mechanical behavior
of the limb under no-load conditions and for each movement direction
resulted in a vector of modeled muscle commands (�s) that yielded
straight-line movements in the absence of load.

The arm model then learned the force field at the left or the right of
the workspace. We used as an initial motor command the time-varying
vector of �s that resulted from “null field” training. After each
simulated movement, the vector of �s was updated in proportion to the
difference between desired and actual muscle lengths. This procedure
resulted in a set of modified � vectors that produced adapted move-
ments in the presence of load.

This was followed by a second training session at the opposite
location. The second training started using the final values of com-
mands from the other side of the workspace. In other words, we
assumed that new learning starts by using the � vectors appropriate to

the most recent training. A set of adaptation trials was then undertaken
in which, once again, the vector of motor commands was updated in
proportion to the error in � (muscle command) coordinates. We
produced simulated movements in the center of the workspace by
using the vector average of the two sets of commands that produced
adapted movement at the left and at the right, respectively.

In all simulations, we used a co-contraction command of 35 N for
the simulation of movements made in the absence of force and a
co-contraction level of 40 N for the training trials. As in Gribble et al.
(1998), the cocontraction command was initially defined in force
space and hence has units in Newton. A corresponding vector in �
space that resulted in this change in muscle force was computed and
served as the actual cocontraction command. It should be noted that
commands of this magnitude produce empirically observed values for
stiffness during multi-joint movement (Gribble et al. 1998). We found
that 15 iterations were sufficient to produce adapted movement for all
directions in all force fields and workspace locations.

Figure 5 illustrates the adaptation and interpolation procedures
using actual conditions from experiment 3. Figure 5, A–C, shows
simulated movements at the right, left, and center, where in all cases
forces move the hand to the left. Simulated hand path (dots) and
corresponding joint displacements (solid lines) are shown together
with joint equilibrium trajectories (dashed lines). In Fig. 5, A and B,
the hand path in gray corresponds to the first simulated movement
performed in the field and the trace in black shows the last adapted
training trial. In the joint displacement graphs, solid lines show the
simulated shoulder and elbow trajectories for the last training trial.
The dashed lines show the joint equilibrium angles corresponding to
the time varying � vector that produce this adapted movement. The
hand path in Fig. 5C corresponds to the first trial in the field at the
center using as a command the average of � vectors generated by
iterations at the right and the left. Note that we use the vector average
on the assumption that the command is computed on the basis of
afferent information about the configuration of the limb, which in this
case, based on the shoulder angle, lies midway between the left and
right configurations.

R E S U L T S

Experiment 1

In this experiment, we asked if subjects who trained at one
side of the workspace would do better in a transfer test at the
other side, than subjects who were in the field for the first time.
Two groups of subjects trained at the left (group L) or the right
(group R) and were then tested for transfer at the opposite side.
To assess transfer, we compared performance of subjects of
group L in the transfer test at the right with the performance of
subjects of group R at the start of training at the right. A similar
comparison was carried out for subjects who trained at the right
and were then tested for transfer at the left.

Figure 6 shows hand paths for all subjects. The top row
shows subjects in group L, the bottom row is for group R. Hand
paths are shown for the first and the last trials of the training
phase and for the first trials of the transfer test. One sees that
all subjects performed poorly on initial exposure to the field.
By the end of training, hand paths become fairly straight. It can
be seen that subjects of group L did not perform substantially
better in the transfer test at the right (Fig. 6C) than subjects of
group R at the beginning of training (D). Subjects of group R
showed some benefit in the transfer test at the left as a result of
their previous experience with the field; their hand paths were
in general less perturbed during the transfer test (F) than those
produced by the subjects of group L (A).
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For statistical analysis, we computed means for the first and
last three training cycles and for the first three transfer cycles.
We obtained global error indices by averaging over directions.
Figure 7, A–C, shows the means (�SE) across subjects for the
three measures: initial angular deviation (IAD), length of the
path (PL) and variation in the tangential velocity profile (TV),
respectively; � are for group L, o are for group R.

