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Abstract

We present a new analytical method for characterizing the directional tuning of neural data. The method is based on computing
parameters associated with the geometric properties of solids, and provides an estimate of preferred direction in the context of
non-uniform sampling of directions. Unlike optimization methods based on fitting tuning functions, the plate method is
computationally fast, and does not require the assumption of an underlying tuning function (e.g. cosine or von Mises functions).
In addition to estimating the preferred direction of a dataset, the plate method provides other parameters to fully characterize the
directional properties of neural data. The method is presented in the context of a two-dimensional coordinate system but may in
principle be extended to higher dimensional spaces as well. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Directional tuning; Neural discharge; Tuning functions; Plate method; von Mises; Cosine; Vector method

www.elsevier.com/locate/jneumeth

1. Introduction

Research in many areas of neuroscience has focused
on characterizing the spatial or directional properties of
neurons. For example, individual neurons in visual
sensory areas are tuned to the orientation, or direction
of motion, of a stimulus presented within a neuron’s
receptive field (Hubel and Wiesel, 1969). Similarly, neu-
rons in motor cortical areas are tuned to the direction
of limb motion during a reaching task (Georgeopoulos
et al., 1982; Scott and Kalaska, 1997). A number of
properties of the directional tuning of neurons may be
defined, including the broadness of tuning, the magni-
tude of neural activity and the ‘preferred direction’ of a
neuron (e.g. Amirikian and Georgeopoulos, 2000). A
number of different computational methods have been
used to characterize properties such as these, and they
fall into two general categories: analytical methods, and
optimization procedures.

In the vector method, an analytical technique, the
preferred direction of a neuron is characterized by
summing together individual vectors, whose directions
represent the stimulus (or response) directions, and
whose magnitudes represent the associated magnitudes
of neural responses in each direction. The direction of
the mean vector then represents the preferred direction
of the neuron (Batschelet, 1981; Georgeopoulos et al.,
1982; Scott and Kalaska, 1997). A major advantage of
the vector method is its simplicity and computational
speed. However, the vector method depends on the
assumption that directions are sampled equally around
the unit circle. Deviations from this result in biased
estimates of preferred direction that are skewed away
from directions that are undersampled and towards
oversampled directions.

In optimization methods, the parameters of an un-
derlying tuning function are varied in order to fit the
neural data. Typically this is achieved using an iterative
multidimensional optimization numerical technique.
This approach has been used in the past to characterize
directional data using cosine, gaussian and von Mises
tuning functions (e.g. Schwartz, 1992; Ajemian et al.,
2000; Amirikian and Georgeopoulos, 2000; Todorov,
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2000). Optimization methods based on fitting tuning
functions can handle non-uniform sampling of direc-
tions, but tend to be computationally slow due to their
iterative nature.

Here we present a new analytical method, the ‘plate
method’, that addresses these problems. The method
makes use of parameters associated with the geometry
of objects to define a number of useful parameters for
characterizing the directional tuning of neurons. We
demonstrate that the plate method provides an estimate
of preferred direction in the context of non-uniform
directional sampling that is as good as is provided by
methods that use tuning functions. The plate method
does not require the assumption of an underlying tun-
ing function, but is based solely on the data itself. We
compare the performance of the plate method to other
widespread methods including the vector method,
cosine and von Mises fitting. Since the plate method is
analytical, the computational time required is an order
of magnitude shorter than that required to run com-
parable fitting procedures using cosine or von Mises
tuning functions.

2. Methods

The plate method involves expressing neural activity
as a solid area with uniform density in the coordinate
space in which it is sampled. For example, in an
experiment in which neural activity is recorded from
motor cortex cells during horizontal plane limb move-
ments in different directions (e.g. Scott et al., 2001), the
directional characteristics of a cell’s activity may be
expressed as an area in Cartesian space. As an example,
Fig. 1(A) shows hypothetical cell activity as a function
of spatial direction for eight different movement direc-
tions (vertical lines). The method involves linear inter-

polation to compute cell activity for directions that are
not sampled (solid lines). As a result, the data are
divided into eight sections. Fig. 1(B) shows the result of
plotting the magnitude of discharge as a function of the
direction in Cartesian space. Note that because the
neural activity was linearly interpolated relative to
movement direction (Fig. 1A), the outer perimeters of
the interpolated sections appear curved in Fig. 1(B).

