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Abstract. The use of computer simulations as a neuro- 
physiological tool creates new possibilities to under- 
stand complex systems and to test whether a given 
model can explain experimental findings. Simulations, 
however, require a detailed specification of the model, 
including the nerve cell action potential and synaptic 
transmission. We describe a neuron model of intermedi- 
ate complexity, with a small number of compartments 
representing the soma and the dendritic tree, and 
equipped with Na +, K +, C a  2+, and C a  2+ dependent K + 
channels. Conductance changes in the different com- 
partments are used to model conventional excitatory 
and inhibitory synaptic interactions. Voltage dependent 
NMDA-receptor channels are also included, and influ- 
ence both the electrical conductance and the inflow of 
Ca 2§ ions. This neuron model has been designed for the 
analysis of neural networks and specifically for the 
simulation of the network generating locomotion in a 
simple vertebrate, the lamprey. By assigning experimen- 
tally established properties to the simulated cells and 
their synapses, it has been possible to verify the suffi- 
ciency of these properties to account for a number of 
experimental findings of the network in operation. The 
model is, however, sufficiently general to be useful for 
realistic simulation also of other neural systems. 

1 Introduction 

Mathematical modeling has long been used in neuro- 
science to study different mechanisms of both single 
neurons (Hodgkin and Huxley 1952; Frankenhaeuser 
and Huxley 1964; Wall6e 1968; Kernell and Sj6holm 
1972; Rail 1977; Edman et al. 1987a, b) and of systems 
of neurons (Stein 1965; MacGregor and Oliver 1974; 
Perkel 1976; Lansner 1982; MacGregor 1987; Mulloney 
and Perkel 1988; Koch and Segev 1989; Roberts and 
Tunstall 1990). The analyzing power of mathematical 
models and computer simulations is well recognized. 
The complexity of the different models has ranged from 

relatively simple neurons, merely modeled as input-out- 
put devices producing a "spike" output of a certain 
frequency if a threshold is reached, to highly complex 
models that incorporate a variety of membrane- and 
other parameters (biophysical as well as morphological; 
Holden 1980). Recently, the interest in using computer 
simulations of realistic neuronal models has markedly 
increased. Various kinds of neurons and neural systems 
have been simulated (for review, see Getting 1989). 
Also, within the computer science field, the interest in 
neural networks is rapidly growing (Anderson and 
Rosenfeld 1988; Rumelhart and McClelland 1986; 
Lippmann 1987; Lansner and Ekeberg 1985, 1989). 

In order to fully elucidate the mechanisms of opera- 
tion of for instance a motor system, we must take into 
account all available information on different levels, 
including cellular properties (e.g. pacemaker poten- 
tials), synaptic interactions etc. Even with a lot of 
detailed experimental information at hand, it is difficult 
to understand the system as a whole. All this informa- 
tion must be put together to evaluate the relative contri- 
butions and roles of different factors to the overall 
operation of the system. To achieve this goal, computer 
simulations of the system under study, using a model 
that incorporates the experimentally established 
parameters, appears as the only feasible way. In gen- 
eral, making a reasonable computer model requires a 
much more detailed description than formulating a 
theoretical, conceptual model. The main difference is 
that the computer model has to be quantitative in all its 
details, while the conceptual model usually is more 
qualitative. Further, no parts of the model can be left 
out as "common knowledge". Every mechanism that 
significantly influences the operation of the network has 
to be specified. 

In our investigations of the neuronal mechanisms 
underlying locomotor behavior in vertebrates (Grillner 
et al. 1987, 1988, 1989, 1991), we have for several years 
been utilizing the in vitro preparation of the lamprey 
CNS (GriUner et al. 1987) as a biological model. The 
intemeuronal network responsible for the rhythmical 
alternating activity during locomotion (swimming) is 
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located within the spinal cord, and a conceptual model 
of  the segmental pattern-generating circuitry, based on 
experimentally established neuron types and detailed 
knowledge of  synaptic connections, postsynaptic recep- 
tors and membrane properties, has been presented 
(Grillner et al. 1987, 1991; Buchanan and Grillner 1987). 

When trying to assess to what an extent this concep- 
tual model can account for the behavior of  the biological 
system, we were faced with the problem of  having to test 
the relative roles of  the various features and properties 
of  the system, i.e. to integrate the large body of  experi- 
mental data into a testable model system that would 
correspond approximately to the locomotor system in 
operation. Thus, we set out to design a computer model; 
sufficiently detailed to incorporate all experimentally 
established properties of  importance; yet simplified 
enough to allow simulations of  several neurons in a 
network on available computers within a reasonable 
time. Also, the degree of  complexity of  the model had to 
be chosen so that the simulated output could be readily 
interpreted and compared to the experimental findings. 
In our initial modeling studies, it was possible to simu- 
late some aspects of  the rhythm-generating capability of 
the lamprey locomotor  network (Grillner et al. 1988, 
1989). The present study is the first in a series, describing 
the computer simulations of  the lamprey network in 
detail, and is focussed upon the modeling of the single 
neuron and the synaptic transmission. With a network 
of  these model neurons the full range of locomotor 
activity, including the brainstem control of  the segmen- 
tal network and the influence from sensory feedback 
signals has been simulated (Grillner et al. 1991 and 
unpubl.). 

