
Maximum Likelihood Estimation (MLE)

1 Specifying a Model

Typically, we are interested in estimating parametric models of the form

yi ∼ f(θ, yi) (1)

where θ is a vector of parameters and f is some specific functional form (probability density or
mass function).1 Note that this setup is quite general since the specific functional form, f , provides
an almost unlimited choice of specific models. For example, we might use one of the following
distributions:

• Poisson Distribution

yi ∼ f(λ, yi) =
e−λλyi

yi!
(2)

As you can see, we have only one parameter to estimate: λ. In terms of Eq. 1, θ = λ.

• Binomial Distribution

yi ∼ f(π, yi) =
N !

yi!(N − yi)!
πyi(1− π)N−yi (3)

or

yi ∼ f(π, yi) =
(

N

yi

)
πyi(1− π)N−yi (4)

Again, we have only one parameter to estimate: π. In terms of Eq. 1, θ = π.

• Normal Distribution

yi ∼ fN (θ, yi) =
1√

2πσ2
e−

(yi−µi)
2

2σ2 (5)

where θ = µ, σ2 and µ = g((β, xi). As you can see, we have two parameters to estimate: β
and σ2. In terms of Eq. 1, θ = β, σ2.

Obviously the choice of distribution will depend on your theory.
1Probability mass functions apply to discrete random variables, whereas probability density functions apply to

continuous random variables.

1



2 Intuition

The following example provides some intuition about maximum likelihood estimation. Suppose our
dependent variable follows a normal distribution:

yi ∼ N(µ, σ2) (6)

Thus, we have:

E[y] = µ (7)

var(y) = σ2 (8)

In general, we will have some observations on Y and we want to estimate µ and σ2 from those data.
The idea, as we will see, of maximum likelihood is to find the estimate of the parameter(s) that
maximizes the probability of observing the data that we have. Suppose that we have the following
five observations on Y :

Y = {54, 53, 49, 61, 58} (9)

Intuitively, we might wonder about the odds of getting these five data points if they were from a
normal distribution with µ = 100. The answer here is that it is not very likely – all of the data
points are a long way from 100. But what are the odds of getting the five data points from a
normal distribution with µ = 55. Now this seems much more reasonable. Maximum likelihood
estimation is just a systematic way of searching for the parameter values of our chosen distribution
that maximize the probability of observing the data that we observe.

Before, we look at the process of maximum likelihood estimation in detail, we need to go
over some preliminaries first.

3 Preliminaries

3.1 Fundamental Problem of Inference

Given that yi ∼ f(θ, yi), we would like to make inferences about the value of θ.

Note that the problem that we face is the opposite of the typical probability problem. Think
back to when you studied probability theory – you wanted to know something about the distribution
of y given the parameters of your model (θ). What is the probability of drawing an Ace of Spades
from a fair deck? What is the probability of getting 6 heads when tossing a fair coin 8 times? As
King (1998, 14) puts it, you want to know p(y|Model) or p(Data|Model). In our terminology, you
want to know f(y|θ)

In our case, though, we have the data but want to learn about the model, specifically the
model’s parameters. In other words, we want to know the distribution of the unknown parameter(s)
conditional on the observed data i.e. p(Model|Data) or f(θ|y). This is known as the ‘inverse
probability problem’.
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3.2 Bayes’ Theorem

Recall the following identities from any probability class.

p(θ, y) = p(θ)p(y|θ) (10)

and

p(θ, y) = p(y)p(θ|y) (11)

We want to know the last term in Eq. 11 i.e. p(θ|y). It should be obvious from Eq. 10 and 11 that
the conditional density of p(θ|y) is

p(θ|y) =
p(θ, y)
p(y)

=
p(θ)p(y|θ)

p(y)
(12)

Note that the denominator, p(y), is just a function of the data. Since it only makes sense to
compare these conditional densities for the same data, we can essentially ignore the denominator.
This means that we can rewrite Eq. 12 in its more familiar form

p(θ|y) ∝ p(θ)p(y|θ) (13)

where 1
p(y) is called the constant of proportionality, p(θ) is the prior density of θ, p(y|θ) is the

likelihood, and p(θ|y) is the posterior density of θ. Thus, Eq. 13 supplies the Bayesian mantra that
‘the posterior is proportional to the prior times the likelihood’.2 Put differently, the likelihood is
the sample information that transforms a ‘prior’ into a ‘posterior’ density of θ.

It is important to note that the prior, p(θ), is fixed before our observations and so can be
treated as invariant to our problem. This means that we can rewrite Eq. 13 as

p(θ|y) = k(y)p(y|θ) (14)

where k(y) = p(θ)
p(y) and is an unknown function of the data. Since k(y) is not a function of θ, it

is treated as an unknown positive constant. Put differently, for a given set of observed data, k(y)
remains the same over all possible hypothetical values of θ.