The centroid of the area may be computed and used
to define a cell’s preferred direction. The centroid (x̂, ŷ)
of the area as a whole may be expressed as the sum of
the centroids of each element, weighted by the areas of
each element:

x̂=
!
n

i=1
x̂i Ai
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n

i=1
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!
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where (x̂i, ŷi) and Ai are the centroids and areas, respec-
tively, of each of the n individual elements that com-
prise the total area (n=8 in the case of the data shown
in Fig. 1). The centroid of the individual elements may
be expressed as:
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where Ai, the area of an element, is:

Fig. 1. (A) Neural activity is shown for a hypothetical cell during planar arm movements in different directions, sampled non-uniformly around
the unit circle. The data are linearly interpolated over directions. (B) Representation of neural data as an area in Cartesian space.
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Fig. 2. Geometric properties of a single element of the total area (see
Fig. 1). Based on the observed discharge levels r1 and r2 for directions
!1 and !2, respectively, the centroid of the element (x̂i, ŷi) may be
computed (see text). The centroid of the element is indicated in the
figure by o.

In addition, moments of inertia may be computed,
which represent the overall level of activity about a
given set of axes within the coordinate frame. For
example Ix, Iy and Ixy, the moments of inertia about the
x-axis and y-axis and the product of inertias, respec-
tively, may be expressed as:

Ix= !
n

i=1
Ixi

(10)

Iy= !
n

i=1
Iyi

(11)

Ixy= !
n

i=1
Ixyi

(12)

where the individual moments for each of the n ele-
ments of the total area are given by:
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Note that computational formulae corresponding to
the solutions to the integrals presented here are given in
Appendix A.

As a measure of the sharpness of tuning, one may
compute the following ratio:

Ir=
I1

I2
(16)

Ai=
" !i+1

!i

r i
2

2
d! (5)

and ri, the function relating cell activity to direction !
is:

ri=
ri+1−ri

!i+1−!i
(!−!i) (6)

Fig. 2 shows a schematic illustrating the parameters
associated with one element of the area shown in Fig.
1(B).

Once the centroids of individual elements are com-
puted, the preferred direction of the neural data as a
whole, PD, may be calculated as the direction associ-
ated with the centroid (x̂, ŷ) (indicated in Fig. 3 by X):

PD= tan−1 ŷ
x̂

(7)

A measure of the average activity, M of the cell over
all directions may be estimated by considering the total
area A :

M=
#A

"
(8)

where A is the sum of the areas of the individual
elements:

A= !
n

i=1
Ai (9)

Fig. 3. Plate method parameters computed for the data shown in Fig.
1. The centroids of each element of the total area are indicated by o ;
the centroid of the total area is indicated by X ; the preferred direction
is indicated by an arrow.
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Fig. 4. Relationship of three plate method parameters to hypothetical
neural data. (A) Each row represents a different preferred direction
PD. (B) Shows the relationship between sharpness of tuning and the
parameter Ir. (C) Shows how the parameter M can be used to
characterize the mean level of activity over directions. In all cases
shown in the figure, von Mises functions were used to generate the
hypothetical data.

In order to visualize the relationship between
parameters computed using the plate method, and di-
rectional data, hypothetical neural data were con-
structed using von Mises tuning functions. Fig. 4
illustrates the relationship between directionality (Fig.
4A), sharpness of tuning (Fig. 4B) and magnitude of
response (Fig. 4C) to the plate method parameters PD,
Ir and M. The PD parameter accurately represents the
direction in which the magnitude of the response is
greatest. As the sharpness of tuning decreases, the value
of the Ir parameter increases, to a maximum value of
1.00 for a response not modulated by direction. It may
be noted that a cosine function is associated with a
value of 0.44 for the Ir parameter. The magnitude
parameter M increases as the overall magnitude of the
hypothetical neural response increases, and may be
considered to represent an average response magnitude
over all directions.