2 The single cell model 

In the conceptual model, there was no need to take into 
account the detailed dendritic branching pattern of  the 
different neurons. Therefore, in the single cell model, no 
attempt was made to describe the detailed morphology. 
However, to allow for synaptic input at different dis- 
tances from the soma, a simple representation of  the 
dendritic tree was included. Like in many similar mod- 
els, the neuron is represented by a set of  electrically 
coupled isopotential compartments. Four  such com- 
partments have been used here, one representing the 
soma and the other three the dendritic tree at various 
distances from the soma (Fig. 1A). In principle, how- 
ever, any number of  compartments could be used in 
this model. 

The primary state variable in each compartment is 
the intracellular potential E, which is computed by 
calculating the ionic currents flowing into and out from 
the compartment. This includes the passive coupling of  
the compartments as well as active ion channels of 
different types. 

In this model we have not simulated the actual 
mechanisms underlying the propagation of  the nerve 
impulse down the axon, but merely the time spent for 
this propagation. This is based on the assumption that 

A Soma Dendrites 

i i + 

B 

E Gco,~ E G ~  E G~o~ E 

Cm 

leak 

C 
Na K Ca K(Ca) E G~o~ 

Fig. 1. The model neuron is built around a set of compartments (A). 
Note that the sizes in the figure do not reflect the actual membrane 
areas of a typical cell, where the total area of the dendrites can be an 
order of magnitude larger than that of the soma. The passive proper- 
ties of the four coupled compartments can be viewed as an equivalent 
electrical circuit (B). By adding the active ion channels to the model, 
the electrical equivalent of the soma compartment is extended as in C. 
For explanation of symbols, see text 

each time the spike initiating part of the cell fires, the 
action potential travels along the axon with a constant 
speed and, thus, reaches the terminal after a predeter- 
mined delay. In the simulations, this delay is an ad- 
justable parameter for each synapse. 

2.1 Passive properties 

Each compartment has a membrane capacitance Cm 
proportional to the membrane area (Fig. 1B). The 
potential E is calculated by integrating the currents. This 
results in a differential equation for each compartment: 

d E  (Bleak - -  E)am + E (Bcomp - E)Gcore + Ich . . . .  Is 
(1) m _ 

dt Cm 
First, there is a passive leakage current through the 

membrane, modeled with a conductance Gm across the 
membrane. This conductance is set so that an appropri- 
ate membrane time constant Cm ~Gin is achieved. The 
equilibrium potential of this current, Bleak, is set close 
to the resting potential of  the cell to be simulated, e.g. 
- 70 mV. 

Further, the compartments are electrically coupled 
by conductances G~o~e (Fig. 1B). The summation in 
the equation above is made over all comparments con- 
nected to the compartment in question. In the case of  a 
general dendritic tree structure, this would correspond 
to one compartment in the proximal direction and 



possibly several compartments connected to the distal 
end. Er is the potential in the connected compart- 
ment. This passive model thus forms a system of cou- 
pled ordinary first order differential equations, with one 
equation for each compartment. 

Finally, the Ioh~nne~ term is the currents entering 
through all the active ion channels into the compart- 
ment. How these currents are calculated will be de- 
scribed in the following sections. In the simulations it is 
also possible to mimic intraeellular current injection by 
simply adding an extra current to the soma compart- 
ment. This current can be constant in time to give a 
tonic stimulation or be varied e.g. to give the effect of a 
current pulse. 

Such a set of coupled ordinary differential equations 
can be simulated in a computer by the use of a proper 
numerical method (see below). Given some initial val- 
ues for the state variables, in this case the electrical 
potentials in the compartments, the time course of these 
variables can be computed. 

2 . 2  A c t i o n  p o t e n t i a l s  

When a nerve cell is depolarized from the resting mem- 
brane potential, different types of voltage gated ion 
channels will open, provided that the membrane poten- 
tial reaches a threshold value. Such voltage dependent 
channels give rise to the action potential, during which 
sodium channels initially open to bring the membrane 
potential towards the equilibrium potential for Na + 
ions (around + 50 mV). With some delay, voltage de- 
pendent potassium channels open, which pulls the 
membrane potential towards the equilibrium potential 
for K + ions (around - 9 0  mY). The sodium channels 
have the additional property of closing after a period of 
depolarization, i.e. they are inactivated, whereas the 
potassium channels are not (Hodgkin and Huxley 1952; 
Hille 1984). The potassium channels open slower than 
sodium channels and are not fast enough to disturb the 
fast depolarization of the spike. They are, however, 
faster than the inactivation of sodium channels and 
therefore constitute the primary factor involved in the 
rapid repolarization of the spike. 