4 Likelihood

Without knowing the prior or making assumptions about the prior, we cannot calculate the inverse
probability in Eq. 14. However, R. A. Fisher (1912) got around this by introducing the notion of
likelihood and the Likelihood Axiom. He defined

L(θ|y) = k(y)p(y|θ)
∝ p(y|θ) (15)

2In Bayesian estimation, you make assumptions about the prior (i.e. about p(θ)) and use the likelihood to update
according to Bayes’ rule. One of the problematic features of Bayesian estimation, though, is that there can be disputes
over the appropriate prior.
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The likelihood is proportional to the probability of observing the data, treating the parameters of
the distribution as variables and the data as fixed. The advantage of likelihood is that it can be
calculated from a traditional probability, p(y|θ), whereas an inverse probability cannot be calculated
in any way. Note that we can only compare likelihoods for the same set of data and the
same prior.

The best estimator, θ̂, is whatever value of θ̂ that maximizes

L(θ|y) = p(y|θ) (16)

In effect, we are looking for the θ̂ that maximizes the likelihood of observing our sample [recall
the intuitive example from earlier]. Because of the proportional relationship, the θ̂ that maximizes
L(θ|y) will also maximize p(θ|y) i.e. the probability of observing the data. This is what we wanted
from the beginning.

4.1 Likelihood of the Entire Sample

IF the yi are all independent (or conditionally independent given xi), then the likelihood of the
whole sample is the product of the individual likelihoods over all the observations.

L = L1 × L2 × L3 × . . .× LN

=
N∏

i=1

Li

= p(y1|θ̂)× p(y2|θ̂)× p(y3|θ̂)× . . .× p(yN |θ̂)

=
N∏

i=1

p(yi|θ̂) (17)

Instead of writing down the likelihood function, we often write down the log-likelihood function

lnL =
N∑

i=1

ln p(yi|θ̂) (18)

Since all likelihoods are negative, the likelihood and its log have their maxima at the same place.
It tends to be much simpler to work with the log-likelihood since we get to sum things up.

4.2 Maximum Likelihood Estimation

Once we have the likelihood (or more normally the log-likelihood) function, we need to find θ̂ML.
There are generally three options for this.

1. Analytic: Differentiate the likelihood function with respect to the parameter vector and set
the resulting gradient vector to zero. Solve the system of equations to find extrema. Take
the second derivative to make sure that you have a maximum rather than a minimum. This
method only works if there is an analytical solution.
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2. Grid Search: If you know θ̂ lies in a subspace of <, do an exhaustive search over that region
for the θ̂ that produces the largest likelihood. In other words, try each possible value of θ̂ and
see which produces the largest likelihood. The grid search method is a good way of showing
that you can find the maximum of the likelihood function by repeated approximation and
iteration. However, it is not practical in most cases and becomes much more difficult when
the number of parameters rises beyond one or two.

3. Numerical: This is the most common. Essentially, you give the computer a set of starting
values, θ̂0, and let a hill climbing algorithm (Newton-Raphson, BHHH, DFP, etc.) find the
maximum.3

4.3 Poisson Example

Let’s work through an example analytically for the Poisson distribution:4 The Poisson distribution,
which is often used as the underlying distribution for a count model, can be written as:

yi ∼ f(λ, yi) =
e−λλyi

yi!
(19)

For the Poisson distribution, the likelihood function would be

L =
e−λλy1

y1!
× e−λλy2

y2!
× e−λλy3

y3!
× . . .× e−λλyN

yN !

=
N∏

i=1

e−λλyi

yi!

=
e−Nλλ

∑N
i=1 yi

∏N
i=1 yi!

(20)

and the log-likelihood function would be

lnL =
N∑

i=1

ln
(

e−λλyi

yi!

)

=
N∑

i=1

ln

(
e−Nλλ

∑N
i=1 yi

∏N
i=1 yi!

)

= −Nλ +
N∑

i=1

yiln(λ)−
N∑

i=1

ln(yi!) (21)

3These numerical methods are described in more detail in a later section of these notes.
4Some properties that you might find useful:

1. ea × eb = ea+b

2. ln(a× b) = lna + lnb

3. lnrs = slnr

4. ln
(

r
s

)
= lnr − lns

5. lne = 1

5



Now, let’s find the analytical solution to our Poisson example. To do this we start by taking
the derivative of Eq. 21 with respect to λ.5

∂lnL
∂λ

= −N +
∑N

i=1 yi

λ
(22)

We then set this equal to zero and solve for λ.

−N +
∑N

i=1 yi

λ
= 0

λ̂ =
∑N

i=1 yi

N
(23)

Finally, we would check that this is a maximum by taking the derivative of Eq. 22 with respect to
λ again. I leave this for you to check.

4.4 Bernoulli Example

Suppose we have a Bernoulli model in which each observation has a constant and equal chance of
success, π. A Bernoulli variable takes on one of two values, conventionally 1 or 0, which indicate a
‘success’ or ‘failure’. The probability distribution for this variable is:

f(1) = π

f(0) = 1− π (24)

If S stands for the number of successes and F for the number of failures, then the likelihood is:

L = πS(1− π)F (25)

and the log-likelihood would be:

lnL = Sln(π) + F ln(1− π) (26)

We then take the derivative of this with respect to π.