3. Comparison with other methods

Here we compare the performance of the plate
method to three other widespread methods of charac-
terizing the directional tuning of neurons— the vector
method, cosine and von Mises fitting (see Appendix B).
These methods are compared in terms of their accuracy
in estimating preferred direction, the stability of these
estimates in the face of random noise, and computa-
tional time requirements. A least-squares optimization
routine provided in MATLAB software (Mathworks) was
used to implement von Mises and cosine fitting. For the
analyses presented here, the parameters of the optimiza-
tion algorithm were set to the default values provided
by MATLAB: the limit on the number of iterations was
set to 1000, the termination tolerance on the tuning
function value was 1e–6 and the termination tolerance
on the tuning function parameter values was 1e–6.

Fig. 5 displays the results of applying the four meth-
ods to hypothetical neural data, constructed using a
von Mises tuning function. Fig. 5(A) illustrates the
directional tuning of this hypothetical neuron; in this
case uniform directional sampling was assumed. The
preferred direction (PD) of the neuron was computed
using each method, and repeated 1000 times in the
presence of random gaussian noise (mean=0, S.D.=
25% of maximum discharge). The mean PDs are indi-
cated in Fig. 5(A) using arrows for the plate, vector,
cosine and von Mises methods, respectively, from left
to right. In Fig. 5(B), the means and standard devia-
tions (S.D.) are shown. For all four methods, the mean
PD was not significantly different than the true PD
(90°) (t-test, P!0.05). The variability of the PD esti-
mates for the plate method was slightly lower than for
the other three methods.

The procedure was repeated using the same hypo-
thetical neural data, but with a non-uniform sampling

where I1 and I2 are the moments of inertia about the
preferred direction PD and the axis perpendicular to
the PD, respectively:

I1=
Ix+Iy

2
+

Ix−Iy

2
cos 2PD−Ixy sin 2PD (17)

I2=
Ix+Iy

2
−

Ix−Iy

2
cos 2PD+Ixy sin 2PD (18)

It should be noted that these axes intersect at the
origin of the coordinate system, not at the area centroid
(x̂i, ŷi) described below.

Fig. 3 gives values for M, PD and Ir corresponding to
the hypothetical neural data shown in Fig. 1. The
centroids (x̂i, ŷi) of each element are shown using cir-
cles, and the centroid of the total area (x̂i, ŷi) is indi-
cated by an X. The preferred direction of the neuron is
shown using an arrow.
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of directions (Fig. 5C). In this case the mean PDs are
all skewed towards quadrant I, which is over-sampled,
and away from quadrant II, which is under-sampled.
The vector method provides a highly biased estimate of
the PD; the mean PD is significantly different than the
true PD (t-test, P"0.01). The other three methods
provide a far better (though still slightly biased) esti-
mate of the true PD. The mean PD provided by the
plate method is not significantly different than the PDs
computed using cosine and von Mises fitting (t-test,
P!0.01).

In the non-uniform sampling shown in Fig. 5(C),
quadrants I and IV are oversampled relative to quad-
rants II and III, which are undersampled. We thus

assessed the sensitivity of estimates of PD using the
plate method to the preferred direction. A von Mises
tuning function with a PD ranging from 0 to 360° was
sampled using the non-uniform sampling shown in Fig.
5(C), and the plate method was used to estimate the
preferred direction. In addition the procedure was re-
peated using tuning functions of different widths to
assess the sensitivity of PD estimates using the plate
method to the breadth of tuning. Fig. 6(A) displays the
results. The error in estimating the true preferred direc-
tion is plotted against the true PD. Dashed lines indi-
cate zero error. With increasing sharpness of tuning,
error in predicting PD increases to a maximum of
about #10° for the sharpest tuning function. Not