A quantitative model for the sodium and potassium 
currents was presented by Hodgkin and Huxley as early 
as 1952, based on a description of the membrane of the 
squid giant axon. Since then, it has been used for 
neuronal membranes in general. Here, we have used a 
modified version of the Hodgkin and Huxley model and 
adjusted the parameters to match the known character- 
istics of the real neurons being simulated. 

The Hodgkin and Huxley model describes how the 
mean conductance through the sodium and potassium 
channels varies with membrane potential and time. It 
can, however, be interpreted on a single channel level as 
a two state gate which stochastically changes between 
an open and a closed state. 

The current through sodium channels, entering the 
soma compartment, is computed as: 

I ~  = ( EN~ - -  Esoma)GN~m3h (2) 
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where ENa is the reversal potential for Na +, in our 
simulations set to +50mV, GN~ is the maximum 
sodium conductance through the membrane and m and 
h are the degrees of activation and inactivation of the 
Na § channels, respectively. 

To be able to fit the model equations to experimen- 
tal data, some arbitrary exponents were introduced by 
Hodgkin and Huxley (1952) in their equations. One 
possible explanation for the need for such exponents is 
that the channel molecule actually has to perform sev- 
eral state transitions in order to reach an open state (of. 
Hille 1984). 

T h e  a c t i v a t i o n  o f  the  N a  + c h a n n e l s  is described by a 
simple differential equation: 

dm 
d--t- = ~Xm(1 - m )  - f l m m  (3) 

where ~ is the rate by which the channels switch from a 
closed to an open state and ~ is the rate for the reverse. 

and fl depend only on the membrane potential in the 
soma and are given by the expressions: 

A(Esoma  --  B )  A ( B  - -  Esoma ) 
~" - 1 - -  e (s- E, oma)/C /~" = i _ _ ~ ( ~ C  (4) 

Note that the parameters A, B and C are not 
necessarily the same for the two expressions. 

T h e  i n a c t i v a t i o n  o f  the  N a  + channe l s  is described by 
a similar, but not identical, set of equations: 

dh 
d t  = ~h(1 - h) - / ~ h h  (5)  

A(B -- E, oma) A 
ah --  1 - -  e (Es~ s ) / c  ~h --  1 + e ( s -  E, om~)/C (6) 

T h e  p o t a s s i u m  channe l s  are treated in a similar way, 
except that an inactivation is not included, resulting in: 

I K = ( g  K --  gsoma)GK n4 (7) 

dn 
d t  - o~,( 1 - n)  - f l ,  n (8) 

A(Esoma -- B) A(B - Esoma ) 
~" = 1 - e ( s - e  . . . .  ) /c fin - 1 - -  e ~esoma-s):c (9) 

where n is the degree of activation of the K + channels. 
We have used an exponent of both four and two in 

the expression for IK above (cf. Kernell and Sj6holm 
1972). To function properly, the K + current has to be 
delayed not to interrupt the first part of the spike. With 
an exponent of two, this was difficult to achieve. An 
exponent of four, however, gives a sufficient delay to 
postpone the effect of a gradually increasing n. 

As with the original Hodgkin and Huxley model, 
these equations give a model which is capable of pro- 
ducing action potentials with a realistic shape (Fig. 2). 
With a suitable set of parameters and the addition of 
calcium dependent potassium channels (see below), it is 
also possible to get repetitive firing in a realistic fre- 
quency range (Fig. 3). The parameters are listed in 
Table 1. 
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Fig. 2. A simulated action potential with corresponding changes of  
sodium and potassium conductances, sodium and potassium currents, 
calcium current, and intracellular calcium concentration. The spike is 
initiated by a short duration current pulse (0.5 ms) 

2.3 Calcium and long lasting AHP 

Neurons also have voltage dependent calcium channels 
(e.g. Tsien 1983; for lamprey, see Hill et al. 1989). 
Activation of  the calcium channels causes an inward, 
depolarizing flow of  Ca 2§ ions; however, calcium chan- 
nels generally need a higher degree of  depolarization for 
activation, compared to sodium and potassium chan- 
nels (cf. Tsien et al. 1988). They open fairly rapidly but 
close slowly, causing most of  the Ca 2+ to enter after the 
spike (Fig. 2). 

We have chosen to describe the Ca e+ channels with 
a set of  equations similar to those used for the Na § and 
K § channel activation. Let q denote the degree of 
activation of  the calcium channels: 

dq 
d--] = O~q(1 - -  q) - -  f l q q  (10) 

A(gsoma - -  B )  A ( B  - -  Esoma ) 
= = ( l l )  ~q 1 -- e (s-  e . . . .  )/c flq 1 - -  e (Es~ - B)/C 

/Ca = (gca -- Esoma)acaq 5 (12) 

The equilibrium potential for the calcium ions, Ec~, 
was set to + 150 mV. An exponent of  five, as in the 
formula above, has earlier been used by e.g. Traub and 
Llinas (1977) in modeling the calcium current, although 
they used somewhat different formulae for the rate 
functions and included an inactivation factor as well. 
For  the sake of  our simulations, we have seen no need 
to include the inactivation and have consequently ig- 
nored it to reduce model complexity. The parameters 
have been adjusted so that the calcium channels open 
during an action potential and then slowly close 
(Brodin et al. 1991). 