We ran three separate repeated-measures ANOVAS (univar-
iate) with training condition (left vs. right) and initial move-
ment direction as between subjects factors and trials (initial,
final, transfer) as a within-subjects factor. For all three error
measures, a significant main effect of trials was observed
[F(2,12) � 20.85, P � 0.001; F(2,12) � 12.57, P � 0.01;
F(2,12) � 29.21, P � 0.0001, for IAD, PL, and TV, respec-
tively]. Significant, or close to significant, interactions between
training conditions and trials were also observed [F(2,12) �
4.28, P � 0.05; F(2,12) � 3.35, P � 0.07; and F(2,12) � 8.78,
P � 0.01, for IAD, PL, and TV].

Post hoc comparisons revealed a significant effect of learn-
ing. For all three measures of kinematic error, initial training
trials were more perturbed than final ones (P � 0.01). The
force field was found to have comparable effects at initial
exposure on path lengths and velocity profiles at both locations
(P � 0.05 for both). However, the field induced larger initial
angular deviation at the right than at the left (P � 0.01).
Accordingly we assessed transfer of learning separately for
each group. We show this set of contrasts with square brackets
in Fig. 7. For subjects of group R, velocity profiles in the
transfer test at the left were less perturbed than those of group
L at the beginning of training (P � 0.01). However, initial
angular deviations and path lengths were comparable for the
two groups (P � 0.05 for both). For group L, initial angular
deviation in the transfer test was less than in the initial training
trials of group R (P � 0.05). There were no differences in path
lengths or velocity profiles (P � 0.05 in both cases).

Experiment 2

Four subjects trained at the left and the right and were then
tested for transfer in the center. In Fig. 8A, hand paths for
individual trials are plotted for two subjects who trained first at
the left. Figure 8B shows trials for two other subjects who
trained first at the right. Both panels show the first and last
training trials and the first transfer trials at the center.

Performance at the start of the transfer test was comparable
to that at the end of training. This was quantified by computing
a global index of positional error by averaging over the eight
movement directions. The excellent transfer that was observed
is illustrated in Fig. 9, which shows values of IAD for the first
and the last 10 training cycles along with means for the 10

FIG. 6. Hand paths for individual trials by all subjects in experiment 1. Top:
data for subjects who learned the field at the left and were tested for transfer
at the right (group L). Bottom: subjects who trained at the right and tested at
the left (group R).

FIG. 5. A–C: simulated movements involving the same joint displacements
at the right, left, and center. In all cases, forces push the hand to the left.
Simulated hand paths in Cartesian space (dots) and corresponding joint
displacements (solid line) are shown along with joint equilibrium trajectories
(dashed line). A and B: the hand path in gray corresponds to the 1st simulated
movement performed in the field and the trace in black shows the last adapted
training trial. In the joint displacement graphs, the solid lines show the “actual”
shoulder and elbow trajectories for the last training trial. The dashed lines show
the joint equilibrium angles that produce this last adapted movement. C: the
hand path corresponds to the 1st trial performed in the field at the center using
as a command the average of the “adapted” � vectors from right and the left.
In the joint displacement graphs, the equilibrium joint trajectories are shown as
dark dashed lines. The corresponding equilibrium trajectories from the right
and the left are translated by 45 and �45° and shown with lighter dashed lines.
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transfer cycles. One sees that the curve that corresponds to the
transfer test overlaps those for the last training cycles. For
statistical tests, we averaged over the first and last three
training cycles and over the first three transfer cycles in each
direction. For each epoch (early and late training at the left and
right and transfer test), we then obtained three global indices of
performance, corresponding to the IAD, PL, and TV.