∂lnL
∂π

=
S

π
− F

1− π
(27)

We now set this equal to zero and solve for π:

S

π
− F

1− π
= 0

S(1− π)− Fπ = 0

π =
S

S + F

=
S

N
(28)

Now that we have our θ̂ML estimates, we need to calculate standard errors. This will require
us to learn about the Information Matrix.

5Recall that (lnx)′ = 1
X

and
(
eX

)′
= ex.
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5 Information Matrix and Standard Errors

The variance of an ML estimator, θ̂ML, is calculated by the inverse of the Information matrix:

var(θ) = [I(θ)]−1 (29)

What is this? This will take a few steps. First, the Information matrix is the negative of the
expected value of the Hessian matrix:

[I(θ)] = −E[H(θ)] (30)

So, now what is the Hessian? The Hessian is the matrix of second derivatives of the likelihood with
respect to the parameters:

H(θ) =
∂2lnL(θ)

∂θ∂θ′
(31)

Thus, the variance-covariance matrix of θ̂ML is:

var(θ) = [I(θ)]−1

= (−E[H(θ)])−1

=
(
−E

[
∂2lnL(θ)

∂θ∂θ′

])−1

(32)

As we’ll see in a moment, the standard errors of the estimator, θ̂, are just the square roots of the
diagonal terms in the variance-covariance matrix.

Cramer-Rao Theorem: This shows that (given certain regularity conditions con-
cerning the distribution), the variance of any unbiased estimator of a parameter θ must
be at least as large as

var(θ) ≥ (−E[H(θ)])−1 (33)

This means that any unbiased estimator that achieves this lower bound is efficient and no better
unbiased estimator is possible. Now look back at the variance-covariance matrix in Eq. 32. You
will see that the inverse of the information matrix is exactly the same as the Cramer-Rao lower
bound. This means that MLE is efficient.

5.1 Why? Easy and Hard

Why is this how we calculate the standard errors? The easy way to think about this is to recognize
that the curvature of the likelihood function tells us how certain we are about our estimate of our
parameters. The more curved the likelihood function, the more certainty we have that we have
estimated the right parameter. The second derivative of the likelihood function is a measure of the
likelihood function’s curvature - this is why it provides our estimate of the uncertainty with which
we have estimated our parameters.
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The hard, but correct, way to think about this is the following. If we took a linearization of
the derivative of the likelihood at the maximum likelihood point, θ̂, around the true value, θ, we
would have:

0 =
∂L
∂θ
|θ̂

=
∂L
∂θ
|θ +

∂2L
∂θ∂θ′

(θ̂ − θ)

θ̂ − θ = −
[

∂2L
∂θ∂θ′

]−1
∂L
∂θ

(34)

The variance of θ̂ is just the outer product of the above.

var(θ̂) = E[(θ̂ − θ)(θ̂ − θ)′]

= E

[[−∂2L
∂θ∂θ′

]−1
∂L
∂θ

∂L′
∂θ

[−∂2L
∂θ∂θ′

]−1
]

(35)

The score is the gradient of the likelihood
(

∂L
∂θ

)
. If the model is correctly specified, then the

expectation of the outer product of the scores (the middle bit) is equal to the information matrix.
As a result, we can rewrite Eq. 35 as

var(θ̂) = E

[[−∂2L
∂θ∂θ′

]−1 −∂2L
∂θ∂θ′

[−∂2L
∂θ∂θ′

]−1
]

=
(
−E

[−∂2L
∂θ∂θ′

])−1

(36)

As you can see, this is the negative of the inverse of the information matrix. We can read off the
standard errors of θ̂ from the square roots of the diagonal elements of this matrix. Note that these
are only correct asymptotically and are hard to calculate in finite samples [we’ll return to this a
little later in the notes].

5.2 Robust Standard Errors

If the model is not well-specified but the mean function is correctly specified and the variance
function is not horribly specified, then maximum likelihood is asymptotically normal with the
following variance-covariance matrix

var(θ̂) = I−1 ∂L
∂θ

∂L
∂θ

′
I−1 (37)

This is the variance-covariance matrix that provides what we call robust variances from Eq. 35.
This is the maximum likelihood analogue of White’s consistent standard errors.

6 Properties of ML Estimators

If a minimum variance unbiased estimator exists, then the MLE estimator will be it.
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6.1 Large Sample Properties

• Consistent: plim θ̂ML = θ

• Asymptotically normal - θ̂ML a∼ N [θ, {I(θ)}−1]

• Variance-Covariance is the Rao-Cramer lower bound (if the model is well-specified) - efficient

• Invariance: If θML is the ML estimator of θ, then γML = g(θML) is the maximum likelihood
estimator of γ = g(θ). This means that rather than estimating a parameter θ, we can instead
estimate some function of it, g(θ). We can then recover an estimate of θ (that is, θ̂) from
g(θ).

Thus, ML is best asymptotically normal.

6.2 Small Sample Properties

We don’t know much about MLE’s small sample properties. In general, though, if there is a good
small sample estimator, it will look like maximum likelihood. Note that maximum likelihood may
not be unbiased in small samples.