Fig. 5. Comparison of four different methods for assessing the preferred direction of hypothetical neural data. (A and B) The preferred direction
of a hypothetical neuron sampled uniformly around the unit circle (A) was assessed using the plate method, the vector method, cosine and von
Mises fits (see text). The procedures were repeated 1000 times in the presence of gaussian noise (mean=0, S.D.=25% of maximum discharge).
Vertical arrows in A indicate the mean preferred direction computed by each method, respectively. B shows the mean and S.D. of preferred
directions computed over 1000 trials for each method. Horizontal dashed line at 90° indicates the true preferred direction. (C and D) The
procedure was repeated for a hypothetical neuron sampled non-uniformly around the unit circle.
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Fig. 6. Predicted error in preferred direction, PD for the plate method as a function of PD direction. The plate method was used to compute PD
for von Mises tuning functions sampled with non-uniform directions (as in Fig. 5C). The true PD of the data was varied between 0 and 360°. The
procedure was repeated using tuning functions of different widths. (A) For the plate method, the error in predicting PD is plotted against true
PD. Dashed lines indicate zero error. (B) Mean absolute error in predicting PD over different directions is plotted as a function of tuning width,
for the plate method, vector method, cosine and von Mises fitting.

surprisingly, maximum error in estimating PD occurs
between 90 and 210°-regions corresponding to under-
sampled directions. This procedure was also carried out
for cosine, von Mises fitting and vector methods. In
Fig. 6(B), the mean absolute error in predicting PD
over different directions is plotted against the tuning
widths tested, for the four methods tested. PD errors
for cosine tuning are comparable to those for the plate
method—errors range between 2 and 4.5°, and tend to
increase as tuning width decreases. Errors for von
Mises fitting are smaller, in the range of 0–2°, and
there is tendency for errors to increase with broader
tuning widths. Finally errors for the vector method are

extremely high, not surprisingly (note the different ver-
tical scale in Fig. 6B).

The tests for both uniform and non-uniform direc-
tional sampling were repeated to assess the sensitivity
of the PD estimates to the amplitude of noise. Fig. 7
shows the results for five levels of random gaussian
noise (mean=0, S.D. from 0 to 50% of the maximum
discharge). The preferred direction was 90° and the
tuning width was Ir=0.44 (e.g. Fig. 4). In Fig. 7(A),
the mean PD error is plotted against the S.D. of the
random gaussian noise that was added to the hypothet-
ical neural data (Fig. 5), for each of the four methods,
for a uniform sampling of directions. In all cases the
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mean PD error increases approximately linearly with
the amplitude of the noise. The slopes for the four
methods were not significantly different (P!0.01). Fig.
7(B) shows the results for a non-uniform sampling of
directions. The mean PD errors for the vector method
are significantly higher than for the other three methods
(t-test, P"0.01) except for the largest two noise levels,
for which they are about the same. The slopes of the
relationship between PD errors and noise level for the
cosine and von Mises methods were not significantly
different (P!0.01) but the slope for the plate method
was slightly lower (P"0.01). For both uniform and in
particular non-uniform directional sampling, the mean
errors in predicting PD using the plate method were
slightly lower than for the other three methods.

The computational time required to run each of the
four methods was assessed. The tests were run using a
dual-processor Intel Pentium-III 600MHz CPU running

Fig. 8. Computational time measures. The average time (in seconds)
taken to compute the PD of 1000 hypothetical neural signals (see Fig.
5) in the presence of random (gaussian) noise is plotted for plate and
vector methods, and cosine and von Mises fits. The procedure was
repeated for five different noise levels (see Fig. 7) and for uniform (A)
and non-uniform (B) directional sampling. Text above each set of
bars indicates the total time taken to compute 1000 PDs, averaged
over five noise levels.