In the types of  neurons we are simulating, the 
depolarizing current resulting from the influx of  C a  2+ 
ions can be assumed to be of  minor importance, and it 
has therefore often been ignored in the simulations. The 
Ca 2+ ions entering the cell do, however, also influence 
the electrical properties indirectly by activating calcium 
dependent ion channels. Such channels are activated by 
Ca 2+ ions present on the inside of the cell membrane. 

This indirect action of  C a  2+ is of  considerable impor- 
tance in lamprey neurons as well as in many other types 
of  neurons and, thus, included in the model. 

It seems reasonable to assume that, following an 
action potential, opening of  the Ca 2+ channels will 
cause a transient increase of  the intracellular Ca 2+ 
concentration primarily in the vicinity of  the Ca 2+ 
channels. In the model, this is represented by a Ca 2+ 
ion pool which we will denote the Cahl,-poo1. The ions 
enter the Cagp-poo1 through the calcium channels with 
a rate proportional to the calcium current. 

Decay of the free calcium level near the cell mem- 
brane is due to diffusion, buffering capacity of  the 
cytoplasm as well as active transport and removal (see 
e.g. Hille 1984; Blaustein 1988). In the model, an expo- 
nential decay is used to describe these mechanisms. This 
results in the following equation for the intracellular 
calcium level, denoted [CaAp]: 

d[Cahp] _ (Eca  _ Esoma)Qhpq 5 __ 6ae[CaAp] (13) 
dt 

The two constants OaP and lap are the rates of 
calcium ion influx and decay, respectively. 

In many types of  neurons, Ca z+ will activate Ca 2§ 
dependent K § (Kcc,)) channels (Hille 1984), which 
underlie the late phase of  the afterhyperpolarization 
(AHP; see Fig. 3A; for lamprey, see Hill et al. 1985). In 
this model, the K(c~) channels have a conductance 
proportional to the amount of  Ca z+ in the CaAp-pool. 
This gives the following equation for the K(ca) current: 

IK(Ca) = ( E K  - -  Esoma)GK(ca) [CaAe]  (14) 

The late AHP is a main factor involved in the spike 
frequency regulation in vertebrate neurons (Kernell and 
SjSholm 1973; Baldissera and Gustafsson 1974). With- 
out the late AHP, cells stimulated above threshold 
would tend to fire close to their maximum frequency 
without much of a dynamic range. With the late AHP, 
low stimulating currents can make the cell fire regularly 
at much lower frequencies, while fast spiking still oc- 
curs when larger currents are injected. The frequency 
regulation in a model neuron with a late AHP is shown 
in Fig. 3. The adaptation of firing frequency is evident 
in Fig. 3B (at 2 and 4 nA), where the first interspike 
interval is shorter than the following intervals due to 
subsequent summation of the late AHP's  (cf. Baldissera 
and Gustafsson 1974). The current-frequency relation is 
shown in Fig. 3C. The curves for the first and second 
interspike intervals display a "primary range" at low 
intensities (below 1.5 nA and 2.5 nA, respectively) and 
a "secondary range" with a steeper slope at higher 
intensities of stimulation, as previously described e.g. 
for cat motoneurons (Baldissera and Gustafsson 1974; 
Kernell and SjSholm 1973). 

3 Synaptic communication 

The main reason for using a multicompartment model 
for the dendritic tree is to make it possible to model 
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synapses at various distances from the soma on the 
postsynaptic cell. The passive model used also influ- 
ences the choice of the synapse model. Since the trans- 
mission from one cell to another already includes 
several time-intergrating steps in a multicompartment 
model, a simple description of the time course of the 
postsynaptic response was found to be sufficient. The 
conventional synapse is modeled with a transmembrane 
conductance in the postsynaptic compartment. Follow- 
ing the initiation of the presynaptic spike, and after a 
delay which is individual for each synapse, the conduc- 
tance is increased (Fig. 4A). The delay represents the 
time for an action potential to be propagated down the 
axon and the transsynaptic delay. The conductance 
remains high for a fixed length of time and then returns 
to zero. 

The current entering the postsynaptic compartment 
then becomes: 

Isy~ = (Esy, - E ) Q y ~ s  (15) 

where s is the activation level of the postsynaptic chan- 
nels, zero when the synapse is inactive and one when it 
is active. E is the membrane potential of the postsynap- 
tic compartment, and E~y~ is the reversal potential for 
the synaptic current involved. 

