
17 
The Single-Factor 

Within-Subject Design: 
Further Topics 

In the last chapter, we presented the techniques you need to conduct and interpret a 
single-factor within-subject analysis of variance. As we indicated, this design offers a 
substantial gain in power and convenience. However, these advantages, like all such 
benefits, come with certain costs. A within-subject design requires changes in the 
assumptions that underlie the tests, making it more likely that they will be violated. 
We discuss these issues and their correction in this chapter. 

17.1 Advantages and Limitations 
We start with a comparison of the between-subjects and within-subject designs. In 
brief, a study conducted with a within-subject design obtains more data from each 
subject than one conducted with a between-subjects design, and the analysis has a 
smaller error term. Set against these gains are the facts that repeated observations of a 
subject cannot be collected under constant conditions, and that any earlier observation 
has the potential to influence later ones. Moreover, the assumptions that underlie the 
analysis are more complex than those of the between-subjects designs. 

Advantages of the Within-Subject Design 
The three principal advantages of a within-subject design over a between-subjects de-
sign are more efficient use of subject resources, greater comparability of the conditions, 
and reduced error variance. The most obvious of these is the economy of the design. 
By taking several observations from each subject, much more data can be collected 
in a short period of time. The advantage is particularly great when each subject is 
"expensive," either because only a few are available or because a considerable amount 
of preparation or instruction is necessary before the study can begin. The efficiency of 
the within-subject designs certainly accounts for their wide use in behavioral research. 

From a statistical point of view, a great advantage of the within-subject designs is 
its increased control of subject variability. The subjects that come into an experiment 
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are not equivalent in ability, or on any other factor, for that matter. In a between-
subjects design, they are randomly assigned to independent groups. Although random 
assignment eliminates the chance of systematic differences among the groups ( other 
than those that arise from the treatments), accidental differences among groups will 
arise because different subject are assigned to each group. These chance differences 
are superimposed on whatever treatment effects are produced by the experimental 
manipulations. In the within-subject design, we select a single group of subjects and 
have them serve in every treatment condition, thus ensuring that comparable subject 
differences are present in each condition. 

The third advantage of the within-subject design goes along with the second. By 
making the conditions more similar, the size of the error term used to test for dif-
ferences among the treatments is reduced. Any study involves two types of random 
variability, one reflecting consistent differences among the subjects, the other reflect-
ing variation from one observation to another. Among the second set are momentary 
changes in attention and motivation, and variation in the physical environment or the 
testing apparatus. Both types of variability affect the accidental differenc;es among 
treatments in a between-subjects design, but only the second affects differences among 
treatments in a within-subject design. As you saw in the last chapter, the appropriate 
error term to compare with the within-subject treatment effect is the treatment~by-
subject interaction. This variability is almost always less than the pooled within-
group variability used to test the effect in a between-subjects design, which increases 
the test's power. 

Limitations of Within-Subject Designs 

The within-subject design has both statistical and nonstatistical limitations. The 
statistical problems mostly concern the sensitivity of the assumptions of the analysis. 
The scores produced by a single subject are more alike than are the scores produced by 
different subjects. In a statistical sense, this similarity means that the observations are 
not independent. The model on which the analysis is based must say something about 
this dependence, and these extra assumptions make the model more complex and more 
vulnerable to violation. In contrast, in a between-subjects design, the experimental 
procedure assures that the observations from different subjects are independent. Thus, 
there is a simplicity to a between-subjects design that is absent from its within-subject 
counterpart. We will discuss these issues in Sections 17.2 and 17.3. 

The nonstatistical problems arise from the fact that the repeated observations 
must necessarily take place under somewhat different conditions, and some aspect 
of this difference, other than the treatment being investigated, can affect the scores. 
These differences do not affect between-subjects designs, because only a single score 
is recorded. We will refer to these differences as incidental effects-systematic 
differences that are incidental to the actual treatment manipulation. We will review 
them here and then discuss methods for controlling them in Sections 17.4 and 17.5. 

Incidental differences among the treatments can arise for a variety· of reasons. 
One general class concerns nonspecific changes in the subject, such as practice and 
fatigue. If a subject becomes tired or bored, performance will drop for the later 
observations, regardless of the treatment involved. Similarly, if a subject becomes 
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better at the task or at following instructions, performance will improve. In an inter-
mixed-treatment design, changes like these affect all treatments equally. They may 
increase the variability of the data, but they do not bias the results. In a suc;cessive-
treatment design, however, the conditions are affected unequally. Practice effects help 
the conditions administered late in testing, while fatigue effects hurt them. Effects of 
this type should be considered whenever a successive-treatment study is planned. 

A second form of incidental differences arises when different treatments must use 
different material. In an experiment on memory, for example, subjects must be given 
a different set of material to learn with each new treatment-they cannot relearn the 
same material over and over again. If one set of material is easier to remember than 
another, it will give an advantage to the treatment condition in which it is used. Effects 
of this type influence both successive-treatment and intermixed-treatment designs. 