Fig. 7. Sensitivity of four methods of computing PD to level of
random noise. Plate method, vector method, cosine and von-Mises
fitting were repeated 1000 times in the presence of random (gaussian)
noise (see Fig. 5A). The procedures were then repeated for five
different noise levels ranging from 0 to 50% of the maximum ampli-
tude of neural discharge. Mean errors in computed PD (#one
standard error (S.E.)) are plotted as a function of noise level for a
uniform directional sampling (see Fig. 5A) and non-uniform sampling
(see Fig. 5C).

RED HAT LINUX v6.2 (kernel v2.2.19-6.2.1smp), using
MATLAB v6.0.0.88 (R12). The time required to run each
method 1000 times in the presence of gaussian noise
was computed for the five levels of noise examined
above (see Fig. 7). These times are shown in Fig. 8. For
the von Mises fitting, and to a lesser extent cosine
fitting, there was a dependence of the computational
time on the level of noise—more time was required to
fit noisier data. The average times across the five noise
levels are shown above each set of bars. Computational
times were similar for a uniform directional sampling
(Fig. 8A) and a non-uniform sampling (Fig. 8B). The
average time for 1000 runs was 13 s for the plate
method, 1 s for the vector method, 66 s for the cosine
fit (89 s for the non-uniform sampling) and 1325 s for
the von Mises fit (1609 s for the non-uniform
sampling).
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4. Discussion

We have presented a new analytical method for
characterizing the directional tuning of neural data.
The plate method does not assume an underlying tun-
ing function, it is computationally fast and it reduces
bias in estimates of preferred direction in the context of
non-uniform directional sampling.

While much research has focused on manipulating
stimulus or response directions using uniform direc-
tional spacing, there are a number of reasons why
directions may be sampled non-uniformly. For exam-
ple, uniform sampling in one coordinate system may
not correspond to uniform sampling in some other
coordinate space of interest. For example in a recent
study of motor cortex neurons during a reaching task,
the investigators were interested in characterizing the
relationship between cell discharge and the direction of
motion in a shoulder–elbow joint torque space. Thus, it
was desirable to specify movement targets uniformly
sampled in joint torque space—resulting in non-uni-
formly spaced directions in Cartesian space (Scott et al.,
2001).

The vector method is clearly inadequate for estimat-
ing preferred directions using non-uniform directional
sampling. While methods based on fitting tuning func-
tions do not require uniform sampling of directions,
they are relatively slow because they typically use itera-
tive numerical procedures to converge on a solution.
This can have serious consequences on the time re-
quired to conduct sensitivity analyses or monte-carlo
style ‘bootstrap’ tests, which often require thousands of
runs on data for each neuron in a population (e.g. Scott
and Kalaska, 1997). For example, to run a bootstrap
test for directionality on a population of 500 neurons
using 4000 iterations would require 894 h (37.3 days)
using von Mises fitting (see Fig. 8). The plate method
would require 7.2 h.

A related pitfall of optimization techniques centers
around the problem of convergence. In the absence of a
perfect (i.e. zero error) solution, iterative numerical
optimization routines are generally halted once the
error gradient reaches some minimum value, or once a
pre-specified maximum number of iterations has been
reached. In the former case the resulting set of parame-
ters may correspond to the optimal values, but they
may also represent a local (non-optimal) minimum. In
many cases it is not possible to distinguish between
these possibilities, and one must re-run the optimization
routine with different initial parameter estimates to
assess the stability of the solution. In the latter case, the
algorithm may not have converged on an optimal solu-
tion once the maximum number of iterations has been
reached, and so error may be introduced into the
parameters of the fit (e.g. the estimate of preferred
direction). This problem may be partially ameliorated,

but not avoided in all cases by simply raising the
maximum number of iterations. However, an appropri-
ate stopping value is often not known a priori.