We ran three separate repeated-measures ANOVAs (univar-
iate) that included order of training (1st training at the left vs.
1st training at the right) and initial movement direction as
between subjects factors. For all three error indices, a signifi-
cant main effect of cycles (initial, final, transfer) was observed
[F(4,12) � 16.29, P � 0.0001; F(4,12) � 15.69, P � 0.001;
F(4,12) � 17.75, P � 0.0001, for IAD, PL, and TV, respec-
tively]. Regardless of the order of training, movements in the
transfer trials were less perturbed than those in the initial
training trials (P � 0.01 for IAD, PL, and TV). Performance in
the transfer trials and in the last training trials was comparable
(P � 0.5 for IAD, PL, and TV, at both locations).

Experiment 3

We compared actual patterns of generalization with those
predicted by the intrinsic and extrinsic coding hypotheses.
Separate subjects were trained in two different conditions (Fig.
4, A and B). In both, subjects trained at the left and the right
and were then tested for transfer at the center (Fig. 4C). Figures
10A and 11A show initial training trials for subjects of groups

E and I, respectively. Subjects that trained at the left on day 1
(A) trained at the right on day 2 (D). Subjects that trained at the
right on day 1 (B) trained at the left on day 2 (C).

Figure 12 shows individual trials at the center of the work-
space. Hand paths for group E are in gray and group I is in
black. The plot at the left shows “force-field catch trials” for all
subjects in the familiarization phase of the experiment. Figure
12A, right, shows the performance of each group in the transfer
test. It may be seen that subjects of group I produced relatively
straight hand paths in all eight movement directions. In con-
trast, subjects of group E had hand paths that deviated sub-
stantially in some directions, in particular in directions 2 and 6.
As explained in the METHODS, subjects of group E would not
expect this pattern of torques on the assumption of intrinsic
coding.

Figure 13 presents mean values (�SE) over the first three
transfer trials using the different measures of kinematic error—
IAD, LP, and VT. MANOVAs were run for each movement
direction separately with experimental condition (E vs. I),
order of training (left first vs. right first) and initial movement
direction as between subjects factors. Because there were no
reliable effects of training order or initial movement direction,
we report here results from MANOVAs run with experimental
condition as the only between subjects variable. We found that
the effect of the experimental condition was significant for
directions 1, 2, 5, 6, and 7 [F(3,12) � 18.06, P � 0.0001;
F(3,12) � 31.75, P � 0.0001; F(3,12) � 9.25, P � 0.01;

FIG. 7. Experiment 1 means (�SE) across subjects for the 3 measures of kinematic error: A: initial angular deviation (IAD); B: path length (PL); and C:
variation in the tangential velocity profile (TV). The bars are the means for the 1st and last 3 training trials, and the 1st 3 transfer trials. �, subjects who trained
at the left and were tested for transfer at the right (group L). o, subjects who trained at the right and tested at the left (group R). Significant differences are indicated
by * � � 0.05. For path length, the difference between the actual path length and the distance from the center to the target (12 cm) is shown.

FIG. 8. Hand paths for the 1st and last
training trials, and the 1st transfer trials by
subjects in experiment 2. A: hand paths for
subjects who trained at the left on day 1 and
at the right on day 2. B: trials by subjects who
trained at the right on day 1 and on the left on
day 2.
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F(3,12) � 9.83, P � 0.01; and F(3,12) � 5.79, P � 0.05] and
not reliable for directions 3, 4, and 8 [F(3,12) �1.97, P � 0.05;
F(3,12) � 2.87, P � 0.05; and F(3,12) � 0.30, P � 0.05].