For excitatory synapses, Esy, is typically set to 0 mV 
representing e.g. glutamate mediated transmission 
caused by Na + and K + ion flow (Fig. 4A). For in- 
hibitory synapses, we have been using a reversal poten- 
tial, Esy,, of --85 mV, being close to the equilibrium 
potential for C1- ions, corresponding e.g. to glycinergic 
transmission. The synaptic efficacy is determined both 
by the conductance G~y~ and by the duration of the 
synaptic current. 

Figure 4 illustrates examples of simulated postsy- 
naptic potentials (PSP's) in the postsynaptic cell in a 
pair of connected model neurons. Note the different 

shapes of the EPSP's evoked by synaptic input to 
different dendritic compartments (Fig. 4B). Figure 5A 
shows the amplitude of an EPSP at different holding 
potentials. 

3.1 N M D A  receptor channels 

Three different excitatory amino acid (EAA) receptors 
have been described: AMPA (quisqualate), kainate and 
N-methyl-D-aspartate (NMDA) receptors (Watkins 
and Evans 1981). The NMDA channel is unique in that 
it is not only dependent on the presence of a transmitter 
substance to open. At the resting membrane potential it 
is blocked by Mg 2§ ions at physiological levels, but this 
block gradually disappears as the cell becomes depolar- 
ized. This gives the NMDA channel a pronounced 
voltage dependence (Ascher and Nowak 1988). When 
the NMDA-receptors are activated, a cell which be 
comes depolarized tends to stay depolarized, thus ex- 
pressing a plateau property. 

By introducing a variable p, a value between zero 
and one, for this Mg 2+ block, we get the following 
expression for the synaptic current for an NMDA-re- 
ceptor based synapse: 

INMDA = (ENMDA -- E)GNMDApS (16) 

A similar formalism was chosen for this voltage 
dependent phenomenon as for the other voltage depen- 
dent channels, though the underlying mechanism is 
known to be quite different. The equations are the same 
as those used by Ascher and Nowak (1988; see also 
Neher and Steinbach 1978): 

dp 
d t  = gp(1 - p )  - flpp (17) 

~p = A e  ~/c tip = A e  - e / c  (18) 
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Fig. 3. A Spike with AHP and intra- 
cellular calcium concentration. The 
apparent mismatch in timing be- 
tween the maxima of the late AHP 
and the [CaAp] is due to a depolariz- 
ing effect from the dendritic com- 
partments, influencing Esom,. B 
Repetitive firing as a result of intra- 
cellular tonic current injection show- 
ing the dynamic range of firing 
frequency, as well as spike frequency 
adaptation. C Current vs frequency 
(i.e. 1/interval) plot for the first and 
second interspike intervals, and for 
steady state firing (lst,  2nd, S-S, re- 
spectively) 
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Fig. 4. A The mechanism used to 
simulate synaptic input. See text for 
details. B EPSP's as seen in the 
soma  when receiving synaptic input 
on different dendritic compartments.  
C IPSP as seen in the soma from a 
synapse situated on the first dendritic 
compar tment  (duration of  synaptic 
current was set longer than in B). 
Top trace in B and C is the presy- 
naptic spike 

Table 1. Parameters used in describing the ion channels 

Na + K + Ca 2+ NMDA 
m h n q p 

A (mV -1 ms -1) 0.2 0.08 0.02 0.08 0.7 (ms -l)  
c~ B(mV)  --40 - 4 0  - 3 1  - 1 0  - 

C (mV) 1 l 0.8 11 17 

A (mV -l ms -I) 0.06 0.4 (ms -1) 0.005 0.001 0.1 (ms -~) 
fl B (mV) - 4 9  - 3 6  - 2 8  --10 

C (mV) 20 2 0.4 0.5 17 

Table 2. Parameters used for the neuron simulations in this paper. The 
parameters correspond to those of excitatory interneurons in the simu- 
lations of the spinal locomotor network of the lamprey 

Passive Properties Active Properties 

El~k - 70 mV 
Gm Soma 0.003 ~S 
C,, Soma 0.03 nF 
G,, Dendrites 0.01 ~tS 
Cm Dendrites 0.3 nF 
G~o~ 0.04 I~S 

ENa 50 mV 0AP 4 s-  1 m V - 1  
GNt t 1.0 ILS (~AP 30 S - 1 
EK - -90mV er,~DA 0.5S -I mV -l  
GK 0.2 ~tS 6NMDA 3 S - l  
Ec~ 150 mV GK(ca) 0.01 ItS 
Gc~ 0 ~tS 

In addition to its voltage dependence, another spe- 
cial property of the NMDA-receptor is that the associ- 
ated channel is permeable not only to Na + and K § 
ions, but also to Ca 2§ (Mayer et al. 1987)�9 This does 
not influence the resulting current much (actually, the 
reversal potential for these synapses is set slightly above 
those for traditional excitatory synapses), but the main 
effect is that the inflow of Ca 2+ ions will activate the 
K(ca)  channels of the cell. C a  2+ entering in this way can 
accumulate over seconds, thereby causing a gradual 
hyperpolarization of the cell until the NMDA channels 
become blocked due to their voltage dependence 
(Wallrn and Grillner 1987). This mechanism is impor- 
tant for burst termination during slow swimming in the 
lamprey network (Grillner et al. 1991) and is therefore 
essential to reproduce in the simulations. 