The other types of nonstatistical problems relate to the specific nature of the 
treatments. These can roughly be divided into three groups, each with different causes 
and cures: carryover effects, contrast effects, and context effects. A carryover effect 
occurs when a treatment has a transient effect that carries over to affect whatever 
condition is administered immediately after it. Consider a study that evaluates the 
effect of a drug by looking at behavior following doses of different sizes. A large dose 
may depress behavior, both immediately and for some period of time thereafter. If the 
tests are not spaced by a sufficiently long interval, the· next test will be affected not 
only by the currently administered drug, but by the continued effect of the earlier drug. 
In contrast, a small dose (or particularly a placebo control) has little or no continuing 
effect. Carryover effects can be both physical and psychological. For example, Sheehe 
and Bross (1961) remark that the effectiveness of an analge$ic agent in reducing the 
perception of pain is substantially reduced when it follows an ineffective agent, even 
when sufficient time has elapsed that no possibility of chemical mediation exists. In 
this case, the carryover is psychological, with the patients perhaps temporarily losing 
confidence in painkillers. 

A contrast effect is a carryover effect that occurs when two treatments interact in 
a way that depends on both conditions. Suppose a researcher is studying the effects 
of giving praise, reproof, or no feedback during a learning task with second-grade 
children. The effect of no feedback, say, may be quite different when it follows the 
praise condition than when it follows the reproof condition. Another example is the 
reward study mentioned in the introduction to Part V (p. 348). The 5-cent reward for 
a successful outcome might be valued more if it is preceeded by a 1-cent reward than 
if it is preceeded by a 50-cent reward. Carryover effects of these sorts are possible o:n.ly 
in a within-subject design, and where they are severe, . the best approach may be to 
use a between-subjects design. Where they are more mild, it may be sufficient simply 
to ensure that the conditions are not always presented in the same order. 

The very act of being measured in one treatment condition can change the subject, 
so that later observations are contaminated. With learned material, for example, it is 
impossible to test a subject on the same material twice, because the first test functions 
as an additional learning trial, and influences the later test. A subject who has been 
tested 10 minutes after learning, for example, is likely to remember more at 30 minutes 
than one who was not tested. There are more extreme forms of this phenomenon, 
generally known as context effects, in which a subject's behavior is influenced by 
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the context provided by exposure to other conditions in an experiment. A surprise test 
can only be given once; after that subjects will expect additional tests and alter their 
behavior accordingly. Studies of incidental learning, in which subjects are tested for 
what they can remember of material presented without formal instructions to learn, 
have this problem. Once they have been tested the first time, subjects will expect 
additional tests and later learning will not be incidental. The most extreme form of 
these effects come from the physiological manipulations such as an operation, which 
obviously cannot be undone. 

Consider a few other examples of potential context effects. If subjects are told that 
performance on a given task is a measure of intelligence (as a way of increasing their 
motivation), how will they view any future tasks where the set is changed? If subjects 
are told to employ one strategy when learning a set of material, will they be able 
to adopt a new one when the conditions are switched? If subjects are misled about 
what will happen in one treatment condition-a technique used in so-called deception 
experiments-will they believe what the researcher says about later treatments? If 
some of the experimental conditions are frightening or distasteful, how will subjects 
react when they are told that other conditions will be milder? For example, if they 
have been punished for an error with an electric shock, will they be unaffected by this 
experience when they are told they will not be shocked in another condition? These 
are all examples of situations that probably should not be· studied in within-subject 
designs. Greenwald {1976) provides a useful discussion of these sorts of problems. 

The discovery that an otherwise well-designed within-subject study is subject to 
serious carryover or context effects does not completely render the study useless. When 
each treatment has appeared first for some of the subjects, it is possible to analyze 
just the data from the first testing session. Performance at this point is completely 
uncontaminated by the effects of prior testing. Although this retreat to a between-
subjects design loses the increased power and comparability of the groups associated 
with a within-subject design, it restores the interpretability of the results, which is 
obviously the most important consideration. 

17 .2 The Statistical Model 
Like all statistical procedures, the analysis of the within-subject design is based on a 
set of assumptions about how the data are produced-the statistical model for a score 
)'ij, Although the configuration of the data looks superficially like that of a between-
subjects design, there are critical differences in the way the scores are represented. 
Here we develop the statistical model, and in the next section we discuss the effect of 
violating one of the key assumptions. 