Complementary information was provided by univariate
analyses. Specifically, movements in direction 1 were more
deviated for subjects of group I than for subjects of group
E[F(1,14) � 32.92, P � 0.0001], but the latter had smoother
velocity profiles [F(1,14) � 11.03, P � 0.01]. Path lengths
were comparable for the two groups [F(1,14) � 1.58, P �
0.05]. One should note that the orientation of the deviations
was opposite to the field. Thus these deviations might corre-
spond to over-compensations. For direction 2, reliable or near
to reliable differences were observed for all three error indices
[F(1,14) � 43.89, P � 0.0001; F(1,14) � 4.18, P � 0.07;
F(1,14) � 10.82, P � 0.01, for IAD, PL, and TV, respec-
tively]; this was also the case for movements in direction 6
[F(1,14) � 29.52, P � 0.0001; F(1,14) � 22.08, P � 0.001;
F(1,14) � 6.91, P � 0.5, for IAD, PL, and TV]. For direction
5, differences between groups were reliable only for velocity
profiles [F(1,14) � 30.57, P � 0.0001]. Transfer trials were
comparable in terms of angular deviation [F(1,14) � 2.83, P �
0.05] and path lengths [F(1,14) � 0.83, P � 0.05]. For
direction 7, subjects of group I were less deviated than those of
group E [F(1,14) � 11.55, P � 0.01], but the two groups had
comparable path lengths [F(1,14) � 4.13, P � 0.05] and
velocity profiles [F(1,14) � 0.01, P � 0.05]. Note that angular
deviations were again opposite to the direction of the force
field.

In summary, quantitative tests of differences between the
performance of subjects in groups E and I indicate (with the
exception of IAD for direction 1, in which overcompensation
was observed) reliably worse performance in transfer tests
trials for group E subjects in directions 1, 2, 5, and 6. The
specific pattern of generalization is in agreement with the
predictions for transfer of dynamics learning based on intrinsic
coding of information.

Simulation of experiment 3

We used a model of two-joint planar arm movement to test
the feasibility of interpolation between patterns of local learn-

ing as a means to achieve generalization. Figures 10B and 11B
show the predicted patterns for training trials at the left and the
right. Simulation results for subjects that train first at the left
are shown in a (day 1) and d (day 2). The simulated results
when training starts at the right are given in b (day 1) and c
(day 2).

In contrast to a and b, which show the performance of a
“naı̈ve model” on initial exposure to the force-field, the pat-
terns of hand path deviations in c and d correspond to the first
trials performed by a “trained model” using as initial motor
commands those generated by training at the opposite location.
The patterns in the simulations correspond quite closely to
those observed empirically.

As in experiment 3, we assessed, prior to training, the effect
of the force field that would be used for the transfer test at the
center. In the simulations, we used as command signals at the
center the � vectors resulting from iterations under “null field”
conditions. It may be seen in Fig. 12B that when these signals

FIG. 10. A: hand paths at the start of training by subjects of group E. a and
d: trials by subjects who trained at the left on day 1 and at the right on day 2.
b and c: for subjects who trained at the right on day 1 and at the left on day 2.
B: simulated hand paths obtained in force-field learning conditions analogous
to those experienced by subjects of group E.

FIG. 9. Means (�SE) across subjects in experiment 2 for initial and final
training cycles at the left and the right, and the transfer test at the center. For
each cycle the plot shows the means of the absolute value of the initial angular
deviation averaged over movement directions.
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were used in conjunction with the load applied in the transfer
test at the center, the simulated hand paths correspond to those
observed experimentally in the prelearning force field catch
trials.

For simulation of transfer trials, we averaged the two sets of
commands used to produce adapted movement at the left and
at the right, respectively. The resulting performance of the
model is shown in Fig. 12B.

D I S C U S S I O N

Studies of intralimb transfer of learning have provided
evidence that information about dynamics is encoded in an
intrinsic system of coordinates by showing that generalization
depends on similarity in torques in different limb configura-
tions (Ghez et al. 2000; Malfait et al. 2002; Shadmehr and
Moussavi 2000; Shadmehr and Mussa-Ivaldi 1994). In the
present study, we have examined how generalization occurs
when the pattern of torques varies with the configuration of the
limb.

In experiments 1 and 2, we probed the generality of intrinsic
coding by using a viscous force field the direction of which was
fixed relative to an external coordinate frame. We tested the
possibility that in the absence of invariance in the pattern of
torques, the nervous system might generalize on the basis of
invariance in the direction of forces and use an extrinsic system
of coordinates to capture this property. In fact, we found no
evidence that supported this idea.