Because the time constants involved in this Ca 2§ 
accumulation differ compared to those of the C a A p -  

pool, we have chosen to use two separate Ca 2+ pools, 
both influencing the K(ca) channels (cf. Brodin et al. 
1991)�9 For the CaNMDA'pOO1 we get a differential equa- 
tion similar to that of the CaAp-pool but with different 

A K a i n a t e / A M P A  

-50 

-55 

-6O 

-70 
mV 

C N M D A  + K a i n a t e / A M P A  

2 5 m s  

B NMDA 

2 mV 

D 

75 m s  

.-50 mV 

-70 mV 

Fig. $ A - D .  Comparison between 
simulated kainate /AMPA and 
N M D A  receptor mediated EPSP's. A 
The "conventional" ka ina te /AMPA 
EPSP decreases in size with mem- 
brane depolarization. B The N M D A  
EPSP instead increases in size. C 
Simulation of  the mixed kainate/ 
A M P A  - N M D A  EPSP. D Tempo- 
ral summat ion  of  synaptic input 
mediated by N M D A  + kainate/ 
A M P A  receptors (upper trace; spike 
threshold is reached) and by kainate/ 
A M P A  receptors alone (lower trace) 



values for the rate parameters (see Table 2): 

d[CaNMDA] 
= (ENMDA -- E)~)NMDApS 

dt 

--  6NMDA [ CaNMDA ] (19) 

The expression given above for the net current 
through the K(ca) channels is thus extended to: 

IK(Ca) = (EK -- g)GK(ca)([CaAp] + [CaNMDA]) (20) 

Examples of NMDA-receptor mediated EPSP's are 
given in Fig. 5B. Note that at a hyperpolarized level 
( - 7 0  mV) the NMDA channels are essentially blocked 
(Fig. 5B), while at more depolarized levels the NMDA- 
receptor mediated EPSP increases  in size due to its 
voltage dependence, in contrast to the "conventional" 
kainate]AMPA EPSP's (Fig. 5A). Many synapses uti- 
lize both NMDA and kainate/AMPA receptors (Dale 
and Grillner 1986) as simulated in Fig. 5C. Note that 
the, as yet unexplained, difference in time course ob- 
served between the two types of EPSP's (e.g. Dale and 
Grillner 1986) was not accounted for in these simula- 
tions. The voltage dependence of the NMDA-receptor 
mediated EPSP has functional consequences for in- 
stance during temporal summation of synaptic input, as 
illustrated in Fig. 5D. A detailed description of the 
simulations of the NMDA-receptor induced membrane 
properties, including pacemaker-like behavior, is given 
separately (Brodin et al. 1991). 

4 Computer simulation 

The cell model as described above includes, in all, 
eleven state variables: the membrane potential E for the 
four compartments, the channel variables m, h, n, q, p, 
and the two calcium pool concentrations [CaAp] and 
[CaNMDA]- Each of these variables is described by a 
corresponding ordinary first order differential equation 
and this set of eleven coupled equations constitutes the 
complete mathematical formulation of the model. 
Given some initial values for the state variables it is, in 
principle, possible to compute the values of the state 
variables for any time in the future. Such a complex set 
of equations is, however, impossible to solve analyti- 
cally. Thus, computer based numerical methods must 
be applied. 

4. I N u m e r i c a l  m e t h o d s  

There exists a number of different numerical methods 
for solving such systems of coupled differential equa- 
tions. These are all based on the technique of taking 
small timesteps and computing the changes of each 
state variable through the corresponding differential 
equation. This computation can not be exact due to the 
fact that the equations use the values of the state 
variables, all varying during the time step. By using 
smaller timesteps, the errors introduced can be made 
arbitrarily small, but the penalty is that the computa- 
tional burden increases. Different numerical methods 
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have been designed to circumvent this dilemma in vari- 
ous ways. 

Which method is the most suited for a particular set 
of equations depends both on the properties of the 
equations and on the desired accuracy of the result. In 
our case, we have no need for a high numerical accu- 
racy (at the inevitable cost of longer computational 
time). We would rather like to spend the computing 
resources on longer simulations and larger systems. 