The difference between ,the models for the between-subjects and within-subject 
designs lies in the assumption of independence of the scores. The fact that several 
scores come from the same subject causes the scores in different conditions to be 
correlated-for example, a subject that produces a high score under one treatment 
is likely to have a high score under another. We can observe this dependence by 
calculating the correlation coefficients among the three conditions in the numerical 
example from the last chapter (Table 16.3). When we take the six scores for a1 and 
correlate them with the matching six scores for a2 , we find r 12 = 0.938. The corre-
lations between the other two pairs of scores are also substantially greater than zero, 
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r 13 = 0.947 and r23 = 0._93_7. The within~subject observations are not indepen,d_en 
ea.ch other, and the statistical model needs to accommodate these dependences, ;',,Lr& 

Two different models have been applied to within-subject data. They diffef;Iri; 
whether scores from a subject are treated as separate entities or are treated togeth~:r;' 
In the univariate approach, each score Yu is viewed as a separate random variabl~ 
made up of systematic and random components, including a component· specific to 
the subject. In the multivariate approach, all the scores from a single subject are 
treated as a single statistical entity. In Table 16.3, for example, the univariate ap-
proach treats the first subject's scores as Yu= 745, Y12 = 764, and Y13 = 774, but the 
multivariate approach treats them as Y1 = (745, 764, 774); we use the boldface letter 
to indicate that the observation is multivariate. The two representations have different 
sets of assumptions and lead to two different forms of the analysis of variance. The 
univariate approach leads to the analysis described in Chapter 16, and the multivari-
ate approach leads to the multivariate analysis of variance or MANOVA. The 
multivariate analysis is the more flexible of the two, and it requires fewer assumptions 
about the data. However, as a result, when this flexibility is not required, it is less 
powerful than the univariate approach. We will emphasize the univariate approach 
for several reasons. First, its as~umptions are often satisfied, or nearly so, with exper-
imental data. Second, it lends itself to the type of multifactor experiments that are 
common in behavioral research. Both of these properties have made it popular with 
researchers. Finally, it is computationally easier than the multivariate model, making 
it a good place to develop one's understanding of the techniques. 

Both models require the usual cluster of random-sampling assumptions. In partic-
ular, each subject's data must be independent of the data from every other subject, 
and the same distribution must apply to every subject. Note that the assumption 
of independence applies to the subjects, not to the individual scores, which will be 
correlated because of the consistency of subjects. As always, these assumptions are 
critical to the analysis. Without them, the population to which the inferences apply 
is unclear, and the results of the analysis are potentially biased or irrelevant. The 
two models also specify, in somewhat different forms, the assumption of a normal 
distribution, as we will amplify below. 

The Univariate Model 
One way to think of the univariate model for the within-subject analysis of variance is 
as a specialized form of the randomized-blocks design from Section 11.5. In that design, 
blocks of subjects were formed whose scores were expected to be relatively similar. 
Subjects within these blocks were then randomly assigned to the conditions, and the 
blocks were treated as a factor in the design. Because the variability associated with 
differences among blocks was systematically removed, the treatment effects were both 
better balanced and less variable than they would have been in a simple between-
subjects design. In applying this model to a within-subject design, we treat each 
subject as a block. Like a block in the randomized-blocks design, the scores for a 
single subject in a within-subject design are more similar to each other than they are 
to the scores of the other subjects. 

The parallel to a randomized-blocks design correctly suggests that a linear model 
similar to the two-factor model for that design can be used (Equation 11.14, p. 225). 
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There are some important differences, however, in the nature of any uncontrolled 
error. In a randomized-blocks design, the blocks are chosen systematically, while in a 
within-subject design, the subjects are chosen randomly. Moreover, although there are 
often several subjects in each condition within a block, subjects in the within-subject 
design provide only one score per condition. With these modifications, a score Yii is 
expressed by the equation 

Yii = µr + aj +Si+ (Sa)ij + Eij• (17.1) 
The grand mean µT and the treatment effect aj are familiar. The remaining terms 
define the different sources of unsystematic variability: 

l. The overall ability of the subject, Si, Some subjects produce, on average, high 
scores and others low. The random variable Si represents the deviation of these 
mean scores from the grand mean. It has a normal distribution with a mean of 
0 and a variance of a~. 

2. The idiosyncratic response of the subject in a particular condition, 1 (Sa )ij. Dif-
ferences in skill, ability, or predilection make some subjects perform better in 
one condition, others in another. These effects constitute a treatment-by-subject 
interaction. Because the subjects are randomly selected, it is represented by a 
random variable. It has a normal distribution, with a mean of O and a variance 
of o-ixs· 

3. The variability of the individual observations, Eij. Even in the same condition, 
a particular subject would not produce the identical score each time the same 
treatment was administered. The uncertainty about this aspect of performance 
is represented by the random variable Eij, which has a normal distribution with 
a mean of O and a variance of <1:,,0 ,. 

You can compare this model to the linear model for a one-way between-subjects design, 
Yii = µr + O'.j + Eij· Although the three sources of variability Si, (Sa)ij, and Ei; are 
present there (see the discussion of experimental error in Chapter 2 on pp. 19-20), 
they are indistinguishable. As a result, the variabilities <1l, o-ixs, and <1:,ror of the 
within-subject design .are lumped together as the single error variance <1;rror of the 
between-subjects design. 