In experiment 3, we designed two different training condi-
tions to distinguish between dynamics learning in intrinsic
versus extrinsic coordinates. One training condition (group E)
was supposed to lead to a good performance in a transfer test
at the center of the workspace if forces were encoded in
extrinsic coordinates. If dynamics are learned in an intrinsic
reference frame, subjects in the other condition (group I) were
supposed to do well in the transfer test. The patterns of
generalization that we predicted, under the intrinsic coding
hypothesis, were based on a straightforward idea. Because the
movements performed at the left and at the right involved
similar joint displacements and differed only in the initial
shoulder angle (elbow angles were identical), we assumed that
subjects would establish a mapping between the control signals
associated with different shoulder angles and different patterns
of torque. On this basis, we hypothesized that subjects would
expect an intermediate pattern of torques to be associated with
an intermediate shoulder angle. The results of experiment 3
were consistent with these predictions.

We compared the empirical data with simulated patterns of
generalization. For the simulations, we used a model of two-
joint planar arm movement in which the control signals were
based on the � version of the equilibrium-point hypothesis
(Feldman 1986; Gribble and Ostry 2000). The learning process
was simulated as a trial-by-trial updating of commands based
on the difference between desired and actual positions. Under
these conditions, transfer of learning could be predicted on the
basis an interpolation between control signals that were
adapted to the torques in different training configurations.

The simulations provide a physiological underpinning to the
empirical observations. The experimental results show that the
information subjects gain about torques at the sides of the
workspace (and in turn about the torques they have to apply)
can be combined to predict the required torques at the center.
However, the torques are outputs and are separated from neural
inputs by muscle properties, reflexes, and limb dynamics. The
simulations suggest that the proposed approach to interpolation
would work at the level of the underlying control. Generaliza-
tion in motor learning may thus be based simply on an
interpolation between locally adapted � vectors.

The simulation results were strikingly similar to the patterns
observed empirically. The postulated process of adaptation was
applied first to the untrained limb and was used to generate a
straight movement in the absence of load. This initial adapta-
tion is akin to compensating for the dynamics of the limb and
results in a pattern of day 1 performance in the force field that
closely matches that observed empirically in all movement
directions (Figs. 10 and 11, a and b). The postulated adjust-
ment of control signals also accounts well for the pattern of
transfer observed in c and d of Figs. 10 and 11 on day 2 of the
experiment. In this case, the “adapted” control signals at the
end of day 1 learning were used as initial commands at the
other side of the workspace.

FIG. 11. A: initial training trials by subjects of group I. a and d: hand paths
by subjects who trained at the left on day 1 and at the right on day 2. b and c:
show subjects who trained at the right on day 1 and at the left on day 2. B:
corresponding simulated trials.
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The idea that generalization involves the combination of
control signals associated with instances of local learning
accounts for both the observed transfer of learning and for its
specificity (Fig. 12). Note that movement directions that
showed positive transfer were separated from those showing
considerable interference by as little as 45°. This is consistent
with previous results showing learning in the motor system is
spatially local (Gandolfo et al. 1996; Sainburg et al. 1999;
Witney and Wolpert 2003).

The ability to learn and retain the properties of several
different environments has been offered as evidence of a

modular structure to motor learning (Doya et al. 2002; Flana-
gan et al. 1999; Ghahramani and Wolpert 1997; Haruno et al.
2001; Karniel and Mussa-Ivaldi 2002; Kawato 1999; Wolpert
and Kawato 1998; Wolpert et al. 1998). As an example,
Ghahramani and Wolpert (1997) examined adaptation to op-
posite visual perturbations that were applied during movements
from two different starting locations. They presented evidence
consistent with the idea that subjects that learned the two
mappings generalized to intermediate starting positions by an
interpolation process. According to the authors the motor
system uses two distinct visuomotor “expert modules” and
interpolates to intermediate starting locations by using a
weighted average of the two experts outputs. By this account,
the configuration of the limb stands as a contextual cue that
indicates which of the expert modules should intervene.