6.3 An Aside on Bootstrapping

As noted above, all standard errors in MLE are asymptotic. You probably should not use MLE
when your sample is small (maybe less than 100). However, if your sample is small and you still
use MLE, you should at least try to deal with the fact that your standard errors are not estimated
correctly. One way to do this is ‘bootstrapping’. A bootstrap provides a way to perform a statistical
inference by resampling from the sample.6

The idea is relatively simple. Suppose we wanted to obtain a bootstrap estimate of the
standard error of an estimator θ̂. Suppose we had 400 random samples from the population. From
these, we could get 400 different estimates of θ̂ and let the standard error of θ̂ be the standard
deviation of these 400 estimates.

The problem is that we normally have only one sample from the population available. The
bootstrap procedure essentially generates multiple samples by resampling from the current sample.
In effect, our current sample is viewed as the population and we obtain multiple samples from this
population by resampling (obviously with replacement since we would only have one sample if we
didn’t do this). Given the 400 bootstrap resamples, we can obtain 400 estimates and then estimate
the standard error of θ̂ by the standard deviation of these 400 estimates.

6The most common use of the bootstrap is to provide standard error estimates when analytical expressions are
complicated. You can then use these standard errors to construct confidence intervals and test statistics.
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To be more specific, let θ̂∗1, . . . , θ̂
∗
B denote the estimates, where B = 400 in this case. Then

the bootstrap estimate of the variance of θ̂ is:

v̂arboot(θ̂) =
1

B − 1

B∑

b=1

(θ̂∗b − θ̂∗)2 (38)

where θ̂∗ = 1
B

∑B
b=1 θ̂∗b is the average of the B bootstrap estimates. The square root of v̂arboot(θ̂)

is called the bootstrap standard error of θ̂.7 The bootstrap standard errors may well give a more
accurate assessment of the variance of the parameter estimates.

The STATA command to obtain bootstrap standard errors is:

probit Y X, vce(boot, reps(400) seed(10101))

where reps(400) says to use 400 bootstrap resamples and seed(10101) sets the seed to enable
replication. You will get the same output as before except now the standard errors and test
statistics are based on the bootstrap standard errors.

If you want to obtain clustered bootstraps, the command is:

probit Y X, vce(boot, cluster(Z) reps(400) seed(10101))

It is possible to obtain different bootstrap confidence intervals. The STATA commands shown
above will give you what is called a “normal-based” (N) 95% confidence intervals for θ that equal

[θ̂ − 1.96× seboot(θ̂), θ̂ + 1.96× seboot(θ̂)] (39)

and is a standard Wald asymptotic confidence interval. However, you can obtain alternative confi-
dence intervals.

The percentile (P) method uses the relevant percentiles of the empirical distribution of the
B bootstrap estimates θ̂∗1, . . . , θ̂

∗
B. Thus, a percentile 95% confidence interval is (θ̂∗0.025, θ̂

∗
0.975). This

confidence interval is asymmetric around θ̂ and is generally considered a better approximation than
the normal-based confidence interval.

Two alternative confidence intervals are the bias-corrected (BC) confidence interval, which is
a modification of the percentile method that incorporates a bootstrap estimate of the finite-sample
bias in θ̂, and the BC accelerated (BCa) confidence interval, which is an adjustment of the BC
method that allows the asymptotic variance of θ̂ to vary with θ.

In general, you are probably fine using the N or P method for calculating confidence intervals.
To see all of the confidence intervals in STATA, type:

quietly probit Y X, vce(boot, reps(400) seed(10101))

estat bootstrap, all

7It is important to note that the bootstrap procedure that has just been outlined assumes independence of
observations or of clusters of observations. This allows for dependence via clustering, so long as observations are
combined into clusters that are independent and the bootstrap is over the clusters.
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7 OLS Example

Let’s work our way through a more complicated example for the normal distribution.

7.1 Finding the Log-Likelihood

As we saw earlier, the normal distribution is written as:

yi ∼ N(µi, σ
2I) =

1√
2πσ2

e−
(yi−µi)

2

2σ2 (40)

where µi = xiβ. This can be rewritten as:

yi ∼ N(µi, σ
2I) =

1√
2πσ2

e−
(yi−xiβ)2

2σ2 (41)

Thus, the likelihood for a single observation is:

L(yi|x, β, σ2) =
1√

2πσ2
e−

(yi−xiβ)2

2σ2 (42)

It follows that the likelihood for the whole sample is:

L(y|x, β, σ2) =
N∏

i=1

1√
2πσ2

e−
(yi−xiβ)2

2σ2 (43)

In matrix form the likelihood is:

1

(
√

2πσ2)N
e−

1
2σ2 (y−Xβ)′(y−Xβ) (44)

Now taking logs, the log-likelihood is:

lnL(y|x, β, σ2) =
N∑

i=1

ln
(

1√
2πσ2

e−
(yi−xiβ)2

2σ2

)

= −N

2
ln(2π)− N

2
ln(σ2)− 1

2

N∑

i=1

[
(yi − xiβ)2

σ2

]
(45)

In matrix form, the log likelihood is:

lnL =
−N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ) (46)
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7.2 Finding the ML Estimator

In this particular case, we can find a closed form solution for the parameters (β, σ2). Let’s start by
using the sample log-likelihood in matrix form:

lnL(y|X, β, σ2) = −N

2
ln(2π)− N

2
ln(σ2)− 1

2

[
(y −Xβ)′(y −Xβ)

σ2

]
(47)

where y is an N × 1 vector and X is an N × k matrix. By expanding the numerator of the last
term and moving the scalar σ2 outside, we have:

lnL(y|X, β, σ2) = −N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2
[y′y − 2y′Xβ + β′X ′Xβ] (48)

To find the gradient vector, we need to take the derivative of lnL with respect to β and σ2. Let’s
start by taking the derivative of Eq. 48 with respect to β.