The effect of the three sources of unsystematic variability is to make the mean 
squares more complicated than they were in the between-subjects designs. Calcula-
tions (which we will not go through) show that 

E··. (MSA) =a: l Ea;+ O'~xS + <1;rror, .} 

E(MSs) = aa~ + <1;rror, 

E(MSAxs) = <1~xs + <1;rror· 

(17.2) 

Let's look at the terms that make up these mean squares. The mean square for the 
treatment effect A, which is the terni we want to test, is influenced by two of the 
three sources of error: the interaction of the treatment factor with subjects. and the 

1 We have reversed the order of the two letters in this effect from that used in earlier editions of 
this book. This change keeps their order and that of the subscripts in alignment, with the first (S or 
i) referring to subjects and the second (a or j) to the treatment conditions. 
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variability of the individual observations. Under the null hypothesis, when all the 
treatment effects O:j are zero, E(MSA) reduces to uixs + u;rror· The denominator of 
the F ratio must match this sum, and the AxS interaction does. It should be clear 
now why the error term for the A effect is the Ax S interaction. The expected mean 
squares also show why there is no pure test of the S effect, as we mentioned on pages 
353-354. The error variance a:rrar, which would be the necessary term, never appears 
in isolation, so it cannot be independently estimated. An F test that used MSAxS as 
an error term would be biased. 2 

The univariate model constrains the possibilities for the variances of the scores and 
the correlations among them. Calculations based on Equation 17.1 show that when 
it holds, two things happen. First, the variances of all the treatment conditions are 
identical. Second, the same thing happens to correlations between the scores; they too 
are identical. These conditions are often referred to as homogeneity of variance and 
homogeneity of correlation, respectively. When these restrictions hold, the data 
are said to show compound symmetry. We will talk more about the implications 
of these restrictions in Section 17.3. 

The Multivariate Model 
The alternative to the univariate representation is the multivariate model. This model 
treats all the scores from a subject as a single multipart random variable that contains 
the individual scores within it. The complete set of observations for subject Si is the 
multivariate random variable 

Yi = (Yil, Yi2, ... , Yia)• (I 7.3) 
The model itself simply says that this random variable has what is known. as a mul-
tivariate normal distribution, which is a generalization of the normal distribution 
that allows for the correlations among several variables. The parameters of this model, 
corresponding to the µ, Otj, etc. of the univariate model, are the parameters of the 
multivariate distribution. They_ are of three types: the means µj of the individual 
scores, the variances u; of these scores, and the correlations between the pairs of 
scores. The null hypothesis tested by the multivariate analysis of variance is the same 
as that tested by the univariate form, namely, that the µj are all identical. 

The way the two models differ is in how the variability among the scores is ex-
pressed. We saw above that the univariate model imposes compound symmetry on 
the data. All the scores must have the same variance, and the correlations between 
any pair of scores must be the same. The multivariate model completely relaxes this 
requirement. It can accommodate any pattern of variances and correlations. Because 
of this flexibility, it applies to situations for which the univariate model is inappropri-
ate. This robustness comes at a cost, however. The multivariate analysis, in effect, 
must estimate all those variances and correlations from the data, and this . process 
reduces the amount of information that can be brought to bear on the differences 
among the means. As a result, when the assumptions of the univariate model hold, 
the multivariate tests have less power. Without going into the details, this reduction 

2These quantities allow us to complete the equations for the effect size that we expressed by words 
in Equation 16.7. The total variability is O'! + O'~ + O'Jvs + 0';,,0 ,, and the variability that affects 
AxS is just O'~xs + O';,,or· 
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in power is reflected by the denominator degrees of freedom under the two models. For 
the example in. Table 16.3, dj = 10 for the univariate model and df= 4 for the multi-
variate model, leading to critical values for the respective F tests of F,05(2, 10) = 4.10 
and F.os(2,4) = 6.94. 

The multivariate analysis of variance gives rise to several different test statistics, 
and the programs (which you will surely use to conduct this procedure) usually give 
several of them. They all give the same result for completely within-subject designs-
those that have only within-subject factors. We will return to the different test 
statistics when we consider the mixed• design. 

There is one place where the two approach are the same. The test of a contrast 
under the multivariate model uses the procedure described in Section 16.2. The cal-
culation of the contrast-by-subjects interaction as an error term for each contrast has 
the effect of matching the error to the observed variability of that contrast, which 
is exactly what the multivariate model does. We will discuss below some situations 
where the univariate approach can be used and some where the multivariate approach 
is better. You can disregard these distinctions when you are testing contrasts. 