Gandolfo et al. (1996) have shown that subjects can learn
curl fields of opposite orientation if they use different limb
configurations. If the limb configuration is fixed, subjects have
difficulty learning opposing fields based on visual or somato-
sensory information alone. These investigators suggest that, in
contrast to arbitrary cues, “distinct postures allow the CNS to
represent different perturbations as a single field, eliminating
prediction ambiguity;” that is, the different arm configurations
are an integral part of a unique complex sensorimotor mapping
and not “merely” cues associated with different simpler map-
pings. The present formulation is consistent with this approach.

Hwang et al. (2003) report experimental results that also fit
with this view. In particular, they found that learning three
distinct force patterns simultaneously was more or less difficult
depending on the starting locations with which the patterns
were paired. Specifically, large distances between the starting
positions facilitated learning, and subjects adapted more easily
to a “linear” mapping such as when starting locations ordered
from left to right were paired with a counterclockwise, null and
clockwise force field. Learning is more difficult with a “non-

FIG. 12. A: hand paths for individual trials in experiment 3.
Top left: force-field catch trials from the familiarization phase.
Group I is black, group E is gray. Right: the 1st transfer trial by
each subject of group I (black traces) and group E (gray traces),
respectively. B: simulated hand paths in experiment 3.

FIG. 13. Means (�SE) across subjects for transfer of learning in experi-
ment 3. The means are based on the 1st 3 transfer trials. ■ , group I; o, group E.
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linear” mapping that does not respect any ordered location/field
matching. This shows that learning can vary in difficulty even
though the same number of “experts” is required in each case.
Moreover, consistent with Shadmehr and colleagues’ position,
Gribble and Scott (2002) found that during force-field adapta-
tion neurons in primary motor cortex that were dependent on
the movement of one joint also responded continuously to the
motion of the other joint; this is in agreement with the idea of
a unique controller rather than multiple separate experts.

The design of experiment 3 was based on previous results
that have shown steep gradients of generalization associated
with changes in movement direction (Gandolfo et al. 1996;
Sainburg et al. 1999; Thoroughman and Shadmehr 2000).
Indeed, in predicting, for the two training conditions, patterns
of generalization that were selectively similar and dissimilar
for different movement directions, we assumed that the ner-
vous system could precisely combine the control signals asso-
ciated with distinct patterns of torques. Hwang et al. (2003)
propose a model in which neural elements simultaneously
encode movement direction and limb configuration. The
smooth gradient of generalization observed for arm configura-
tion is reconciled with the narrow tuning to movement direc-
tion under the hypothesis of “a linear or monotonic encoding of
limb position space [. . .] multiplicatively modulated by an
encoding of movement direction.” Note that our formulation
differs from that of Hwang et al. (2003) in terms of the putative
mechanism of neural control. In our model, learning proceeds
by incremental adjustment of neural commands that are asso-
ciated with a position based controller. In the Hwang et al.
approach, the presumed controller relies on torque specifica-
tion that is based on position and velocity. The present results
show that generalization of dynamics learning is readily ac-
commodated within an equilibrium point formulation.

Our results are consistent with the idea that the nervous
system can use information about shoulder angle to interpolate
between two learned torque fields. However, they provide no
information about the shape of the weighting function that
underlies this interpolation process. In our case, the transfer
location was equidistant in terms of shoulder angle from two
widely separated arm configurations, and subjects performed
the same number of trials at each training location. Manipu-
lating the distance between the different locations in parallel
with the amount of training could be a first step toward the
description of the weighting function. It would also be infor-
mative to assess extrapolation of this function beyond the part
of the workspace delimited by the training locations, taking as
a starting point the data from experiments 1 and 2 on transfer
across the two extreme locations of the workspace.

A C K N O W L E D G M E N T S

We thank G. Houle for technical assistance.

G R A N T S

This work was supported by Fonds Québécois de la Recherche sur la Nature
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