Another potential pitfall of techniques based on
fitting tuning functions has to do with the tendency, in
some cases, to overestimate the peak discharge of cells
in cases where directions near the preferred direction
are undersampled. In these cases, a fitting algorithm
that attempts to maximize the fit between the data and
a tuning function will be constrained to examining
portions of the tuning function that are not near the
preferred direction. As a result a fitting algorithm may
be prone to overfitting the ‘slopes’ of the tuning func-
tion by modulating the sharpness of tuning. This may
result in overestimates of the true peak discharge. This
problem has been illustrated in Fig. 9. Data are sam-
pled (shown using o) along equal directional intervals,
but are undersampled near the preferred direction (90°).
The data were generated by adding gaussian noise to an
underlying von Mises tuning function (shown using
dashed line) with a PD of 90°. A subsequent von Mises
fit to the noisy data results in the tuning function
shown using the solid line. The estimated peak dis-
charge at the PD (150 spikes per s) is a gross overesti-
mate of the true peak (40 spikes per s). In order to rule
out this concern in the context of a particular dataset,
a more systematic assessment of the conditions under
which this problem may occur would be required.

Methods that do not rely on fitting an underlying
tuning function, such as the vector and plate methods,
provide a conservative estimate of peak discharge that
is simply the maximum observed value. This avoids the

Fig. 9. Overestimating peak discharge using tuning functions for
non-uniformly sampled data. A von Mises tuning function (solid line)
was fit to hypothetical neural data that was undersampled around the
true preferred direction (90°). The data (indicated using ‘o ’) were
constructed based on a von Mises function with a preferred direction
of 90° (dashed line). Random gaussian noise (mean=0, S.D.=15)
was added to the signal.
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problem of overestimating the peak discharge. In ad-
dition the cosine fitting procedure avoids this problem
because the shape of the (cosine) tuning function is
not varied. However, because of this constraint the
cosine fitting procedure is unable to accurately char-
acterize the directional tuning properties of cells that
are significantly more or less sharply tuned than a
cosine function. Recent data suggest that these cases
represent a significant proportion of neurons in motor
cortex. Amirikian and Georgeopoulos (2000) exam-
ined 73 primate motor cortex cells during a reaching
task and found that more than half of the neurons
that were well characterized using a von Mises tuning
function had considerably narrower tuning than a
cosine function.

In addition to providing a measure of the preferred
direction PD of a dataset, the plate method provides
a number of additional parameters that may be used
to characterize the directional properties of neural
data. The magnitude parameter M provides a mea-
sure related to the average strength of the signal over
directions and the Ir parameter provides a measure of
the broadness of tuning (it should be noted, however,
that these parameters could be obtained by other
means as well). Other parameters based on the con-
cept of a moment of inertia about an axis may be of
interest as well. For example, Ix and Iy provide a
measure of the magnitude of a signal about the two
coordinate axes, x and y, which may be useful for
analyses involving differences in directionality, for ex-
ample left versus right, or forward versus backward.
In principle these inertial measures may be computed
about any arbitrary axis of interest. The parameter
Ixy (the product of inertias about the x and y axes)
may also be of interest, which has a value of zero if
the data are symmetric about one of the coordinate
axes x and y.

In this paper, the plate method has been presented
in the context of characterizing the directional proper-
ties of neurons. However, the method may be also be
used to quantify directional properties of other sig-
nals as well, for example muscle activation patterns.
A number of researchers have examined the direc-
tional tuning of muscle activation by recording elec-
tromyographic (EMG) signals from limb muscles
during movements in different directions. Some have
used cosine functions to characterize the directional
tuning of EMG (Theeuwen et al., 1994) while others
have utilized more complex tuning functions such as
multiple-peaked cosine functions to characterize EMG
signals with multiple directional peaks (Flanders and
Soecthing, 1990; Herrmann and Flanders, 1988). The
plate method may prove useful in the context of
EMG recordings. In particular due to its analytical
nature, and because the method is based only on ob-
served data (and does not rely on assuming an under-
lying tuning function), the method may avoid many

of the problems described above that are faced by
optimization methods based on fitting tuning func-
tions.