17.3 The Sphericity Assumption 
We mentioned that the univariate model implies the twin conditions of homogeneity 
of variance and homogeneity of correlation, that is, of compound symmetry. These 
assumptions ensure that tests based on the univariate model are valid. Actually, 
because the hypothesis of no treatment effect concerns only differences between scores, 
a slightly weaker assumption is all that is needed. Compound symmetry need not hold 
for the scores themselves, but only for the differences between pairs of scores. This 
condition is referred to as circularity or sphericity ( the difference between these 
terms need not concern us, and we will use the latter term). We will emphasize the 
somewhat more stringent assumption of compound symmetry, because it is expressed 
directly in terms of the data and easier to relate to an actual study. 

To avoid violations of compound symmetry, the various observations should be 
of the same type and measured in a similar way. Of course, measures of completely 
different quantities, such a response time and the proportion of errors, should never 
be treated as a within-subject "factor," even when they are collected on the same 
subjects. However, even measures that seem superficially similar may create a prob-
lem. Consider a memory researcher who asks subjects to recall a story. The facts 
are divided into several categories (for example, those describing the characters, those 
describing the action, those that are incidental to the story, etc.), and the researcher 
wants to compare the proportion of each type that each subject recalls. The problem 
here is that these proportions, being based on different numbers of original facts and 
having different rates of recall, are also likely to have systematically different variances. 
The correlations among them may also vary. To take another example, suppose a 
researcher has measured the skills of a group of children using tests of verbal skills, 
arithmetic skills, and motor skills. Although all of these tests capture the idea of skill, 
they measure different concepts. The school-related measures of verbal and arithmetic 
skills are likely to be more highly correlated with each other than either is to the motor 
task. In both cases, a test based on the multivariate model should be used. 
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Time-series data are another source of violations of compound symmetry. Suppose 
the same measure is taken from the subjects at different times, such as on different 
trials in a learning experiment. With these data, adjacent scores are likely to be more 
highly correlated than are scores observed at widely spaced intervals. Even when the 
variances are the same, compound symmetry may fail because the correlations are 
heterogeneous. A similar situation arises in a study that measures changes during the 
course of therapy. Suppose a standardized measure of pathology is administered before 
treatment is started, at the midpoint of treatment, and after the treatment is finished, 
and these values are to be compared. The correlation between the scores measured 
before and after therapy is likely to be lower than the correlation between either of 
them and the middle scores. The danger of temporal heterogeneity is particularly high 
when many measurements have been taken. 

There are tests for violations of sphericity or compound symmetry. The most 
widely used of these, a likelihood-ratio test statistic W developed by Mauchly (1940), 
is included in a number of computer programs. This statistic should not be significant 
for the analysis to proceed. For example, a computer analysis of the data in Table 
16.3 gave W = 0.758, with a descriptive level of p = 0.575. Because this value is far 
from significant, we can proceed' with the within-subject analysis of variance without 
concern. There are some important limitations to Mauchly's test, however. It has been 
criticized both for a lack of sensitivity to small violations (which can nevertheless affect 
the F test) and for positive biases when the data contain a disproportionate number 
of extreme scores. A test due to John (1971) is superior (see Cornell, Young, Seaman, 
& Kirk, 1992, for a comparison of several tests and references to earlier work, and 
Kirk, 1995, pp. 277-278, for examples of its use). It has not been widely implemented 
in the computer packages. 

The tests of sphericity, like those of heterogeneity of variance in between-subjects 
designs, have their own assumptions. Their vulnerability to violations of these assump-
tions is not well understood, particularly those relating to failure of normality, but they 
are certainly different from those of the analysis of variance. Just as with homogene-
ity of variance in the between-subjects designs, you should be cautious about making 
decisions regarding the analysis procedure based only on apparent heterogeneity of 
the variances and correlations. Substantial violations force one to use the multivariate 
procedure, but in more ambiguous cases, the choice between approaches should be 
supported by a consideration of the measures themselves and an assessment of the 
plausibility of homogeneity and potential sources of heterogeneity. It is particularly 
confusing for readers of one's research to switch back and forth between different types 
of test statistic within the analysis of a single study or group of studies. 

Dealing with Violations of Sphericity 
When sphericity is violated, the omnibus tests based on the randomized-blocks model 
are biased positively. Tests using the critical value of Fat, say, a== .05 from Appendix 
A.I, may actually have a real, but unknown, significance level greater than .05. If we 
do not make some sort of adjustment, then we will be too likely to falsely reject the 
null hypothesis. There are four approaches we can take. Three of these attempt to 
salvage the omnibus test: measure the magnitude of violation of sphericity and adjust 
the critical value of F upward to accommodate it, use a conservative critical value 
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based on the largest possible violation of heterogeneity, or turn to the multivariate 
approach. The fourth possibility is to forget about the omnibus test and emphasize 
tests of contrasts, which are immune to violations of sphericity. 