∂lnL
∂β

= − 1
2σ2

[
∂[y′y − 2y′Xβ + β′X ′Xβ]

∂β

]

= − 1
2σ2

[−2X ′y + 2X ′Xβ]

=
1

2σ2
[2X ′y − 2X ′Xβ]

=
1
σ2

[X ′y −X ′Xβ] (49)

We now set this equal to zero:

1
σ2

[X ′y −X ′Xβ] = 0

X ′Xβ = X ′y
β̂ = (X ′X)−1X ′y (50)

This is the familiar formula for an OLS coefficient vector. As you can see, OLS and ML give the
same estimator for the coefficients.

Second, we take the derivative of Eq. 48 with respect to σ2.

∂lnL
∂σ2

= − N

2σ2
+

1
2σ4

[(y −Xβ)′(y −Xβ)] (51)

We now set this equal to zero:

− N

2σ2
+

1
2σ4

[(y −Xβ)′(y −Xβ)] = 0

1
2σ4

[(y −Xβ)′(y −Xβ)] =
N

2σ2

1
σ2

[(y −Xβ)′(y −Xβ)] = N (52)
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Since we have already solved for β̂, we can solve for σ2 by replacing β with its estimate:

1
σ2

[(y −Xβ̂)′(y −Xβ̂)] = N

1
σ2

[(y − ŷ)′(y − ŷ)] = N

1
σ2

[e′e] = N

σ̂2 =
e′e
N

(53)

Recall that the OLS estimate, which is unbiased, of σ̂2 = e′e
N−K . Thus, the OLS and ML estimator

of σ2 are different. Specifically, the MLE estimate is biased downwards in small samples. However,
it is relatively easy to see that the OLS and ML estimators are asymptotically equivalent i.e. they
converge as N goes to infinity.

Gradient Vector: This is the vector that contains the first derivative of the log-likelihood function
with respect to our parameters. Thus, the gradient vector from the OLS example is the following

G =
∂lnL
∂θ

=
[ ∂lnL

∂β
∂lnL
∂σ2

]
=




X′(y−Xβ)
σ2

− N
2σ2 + (y−Xβ)′(y−Xβ)

2σ4


 =




β0

β1

β2
...

βk

σ2




(54)

7.3 Finding the Variance-Covariance Matrix

Recall that variance-covariance matrix is:

[I(θ)]−1 = (−E[H(θ)])−1 (55)

Thus, the first thing we do is find the Hessian, the matrix of second derivatives with respect to our
parameters.

We start with the gradient vector:

∂lnL
∂θ

=




X′(y−Xβ)
σ2

− N
2σ2 + (y−Xβ)′(y−Xβ)

2σ4


 (56)

We now need to take the derivative of each element of the gradient vector with respect to β
and with respect to σ2. Let’s start with β.

∂2lnL
∂β∂β′

=
∂

[
X′(y−Xβ)

σ2

]

∂β
=

∂
[

X′y−X′Xβ)
σ2

]

∂β
= −X ′X

σ2
(57)
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∂2lnL
∂β∂σ2

=
∂

[
X′(y−Xβ)

σ2

]

∂σ2
= −X ′(y −Xβ)

σ4
= −X ′ε

σ4
(58)

since ε = y −Xβ.

∂2lnL
∂σ2∂β′

=
∂

[− N
2σ2 + 1

2σ4 (y′y − 2y′Xβ + β′X ′Xβ)
]

∂β

=
−2y′X + 2β′X ′X

2σ4

=
−y′X + β′X ′X

σ4
= − 1

σ4
(y′ − β′X ′)X = −ε′X

σ4

(59)

since ε = y −Xβ and ε′ = y′ − β′X ′.

∂2lnL
∂σ2∂σ2′ =

∂
[− N

2σ2 + 1
2σ4 [(y −Xβ)′(y −Xβ)]

]

∂σ2

=
N

2σ4
− (y −Xβ)′(y −Xβ)

σ6

=
N

2σ4
− ε′ε

σ6
(60)

Thus, the Hessian matrix from the OLS example is the following:

H =
∂lnL
∂θ∂θ′

=



−X′X

σ2 − X′ε
σ4

− ε′X
σ4

N
2σ4 − ε′ε

σ6


 (61)

Now we need to take the expectation of the Hessian.