One important property of the system is that the 
time constants involved in the equations differ very 
much, for instance the sodium channel activation is 
very fast while the decay in the CaNMDA-pOO1 is much 
slower. This indicates that a straightforward numerical 
method might run into problems with stability because 
of the stiffness of the system. A system is called stiff 
when the maximum step length that can be taken 
during the simulations is limited, not by the desired 
accuracy, but by the stability. If too large timesteps are 
taken we do not simply get a somewhat larger error, 
but the simulation "runs amok". This fact prevented us 
from taking advantage of our modest accuracy require- 
ments by simply using longer timesteps. 

These considerations led us to try some numerical 
methods designed especially for systems of stiff differen- 
tial equations, along with standard methods, typically 
of the Runge-Kutta  type (see e.g. Dahlquist and 
BjSrck 1974). Much larger timesteps could be taken 
with implicit methods designed for stiff systems and 
consequently, many of our simulations were done using 
these methods. The method used was primarily the 
colos method, a one-legged single step implicit method 
(Dahlquist G. and Littmarck S., personal communica- 
tion). This method is, however, not suited for low-accu- 
racy simulations at high speed. Such simulations have 
great advantages while tuning parameters because it 
gives a fast turnaround. For such simulations a differ- 
ent numerical method was used, utilizing the fact that 
all the equations can be written on the form: 

dy 
d t  = Yf("  " ") + g(" " ") (21) 

i.e. the corresponding state variable (y in this example) 
only occurs in a linear context on the right hand side. 
This makes it possible to perform an exponential pre- 
diction in each step. Using a fixed timestep h gives the 
next value as: 

y ,  g(--.)'~ 
Yt+h =Y, + (e hf( ' ) -  1) , - t - ~ ]  (22) 

When f ( . . . )  is zero, this reduces to: 

Yt+h = Yt  + hg(.  . .) (23) 

which is identical to a straightforward Euler method. 
This technique, which has earlier been used by e.g. 

MacGregor and Lewis (1977) for neural simulations, 
has the advantage that much larger timesteps can be 
taken without any stability problems. However, there is 
no guarantee that the results are actually correct, but 
this can easily be checked by rerunning the simulations 
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with the final parameter values either with a smaller 
time step or with the colos method. 

When simulating single neurons, much speed can 
be gained by the use of  automatic regulation of  the 
time step so that larger steps are taken when no fast 
events, typically action potentials, occur. However, 
when dealing with simulations of  large sets of  commu- 
nicating cells, activity in any one of  the cells will force 
the use of  small steps. Thus, in a large enough system 
nothing will be gained from automatic time step regu- 
lation. One way to pursue this would be to use differ- 
ent time steps for different parts of  the system but 
there are currently no established numerical methods 
to handle this. 

4.2 Implementations 

The model described in this paper has been imple- 
mented in two different programs. The first one is 
designed especially for fast turnaround while working 
with single cells and small networks and runs on the 
Macintosh II personal computer. The second one is 
designed to handle larger simulations running on 
UNIX based multiuser computers and full size worksta- 
tions. 

The Mac II program was initially designed for 
single cell simulations and then later extended to handle 
networks of  up to about  ten neurons. The design was 
made to promote "rapid prototyping",  i.e. it should be 
easy to make changes in parameter values and then 
rerun the simulation, again and again. This is accom- 
plished by a window-based user interface where the user 
has direct access to all relevant parameter values in a 
directly editable form. Running a simulation requires 
only a single key press and the result is presented as 
multiple graphs in a separate window, showing selected 
state variables. 

In practice, the factor limiting the number of neu- 
rons that can be handled in the Mac II program is not 
only the actual capacity of  the program, but rather the 
large set of  parameters to be kept up to date. To avoid 
this problem to some extent, two extensions have been 
made. First, user defined variables were introduced, 
permitting the user to simply change the value of  one 
variable instead of  making many changes throughout 
the parameter list. These variables can also be used in 
arbitrary arithmetic expressions, which has proven most 
useful, e.g. when simulating the application of  chemical 
agonists and antagonists as multiplicative factors in 
conductance parameters. Second, since most parame- 
ters are identical for all cells, a set of  default parameter 
values can be defined and then only exceptions to these 
defaults have to be specified for each cell individually. 

The UNIX implementation is designed to handle 
this complexity in a more general way by a set-based 
organization of  parameters (Ekeberg et al. 1990). 
Parameter values are inherited, in much the same way 
as in modern object-oriented programming languages. 
This makes it possible to specify e.g. all Na § channel 
properties in one place and then make the individual 
neurons inherit these values with the possibility to 

modify them locally. This inheritance can occur in 
several steps making it useful for a natural hierarchical 
organization of  cell populations, classes of  synapses etc. 
The same inheritance scheme is also used for user 
defined variables which provides a powerful framework 
for describing e.g. experimental conditions. 

5 Discussion 

The model described has been designed primarily for 
the simulation of the neuronal circuitry generating loco- 
motor  rhythmicity in the lamprey. However, the general 
character of  the model allows for the properties of  
several other types of  neurons or networks to be repro- 
duced, with appropriate parameter tuning. For  exam- 
ple, in Fig. 6 the firing behavior of  some different 
classes of neocortical neurons (Connors and Gutnick 
1990) has been simulated using the present model 
(Fransbn and Lansner 1990). 