The first way to eliminate the bias of the F test is to evaluate it against a larger 
critical value, obtained by reducing the degrees of freedom when entering Appendix 
A;l. Box (1954a) suggested using the values 

dfnum = c(a -1) and d/denom = c(a - l)(n -1), (17.4) 
where c measures the extent to which sphericity is violated. When sphericity holds, 
c = 1 and the degrees of freedom are those of the uncorrected test. When sphericity 
is violated, c < 1, which reduces both dfnum and dfdenom and gives a larger critical 
value for F. · 

The problem now is to find a value for e:. Its true value depends on the actual 
variances and correlations in the population, which we do not know. There is no 
unambiguous way to estimate it. Among the possibilities are methods suggested by 
Geisser and Greenhouse (1958) and by Huynh and Feldt (1976), of which the latter 
has the greater power. Both values are calculated by many of the packaged programs. 3 

Either method gives a larger critical value than the uncorrected test, which protects 
against an inflated Type I error rate. 

Another approach is to pick the smallest value that g can attain, whatever the 
variances and correlations may be, which happens to be c = 1/(a - 1). Using this 
worst-case value, the observed F ratio is evaluated against the critical value obtained 
from Appendix A.1 with 

a - 1 (a - l)(n - 1) 
dfnum = --1 = 1 and dfdenom = l = n - l. (17.5) a- a-

These values are those that would have. been used had the study involved but two 
conditions, a fact that makes them easier to remember. Because this conservative F 
test was suggested by Geisser and Greenhouse (1958), it is often associated with their 
names, but you should distinguish it from the correction that uses their estimate of e 
mentioned in the previous paragraph. The big advantages of the conservative test is 
that it is easy to use, requires no special tables, and can be applied even when access 
to the original data is no longer possible. Applied to the example of Table 16.3, the 
conservative degrees of freedom are 

dfnum = 1 and dfdenom = n - l = 6 - 1 = 5. 
Looking in the F tables, we find that F.os(l, 5) = 6.61, which is larger than the 
unadjusted value of F.os(2, 10) = 4.10. Because the observed value of F = 14.43 
exceeded the conservative criterion, we can reject the null hypothesis without worrying 
about violations of sphericity. 

The difficulty with the conservative criterion is that it can give an ambiguous result. 
When the observed F falls between the unadjusted critical value and the conservative 
value-between 4.10 and 6.61 in our example-we can't tell whether to retain or reject 
the null hypothesis. The uncorrected criterion says "reject," and the conservative one 
says "retain." The researcher then has several alternatives, all of which require a 
computer. One possibility is to use one or the other of the specific values of e to adjust 

3Kirk (1995) and Myers and Well (1991) give examples of the calculations. 
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the degrees of freedom for the standard F ratio. Another possibility is to use a test 
· based on the multivariate approach. It does not require the assumption of sphericity, 

so its results apply regardless of the pattern of variances and correlations in the data. 
A researcher should choose one of these approaches, not switch between them on an 
ad-hoc basis. On the whole, we favor the multivariate approach. It cleanly avoids the 
need to assume anything about sphericity, and it is based on a straightforward model 
for the data.· It is currently more frequently used than the other possibilities. Any of 
these alternatives are less powerful than the ordinary F test when sphericity holds, so 
they should not be used unless necessary. 4 

In summary; we suggest that you start by looking at whatever indications of 
sphericity failures you have-a consideration of the design and the type of measures 
you are using and any statistics such as Mauchly's test. If you do not see difficulties, 
continue with the univariate test. If you do find cause to worry, try the conservative 
test. If the null hypothesis cannot be rejected using the standard criterion or can 
be rejected using the conservative criterion, you have your conclusion. If it falls in 
between, either use the multivariate test or focus on single-d/ hypotheses. 

17.4 Incidental Effects 

A subject's scores in ally within-subject design are necessarily obtained under differ-
ent conditions. Although, these differences are what distinguish the conditions that 
are being studied, they are affected by aspects of the experimental context that are 
incidental to the question under investigation. In a study using a successive-treatment 
design, the order in which the conditions are administered is the most obvious of these 
differences. One observation is made first, another second, and so forth. Unless the 
point of the study is the sequence of observations, as it would be if they were successive 
learning trials or patient status before, during, and after therapy, the order in which 
the treatments are given is incidental to the purposes of the study. Without taking 
this incidental factor into consideration, the experimenter would have to worry about 
whether performance on the later tests was improved because the early tests let the 
subject practice the task or was reduced because the subject became tired or bored 
with the study. 