E[H] = E



−X′X

σ2 − X′ε
σ4

− ε′X
σ4

N
2σ4 − ε′ε

σ6


 =




E
[
−X′X

σ2

]
E

[
−X′ε

σ4

]

E
[
− ε′X

σ4

]
E

[
N

2σ4 − ε′ε
σ6

]


 (62)

Since one of the Gauss-Markov assumptions state that X ′ε = 0 (disturbances are not corre-
lated with the explanatory variables X), we know that the expectation of the elements on the off
diagonal of the Hessian are zero i.e.

E

[
−X ′ε

σ4

]
= 0 (63)
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and

E

[
−ε′X

σ4

]
= 0 (64)

We know that:

E

[
−X ′X

σ2

]
= −X ′X

σ2
(65)

because the expectation of a constant is just the constant. Finally, we know that:

E

[
N

2σ4
− ε′ε

σ6

]
= E

[
N

2σ4

]
− E

[
ε′ε
σ6

]

=
N

2σ4
− Nσ2

σ6

= − N

2σ4
(66)

because N
2σ4 is a constant and because E[ε′ε] = Nσ2 by assumption. Thus, the expectation of the

Hessian is:

E[H] =



−X′X

σ2 0

0 − N
2σ4


 (67)

The Information matrix is the negative of the expectation of the Hessian. Thus,

I[θ] = −E[H(θ)] = −


−X′X

σ2 0

0 − N
2σ4


 =




X′X
σ2 0

0 N
2σ4


 (68)

Finally, the variance-covariance matrix is the inverse of the Information matrix.8 Thus, we have:

I[θ]−1 =




σ2(X ′X)−1 0

0 2σ4

N


 (69)

Some of this should look very familiar to you. The stuff in the top left σ2(X ′X)−1 is just the
variance-covariance matrix of the OLS estimator, β̂. Thus, the square root of the elements on
the diagonal will give you the standard errors associated with your coefficients. The stuff in the
bottom right is the variance of σ2. This was not actually calculated during OLS - thus, MLE
provides more information than OLS. Overall, the variance-covariance matrix of the ML estimator

8When the off diagonals of a matrix are 0, then we can find the inverse of a matrix by taking the inverse of the
elements on the on-diagonal as we do here.
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looks something like the following

I[θ]−1 =




var(β̂1) cov(β̂1, β̂2) . . . cov(β̂1, β̂k) cov(β̂1, σ̂
2)

cov(β̂2, β̂1) var(β̂2) . . . cov(β̂2, β̂k) cov(β̂2, σ̂
2)

...
...

...
...

...
cov(β̂k, β̂1) cov(β̂k, β̂2) . . . var(β̂k) cov(β̂k, σ̂

2)
cov(σ̂2, β̂1) cov(σ̂2, β̂2) . . . cov(σ̂2, β̂k) var(σ̂2)




(70)

=




var(β̂1) cov(β̂1, β̂2) . . . cov(β̂1, β̂k) 0
cov(β̂2, β̂1) var(β̂2) . . . cov(β̂2, β̂k) 0

...
...

...
...

...
cov(β̂k, β̂1) cov(β̂k, β̂2) . . . var(β̂k) 0

0 0 0 0 var(σ̂2)




(71)

7.4 Recap

• We can write down the normal regression model, which we usually estimate via OLS, as an
ML model. First, we write down the log-likelihood function. Second, we take derivatives with
respect to the parameters. Third, we set the derivatives equal to zero. Fourth, we solve for
the parameters.

• We get an estimator of the coefficient vector which is identical with that from OLS.

• The ML estimator of the variance is, however, different from the OLS estimator. The reason
for the difference is that the OLS estimator of the variance is unbiased, while the ML estimator
is biased but consistent. In large samples, as assumed by ML, the difference is insignificant.

• We can apply the formula for the Information matrix to get the variance-covariance matrix
of the ML parameters. This gives us the familiar formula for the variance-covariance matrix
of the parameters, σ2(X ′X)−1, and a simple if unfamiliar expression for the variance of σ̂2.

• Since the parameter estimates are all MLEs, they are all asymptotically normally distributed.

• The square root of the diagonal elements of the inverse of the information matrix gives us
estimates of the standard errors of the parameter estimates.

• We can construct simple z-scores to test the null hypothesis concerning any individual pa-
rameter, just as in OLS, but using the normal instead of the t-distribution.

• You have now seen a fully-worked, non-trivial application of ML to a model you are familiar
with.
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8 Inference - Testing Hypotheses

8.1 Individual Parameters

Say we want to test a hypothesis about an individual parameter. We know that ML parameter
estimates are asymptotically normally distributed. If we wanted to test the hypothesis H0 : θk = θ∗,
then we would use:

z =
θ̂k − θ∗√

V (θ̂)k

a∼ N(0, 1) (72)

whree θ∗ in this case is zero. Under the assumptions justifying MLE, if H0 is true, the z is
distributed asymptotically normal with mean 0 and variance 1. In other words, the test is simply
the z-score test you learned in elementary statistics. You’ll notice when you do OLS regression that
STATA reports t-statistics, but when you switch to MLE, STATA reports z-statistics. It makes
little difference, though, whether you use a t-distribution or a normal distribution. As you can see,
hypothesis testing about individual coefficients is easy.