The plate method has been presented here in the
context of a two-dimensional coordinate system, how-
ever, this is not a limitation of the method. In princi-
ple the plate method may be extended to the
multidimensional case— for example, three-dimen-
sional Cartesian space (Caminiti et al., 1990), or
higher-dimensional spaces involving several limb
joints. Another possible extension of the plate method
is to include measures to characterize multi-lobed
firing patterns, such as those described for limb mus-
cle EMG patterns (Flanders and Soecthing, 1990).
Additional measures which take into account
boundary convexity/concavity may be considered (e.g.
‘solid shape’, Koenderink, 1990). This may be partic-
ularly useful in the context of higher dimensional ap-
plications such as multi-joint coordinate systems.
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Appendix A

In this section, we give the computational formulae
associated with the equations presented in Section 2.
A fully functioning MATLAB script has been made
available and can be downloaded from the following
website: http://spindle.ssc.uwo.ca/platemethod.html.
The script takes as inputs a list of directions and
discharge levels, and returns the plate method
parameters PD, Ir, M, Ix, Iy, Ixy, x̂ and ŷ.

Let c1, c2 and c3 be:

c1=
r2−r1

!2−!1
(19)

c2=!1c1 (20)

c3=r1−c2 (21)

where r1, r2, !1, !2 are as shown in Fig. 2. Then the
area of an individual element Ai is:

Ai=
1
6

(c1
2)((!2

3)− (!1
3))+

1
2

c3c1((!2
2)− (!1

2))

+
1
2
(c3

2)(!2−!1) (22)

The centroid (x̂i, ŷi) of an individual element is
given by:

http://spindle.ssc.uwo.ca/platemethod.html
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x̂i= (1/3 sin !2−1/3 sin !1)c3
3

+ (cos !2−cos !1−!1 sin !1+!2 sin !2)c1c3
2

+ ((!2
2−2)sin !2+ (−!1

2+2)sin !1+2!2 cos !2

−2!1 cos !1)c1
2c3

+ ((!2
2−2)cos !2+ (−!1

2+2)cos !1

+ (1/3!2
3−2!2)sin !2

+ (−1/3!1
3+2!1)sin !1)c1
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Appendix B.

Vector method

For each of the n sampled directions !i and associated
neural discharge rates ri, a vector Vi is constructed with
direction !i and length ri. These vectors are summed and
normalized to compute a mean vector V:

V=
! Vi

! &&Vi &&
(28)

The direction of the mean vector V then defines the
preferred direction of the cell. The length of the mean
vector may be used as an index of the sharpness of
tuning— the sharper the tuning, the longer the mean
vector (for further details see Batschelet, 1981).

Optimization methods

The relation between stimulus (or response) direction,
!, and cell discharge rate, r, can be characterized by a
tuning function, r(!, x), where x is a set of parameters
of the tuning function. Iterative optimization routines
(such as those provided in MATLAB (Mathworks) soft-
ware) may be used to find the optimal set of parameters
x to fit the tuning function to a set of observed data—e.g.
a set of observed discharge levels Robs over n directions
!obs. Typically the optimal parameters x are found by
minimizing a cost function Q :

min
x

Q(!, x)=
1
2

!
n

i=1
[Robsi

−r(!obsi
, x)]2 (29)

Cosine fitting

The tuning function may be specified using a cosine
relation:

r(!)=x3+x2 cos(!−x1) (30)

In this paper the parameters x1–3 are estimated using
a multidimensional non-linear optimization routine pro-
vided in MATLAB (Mathworks, Inc). The preferred direc-

tion of the cell is characterized by the parameter x1. The
parameter x2 is related to the magnitude of discharge
modulation, and x3 relates to the minimum discharge.

von Mises fitting

The tuning function r(!) may also be characterized by
a von Mises function (Batschelet, 1981):

r(!)=x4+x3e
x2cos(!−x1) (31)

Again, the parameters x1–4 are estimated using an
optimization routine, and the preferred direction of the
cell is specified by x1. Parameters x2, x3 and x4 are related
to the sharpness of tuning, the modulation of discharge
and the minimum level of discharge, respectively.