Other incidental aspects of the study apply to both successive-treatment and inter-
mixed-treatment designs. The particular materials used in the task often must be 
varied in order to accommodate the repeated measurements. Consider a study in 
which subjects try to learn as much as possible about a briefly seen picture while 
performing some unrelated task, such as copying down the lyrics of a song or taking 
dictation over a telephone. Each subject serves in all conditions. The primary point of 
the study is to see which interfering activities makes the picture harder to remember. 
However, each time the subject is tested, a different picture must be used, and some 
of these pictures will be intrinsically easier to remember than the others. Always 
assigning the same picture to a given treatment condition confounds picture differences 

4Their actual power depends on how sphericity is violated, which is unknown. There is some 
evidence that the various approaches have similar power under many natural ways that sphericity is 
violated with real data (Rasmussen, Heumann, Heumann, & Botzum, 1989). 
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with treatment effects. Like the order in which the conditions are administered, the 
differences among the pictures constitute an incidental aspect of the study. 5 

Factors such as the position in the testing sequence or the type of material are 
examples of the nuisance variables described in Chapter l. When such a variable 
becomes an explicit factor in the design, we will refer to it as either a nuisance factor 
or an incidental factor. In a well-designed study the experimental conditions are 
not systematically affected by, or confounded with, such factors. If condition a1 were 
always administered first, a2 second, and so forth, we could never tell whether any 
differences in performance between them were due to the treatment or to practice 
or fatigue effects. Similarly, if a particular picture were always used for condition 
a1 , another always for condition a2, and so on, we could never tell whether better 
performance in one condition was due to the treatment being studied or the use of an 
easier picture. 

The biases that arise when the treatments are confounded with incidental aspects 
of the study, such as the order of testing or the materials, can be avoided by breaking 
up any consistent relationship between them. There are two ways to do this. In. 
randomization, the relationship between the treatments and the incidental aspects 
of the study is chosen randomly; in counterbalancing, it is constructed in a way 
that systematically balances the incidental effects across the study. Each approach 
has advantages and disadvantages.6 

Randomization 
The randomization procedures are the easiest to apply. Little advanced planning is 
necessary. When each subject comes into the experiment, the order in which the 
conditions are administered is chosen randomly from among all possible orders, and 
any different types of material are randomly assigned to the conditions. The random 
orders break up any systematic relationship between the incidental aspects of the 
procedure and the treatment conditions. Randomization is particularly effective when 
several incidental factors must be · accommodated, and the type of systematic coun-
terbalancing that we will discuss next is prohibitively complex. Another advantage is 
that randomization does not require any special analysis procedures-the analysis we 
described in the last chapter applies without alteration. 

Convenient as it is, randomization has two disadvantages. First, it cannot assure 
that the incidental factor is completely balanced across treatments. Just as it is 
unlikely that the random assignment of subjects in a between-subjects design results in 
perfectly equated groups, so the random assignment of materials or orders is unlikely to 
perfectly balance them over the treatment conditions. Second, the random variability 
of the incidental factors is absorbed in the error term MS Ax s. Because the size of this 
term determines the power of the test, any procedure that can reduce it is helpful. 

5We will discuss other ways in which the selection of material affects the statistical analysis in 
Chapter 24. 

6The assignment of subjects to conditions in a between-subjects design may also be random or 
systematic. In a completely randomized design, subjects are assigned randomly; in a randomized-
blocks design (Section 11.5), they are systematically grouped into blocks to create more homogeneous 
groups and to reduce the error term. Counterbalancing does the equivalent thing with nuisance 
variables. 
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Counterbalancing and the Latin Square 
The alternative to randomization is counterbalancing: assigning an incidental factor 
systematically so each level occurs equally often with each treatment condition. In 
this way, any effects of the incidental factor apply equally to every condition. A 
counterbalanced design also allows the variablity of the incidental effect to be extracted 
as a sum of squares and eliminated from the error term. The result is to increase both 
the accuracy and the power of the tests. The downside of counterbalancing is the 
additional complexity introduced into the design-in the planning, in conducting the 
study itself, and in the analysis of the data. 

The different methods of counterbalancing, particularly in the larger designs, can 
become very complicated. We will discuss only the simplest designs. Our discussion, 
we hope, will make the issues clear and help you deal with many practical situations. 
In more complex studies, particularly those with several nuisance factors, you will 
need to find a more comprehensive treatment or seek expert advice. 

Suppose we are planning a study with four conditions that will be administered 
one after another in a successive-treatment design. The possibility of practice effects 
makes it unsatisfactory to administer the treatment conditions in the same order 
to all subjects-for example, condition a1 first, a2 second, and so forth. If we did, 
condition a1 would have fresh but unpracticed subjects, and the later conditions would 
be affected by increasing amounts of fatigue and practice. To avoid this confounding, 
we can adopt the counterbalanced experimental plan in Table 17.1. The table on 
the left displays an idealized pattern of scores from four subjects tested on the four 
conditions. The columns represent the testing order, beginning with the first test, 
which we will denote Pt, through the fourth (p4). Subject s1 receives the treatments 
in the order a1, a2, a3, a4. For subject s2, the order is changed to a2, a4, a1, and a3, 
and the other two subjects receive still different orders, as indicated in the table. Look 
at what this arrangement has done to the relationship between the treatments and the 
positions in which they were given. Treatment a1 appears once in the first position, 
once in the second, once in the third, and once in the fourth. The same holds for the 
other three levels of factor A. No condition receives any advantage or disadvantage by 
appearing more often towards the beginning or the end of the testing sequence. Any 
practice or fatigue effects are spread evenly over the four treatment conditions. 