8.2 Three Classic Tests

There are three classic tests associated with ML estimation - Likelihood Ratio Test, Wald Test,
Lagrange Multiplier Test.

To see the logic behind these tests, consider MLE of parameter θ and a test of the hypothesis
H0 : c(θ) = 0. Look at Figure 17.2 in Greene (2003, 485).

• Likelihood Ratio Test: If the restriction c(θ) = 0 is valid, then imposing it should not lead
to a large reduction in the log-likelihood function. Thus, we base the test on the ‘vertical’
difference, λ = lnLU − lnLR, where LU is the value of the likelihood function at the uncon-
strained value of θ and LR is the value of the likelihood function at the restricted estimate. It
has been shown that under the null hypothesis, −2λ is distributed χ2 with degrees of freedom
equal to the number of restrictions imposed. To do this test you will have to run two models
and get the results.9

• Wald Test: If the restriction is valid, then c(θ̂MLE) should be close to zero since MLE is
consistent. Thus, the test is based on c(θ̂MLE). We reject the hypothesis if this value is
significantly different from zero. Essentially, you estimate just the unconstrained model and
then test whether the hypothesized constraints are inconsistent with this model. The test
basically uses two pieces of information. First, it measures the distance θ̂MLE − c(θ̂MLE).
The larger this distance, the less likely it is that the constraint (c(θ̂MLE) = 0) is true. Second,
this distance is weighted by the curvature of the log-likelihood function, which is indicated
by the second derivative. The larger the second derivative, the faster the curve is changing.

9Note that for the test to work, one model must be nested inside the other model i.e. the simpler model must be
the bigger model with some constraints imposed.
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If the second derivative is small, this indicates that the log-likelihood curve is relatively flat.
Thus, the distance θ̂MLE − c(θ̂MLE) will be minor relative to the sampling variation. If the
curve is steeper, the same distance may be significant.

• Lagrange Multiplier Test: If the restriction is valid, then the restricted estimator should
be near the point that maximizes the log-likelihood. Therefore, the slope of the log-likelihood
function should be near zero at the restricted estimator. The test is based on the slope of the
log-likelihood at the point where the function is maximized subject to the restriction.

The three tests are asymptotically equivalent, but may differ in small samples.

9 Numerical Maximization Methods

As I noted earlier, there are three different ways to employ maximum likelihood estimation: ana-
lytical, grid search, and numerical. In many cases, there is no analytical solution and grid searches
are impractical. As a result, most statistical packages employ some kind of numerical maximization
method. But how exactly do these methods work?10

9.1 Intuition

Recall that the goal of MLE is to find values of the parameters, say β, that maximize the (log)likelihood
function. To do this, we could start with a guess of β̂ and let’s call this β̂0. We could then adjust
this guess based on the value of the (log)likelihood that it gives us. For simplicity, let’s call this
adjustment A. Thus, our new guess would be:

β̂1 = β̂0 + A0 (73)

Or, more generally,

β̂k = β̂k−1 + Ak−1 (74)

Remember that we want to move the vector β̂ to the point at which the likelihood is highest. How
can we do this? Well, we need to take account of the slope of the likelihood function at each guess.
Intuitively, the way that we do this is by incorporating information from the gradient matrix (the
matrix of first derivatives with respect to the β̂s) that we saw earlier. If the gradient matrix is
positive, then the likelihood is increasing in β̂ and so we need to increase our guess of β̂ some more.
And if the gradient matrix is negative, then the likelihood is decreasing in β̂ and so we need to
decrease our guess of β̂. By repeatedly doing this, we gradually climb to the top of the likelihood
function. As you can imagine, as we get to the top, the gradient becomes closer and closer to zero.
When the changes get sufficiently small from one iteration to the next, we simply stop, and use the
estimates that got us here.

10The following notes draw heavily on Zorn’s excellent notes and Long (1997).

18



9.2 More Detail

As we noted before, we start with a guess of β̂, which we’ll call β̂0. We then adjust this guess based
on the slope of the likelihood function. Before, we left this adjustment vague. But the simplest
way to update the parameter estimates is to specify Ak = ∂lnL

∂βk
. This gives us:

β̂k = β̂k−1 +
∂lnL
∂βk

(75)

In other words, we adjust the parameter by a factor equal to the first derivative of the log-likelihood
function with respect to the parameters i.e. equal to the gradient matrix. As I noted before, if
the gradient matrix is positive, then we increase β̂ more next time and if the gradient matrix is
negative, then we decrease β̂ next time. This general approach is called the method of steepest
ascent. Although this method is attractive, it does have one problem, which is that it doesn’t
consider how fast the slope is changing. As a result, we typically modify this approach.