In terms of  the number of  parameters necessary to 
specify, the neuron model is quite complex. For  in- 
stance, a neuron with three dendritic compartments 
requires the specification of  approximately 60 parame- 
ter values. Furthermore, each synapse adds another 
seven values. A careful tuning of  these parameter values 
is essential and has to be carried out in parallel with test 
simulations. During this process, corresponding biolog- 
ical data has to be taken into consideration so that 
parameter values are kept within physiological limits 
and the overall behavior of the model becomes biologi- 
cally realistic. 

Although the neuron simulations performed have 
yielded results that correspond well to experimental 
findings, there are certain properties that have not been 
explored in the present study, e.g. postinhibitory re- 
bound. The contribution by such properties remains to 
be tested. 

The model can easily be extended to include several 
other neuronal mechanisms of  importance in a particu- 
lar biological system. For  instance, for some types of  

A ~ J I ~ / I ~ A ~ - ~ A ~ A A ~  -0mV 

J 

Fig. 6A-C. Three different types of neocortical neurons have been 
simulated using the current model. A A regular-spiking neuron show- 
ing a pronounced adaptation. B An intrinsically bursting neuron. C A 
general cortical cell firing at high frequency with a low threshold. 
Arrowheads indicate onset and termination of depolarizing DC-cur- 
rent injection 
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synapses, especially those with a long lasting effect, it 
might be necessary to include a graded decay of the 
conductance instead of an abrupt termination. There 
are also several types of synaptic mechanisms which 
have not yet been included. Several transmitters act on 
K § channels, which could be modeled in the same way 
as CI- mediated IPSP's. Synaptic effects on K(c~) chan- 
nels, such as those produced by 5-HT which influences 
the afterhyperpolarization, could also be simulated. 
Likewise, mechanisms for presynaptic modulation 
could be included, as well as non-synaptic mechanisms 
for neuronal interaction, such as an increase in extracel- 
lular potassium. In the present simulations, the ion 
channels underlying the action potential are located in 
the soma compartment, while the transmitter-gated, 
postsynaptic channels are placed on different dendritic 
compartments. The model allows, however, the local- 
ization of any channel to be altered. 

There are also several ways in which the model 
could be simplified without violating its realistic nature, 
resulting in more efficient simulations. When simulating 
large sets of neurons, the actual shape of the individual 
action potentials may be of minor importance. This is 
in contrast to the fact that most of the simulation time 
is spent on computing them. Under some conditions it 
might be advantageous to handle the action potentials 
separately and to use differential equations only for 
slower phenomena, thus making the simulations run 
significantly faster. In addition, the time delay of the 
Mg 2+ block of NMDA channels may not be necessary, 
and if so, the model of the voltage dependence could be 
simplified to a sigmoid shaped function. 

Further simplification of the realistic neuron model 
described here gives possibilities to approach the ab- 
stract models of neural networks. This could include 
the reduction to one single compartment and even 
replacing the action potential output with a value repre- 
senting firing frequency. By doing simplifications gradu- 
ally, this becomes a way to bridge the gap between the 
study of real neural systems and of artificial neural 
network models. This will, hopefully, prove to be mutu- 
ally beneficial for both research areas. 

6 Conclusions 

A mathematical model of the single neuron and the 
synaptic interaction has been presented. The level of 
complexity of the model has been chosen so that exper- 
imental cell data can be interpreted in terms of the 
model while the resulting behavior of a network can be 
studied by computer simulation. By tuning parameters 
it is possible to make this model mimic many different 
types of neurons. 

Simulations of large sets of neurons require, for 
practical reasons, fast numerical methods. Different 
methods have been investigated for computer simula- 
tion of the resulting system of coupled differential equa- 
tions. Two of these have proven suitable: one implicit 
method for highly accurate simulations and one using 
exponential prediction for faster test simulations. Two 

different implementations of the model have been 
made, one with emphasis on fast user interaction for 
small networks and another designed for larger systems. 

The described computer simulation model of the 
neuron and of the synaptic interaction has proven very 
useful in the analysis of the segmental network for 
locomotion in the lamprey. Not only has it been possi- 
ble to simulate the rhythm generating capability of the 
network and to simulate and test the role of NMDA 
receptor activation (Grillner et al. 1991, and unpub- 
lished; Brodin et al. 1991; cf. also Grillner et al. 1988, 
1989); the key mechanisms thought to be involved in 
the supraspinal and sensory control of the network, 
have also been successfully simulated and tested 
(Lansner et al. 1989; Grillner et al. 1991). The analyz- 
ing power of realistic computer simulations in the study 
of the lamprey locomotor network and its control is 
apparent. The simulations have given several new in- 
sights into the functioning of this motor system. It is 
obvious that this could not have been achieved without 
computer modeling. 
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