The arrangement of the conditions in Table 17.1 is known as a Latin square. 
The name is derived from the fact that the pattern of conditions within the square is 
traditionally denoted by Latin letters-if we replace conditions a1 to a4 by the letters 
A, B, C, and D, respectively, the arrangement is 

ABCD 
BDAC 
CADB 
DCBA 

The key feature of the Latin square arrangement is that every letter appears exactly 
once in each row and each column. It is the basic tool that an experimenter uses to 
set up a design in which an incidental factor is systematically counterbalanced over 
the treatment conditions. 
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Table 17.1: An idealized pattern of scores from four subjects tested in a Latin 
square design. The left panel shows the data arranged by the order of testing; the 
right panel shows it arranged by condition. 

Testing position (P) Treatment condition (A) 
Subject p1 P2 P3 

a1 a2 a3 a4 Pl p2 p3 p4 
4 11 8 14 4 11 8 14 

a2 a4 a1 a3 p3 Pl P4 p2 
7 10 11 9 11 7 9 10 

a3 a1 a4 a2 p2 p4 Pl p3 
1 8 13 15 8 15 1 13 

a4 aa a2 a1 p4 p3 P2 Pl 
6 5 14 12 12 14 5 6 

Mean 4.50 8.50 11.50 12.50 8.75 11.75 5.75 10.75 

On the right-hand side of Table 17.1, the data are rearranged so that the columns 
correspond to the treatment conditions, and each cell is labeled by the position in 
which that treatment was given. Each position appears once for each treatment, so 
the design is still a Latin square. At the bottom of both tables we have calculated the 
means-on the left, the means for each position; on the right those for each treatment 
condition. Main effects of both factors appear to be present. There is a practice effect 
with the means increasing with testing position from YPi = 4.50 to Yp4 = 12.50 and 
a treatment effect with means ranging from YAs = 5. 75 to YA 2 = 11. 75. Using the 
Latin square design allows each effect to be measured independently of the other. 

We have plotted the scores from Table 17.1 as a function of condition and of testing 
position in Figure 17.l. We constructed the figure by extracting the four scores for 
each treatment condition {the columns in the right-hand part of the table), plotting 
each set according to testing position, and finally connecting each set of four points. 
This graph emphasizes the treatments and the testing positions but ignores the fact 
that the points on any of the lines were obtained from different subjects. Inspection 
of the figure reveals a marked practice effect, but one that is exactly the same for 
each treatment condition {this is why we referred to the pattern as "idealized" above); 
in addition, the clear separation of the curves suggests the presence of a treatment 
effect that is the same at each testing position. We know from the marginal means in 
Table 17.1 that there is a steady improvement in performance with successive testing 
positions and that condition a3 is the worst and a2 is the best, with the other two 
conditions in the middle. 

This example shows how the failure to counterbalance would have corrupted the 
results. Look at the difference between the two extreme conditions, as revealed by the 
treatment column means in Table 17.1, YA 2 - YAs = ll.75 - 5.75 = 6.00. Suppose all 
the conditions had been tested in the order a3, a1, a4, a2, the same as the order given 
to subject s3. The difference between these two conditions for this particular subject is 
the largest of all four subjects {15-1 = 14). With this testing order, then, the practice 
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Figure 17.1: The scores in Table 17.1 plotted to show the treatment and practice 
effects. 

effect mixes with the treatment effect in a way that exaggerates this difference. On 
the other hand, suppose the reverse order a2, a4, a1, a3 had been used, as it was for 
subject s2. With this order, the practice effects work against the treatment effects-
the difference between a2 and a3 is actually in the opposite direction (7-9 = -2). No 
single testing order gives an uncontaminated measure of the treatment effect. Only 
by averaging over all the testing orders do we get a faithful picture of the effect. 

Constructing a Counterbalanced Design 
The example in Table 17.1 is too small and the results are too regular to be more 
than an illustration. We would rarely conduct a four-treatment study with only four 
subjects. Instead, we would increase the sample size by including additional counter-
balanced sets of four subjects. The same Latin square could be used over and over, 
or each set could use a different Latin square. 

The first task in setting up such a design is to choose the Latin square that will be 
used to match the conditions and the incidental factor for a block of subjects. Other 
things being equal, the best strategy is to pick this square haphazardly. We do this 
by first writing the letters A, B, C, and so forth across the first row and down the first 
column, then filling in the remainder of the square, so that each letter appears once 
in each row and column. The resulting configuration is said to be a standard Latin 
square. For a = 2 and a = 3, there is only one standard square: 

tABl and 
ABC 
BCA 
CAB 

Paul Gribble