The best way to think about this is that the matrix ∂lnL
∂βk

is a ‘direction’ matrix – it tells
us which direction to go in to reach the maximum. But it doesn’t tell us how far to increase or
decrease β̂ each time. Thus, we need to generalize our approach so that we change our estimates
not only in terms of their direction but also by a factor, the ‘step size’, determining how far we
should change them:

β̂k = β̂k−1 + λk−1∆k−1 (76)

As Eq. (76) indicates, our adjustment A now has two parts:

• ∆ tells us the direction we want to take a step in

• λ tells us the amount by which we want to change our estimates

As you will have recognized, we need a way of determining how fast the slope of the likelihood
is changing at that value of β̂ to do this. We can get this from the second derivative of the log-
likelihood function with respect to the β̂. The second derivative tells us the rate at which the slope
of the log-likelihood function is changing. If it is big, then the slope is increasing or decreasing
quickly. We need to incorporate the information from the second derivative about how fast the
slope is changing into our numerical maximization routine. We do this by saying that if the function
is very steep (the second derivative is big), then we don’t want to change the parameters very much
from one iteration to the next. However, if the function is flat (the second derivative is small), then
we can adjust the parameters more from one iteration to the next.

It turns out that we can actually do this in three different ways:

1. The Hessian

H =
∂2lnL
∂β∂β′

(77)
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As we saw earlier, this k × k matrix contains the second derivatives along the main diagonal
and the cross-partials of the elements of β̂ in the off-diagonals. Sometimes, though, figuring
out the second derivatives can be hard and so two alternatives are often used.

2. Information Matrix

I = −E

[
∂2lnL
∂β∂β′

]
(78)

In some cases, it can be easier to compute the information matrix than the Hessian matrix.

3. Outer Product Approximation to the Information Matrix

If the information matrix is also too difficult to calculate, we can use the outer product
approximation of the information matrix:

N∑

i=1

∂lnLi

∂β

∂lnL′i
∂β

(79)

In other words, we sum over the ‘squares’ (outer products) of the first derivatives of the log-
likelihoods. This has the advantage that we don’t have to deal with the second derivatives at
all.

Each of these options for incorporating the ‘rate of change’ has a maximization algorithm
associated with it.

1. Newton-Raphson uses the (inverse of the) Hessian

β̂k = β̂k−1 −



(
∂2lnL

∂β̂k−1∂β̂′k−1

)−1
∂lnL
∂β̂k−1


 (80)

As this illustrates, the new parameter estimates are equal to the old ones. However, they are
adjusted in the direction of the first derivative (steepest ascent) and the amount of change is
inversely related to the size of the second derivative.

2. Method of Scoring uses the (inverse of the) information matrix

β̂k = β̂k−1 −
[
E

(
∂2lnL

∂β̂k−1∂β̂′k−1

)]−1
∂lnL
∂β̂k−1

(81)

3. Berndt, Hall, Hall, and Hausman (BHHH) uses the inverse of the outer product
approximation to the information matrix

β̂k = β̂k−1 −
(

N∑

i=1

∂lnLi

∂β

∂lnL′i
∂β

)−1
∂lnL
∂β̂k−1

(82)
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As Zorn points out, there are other algorithms such as the Davidson-Fletcher-Powell (DFP)
algorithm, in which the step length is chosen in a way to make the updated matrix of parameter
estimates positive definite.

Newton-Raphson works pretty well and quickly for simply functions with global maxima.
Newton-Raphson is the default in STATA. As a result, STATA actually calculates the gradient
and Hessian at each iteration; it can be slow but is quite reliable. You might want to use the
scoring method or BHHH if you have a complicated likelihood function or the data are poor (i.e.
collinearity). To find out more about the maximization methods in STATA, type help maximize.

9.3 Potential Problem Solving

If you cannot get the model to converge or the answer you get appears wrong, then there are a
number of things that you can look at:

1. Make sure that the model is well-specified and that the variables are constructed correctly.

2. Rescale the variables so that they are roughly on the same scale. It turns out that the larger
the ratio between the largest standard deviation and the smallest standard deviation, the
more problems you will have in numerical methods.

3. Choose an alternative optimization algorithm.

9.4 Uncertainty Revisited

Recall from earlier that, asymptotically, the variance-covariance matrix of the estimated parameters
is equal to the inverse of the negative of the information matrix.

var(θ̂) = E

[[−∂2L

∂θ∂θ′

]−1 −∂2L

∂θ∂θ′

[−∂2L

∂θ∂θ′

]−1
]

=
(
−E

[−∂2L
∂θ∂θ′

])−1

(83)

The intuition was that the second derivatives tell us something about the rate at which the slope
of the likelihood function changes. If the slope is steep, we can be confident that the maximum we
have reached is the ‘true’ maximum; that is, the variance of β̂ is small. If the slope is flat, we can’t
be sure of our maximum, and so the variance around our estimate will be larger.

Sometimes it can be hard to calculate Eq. (83). But as we have just seen, we can sub-
stitute the outer product approximation for this. Typically, whatever second derivative matrix a
maximization method uses is also used for estimating the variance of the estimated parameters:
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Method ‘Step Size’ (∂2) matrix Variance Estimate

Newton Hessian Inverse of the negative Hessian

Scoring Information Matrix Inverse of the negative information matrix

BHHH Outer product approximation of information matrix Inverse of the outer product approximation
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