References

Ajemian R, Bullock D, Grossberg S. Kinematic coordinates in
which motor cortical cells encode movement direction. J Neuro-
physiol 2000;84:2191–203.

Amirikian B, Georgeopoulos AP. Directional tuning profiles of mo-
tor cortical cells. Neurosci Res 2000;36:73–9.

Batschelet E. Circular Statistics in Biology. London: Academic
Press, 1981.

Caminiti R, Johnson PB, Urbano A. Making arm movements
within different parts of space: dynamic aspects in the primate
motor cortex. J Neurosci 1990;10:2039–58.

Flanders M, Soecthing JF. Arm muscle activation for static forces
in three-dimensional space. J Neurophysiol 1990;64:1818–37.

Georgeopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the
relations between the direction of two-dimensional arm move-
ments and cell discharge in primate motor cortex. J Neurosci
1982;2:1527–37.

Herrmann U, Flanders M. Directional tuning of single motor units.
J Neurosci 1988;18:8402–16.

Hubel DH, Wiesel TN. Anatomical demonstration of columns in
the monkey striate cortex. Nature 1969;221:747–50.

Koenderink JJ. Solid Shape. Cambridge, MA: MIT Press, 1990.
Schwartz AB. Motor cortical activity during drawing movements:

single-unit activity during sinusoid tracing. J Neurophysiol
1992;68:528–41.

Scott SH, Kalaska JF. Reaching movements with similar hand
paths but different arm orientations. I. activity of individual
cells in motor cortex. J Neurophysiol 1997;77(2):826–52.

Scott SH, Gribble PL, Graham KM, Cabel DW. Dissociation be-
tween hand motion and population vectors from neural activity
in motor cortex, Nature 2001;413:161–5.

Theeuwen M, Gielen CC, Miller LE, Doorenbosch C. The relation
between the direction dependence of electromyographic ampli-
tude and motor unit recruitment thresholds during isometric
contractions. Exp Brain Res 1994;98:488–500.

Todorov E. Direct cortical control of muscle activation in volun-
tary arm movements: a model. Nature Neurosci 2000;3:391–8.



Erratum

Erratum to ‘Method for assessing directional characteristics of non-
uniformly sampled neural activity’

[J Neurosci Methods 113 (2002) 187!/197]!

Paul L. Gribble *, Stephen H. Scott

CIHR Group in Sensory-Motor Systems, Department of Anatomy and Cell Biology, Centre for Neuroscience Studies, Queen’s University,
Kingston, Ont., Canada

The publisher regrets that in the above mentioned article, the surname of Dr. A.P. Georgopoulos was incorrectly
spelled in the Reference list and in the references cited throughout the text. The corrected references are produced
below.

Amirikian B, Georgopoulos AP. Directional tuning profiles of motor cortical cells. Neurosci Res 2000;36:73!/9.

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional
arm movements and cell discharge in primate motor cortex. J Neurosci 1982;2:1527!/37.

! PII of original article: S 0 1 6 5 - 0 2 7 0 ( 0 1 ) 0 0 4 9 2 - 7

* Corresponding author. Present address: Department of
Psychology, The University of Western Ontario, London, Ont.,
Canada N6A 5C2. Tel.: "/1-519-661-2111x86185; fax: "/1-519-661-
3961.

E-mail address: pgribble@uwo.ca (P.L. Gribble).

Journal of Neuroscience Methods 116 (2002) 111

www.elsevier.com/locate/jneumeth

0165-0270/02/$ - see front matter # 2002 Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 5 - 0 2 7 0 ( 0 2 ) 0 0 0 7 9 - 1

mailto:pgribble@uwo.ca

	Method for assessing directional characteristics of non-uniformly sampled neural activity
	Introduction
	Methods
	Comparison with other methods
	Discussion
	Acknowledgements
	Appendix A
	Appendix B: Vector method
	References


